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Abstract

Inspired by game theory representations, Bayesian networks, influence
diagrams, structured Markov decision process models, logic programming,
and work in dynamical systems, the independent choice logic (ICL) is a se-
mantic framework that allows for independent choices (made by various agents,
including nature) and a logic program that gives the consequence of choices.
This representation can be used as a specification for agents that act in a world,
make observations of that world and have memory, as well as a modelling
tool for dynamic environments with uncertainty. The rules specify the con-
sequences of an action, what can be sensed and the utility of outcomes. This
paper presents a possible-worlds semantics for ICL, and shows how to em-
bed influence diagrams, structured Markov decision processes, and both the
strategic (normal) form and extensive (game-tree) form of games within the�
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ICL. It’s argued that the ICL provides a natural and concise representation for
multi-agent decision-making under uncertainty that allows for the represen-
tation of structured probability tables, the dynamic construction of networks
(through the use of logical variables) and a way to handle uncertainty and
decisions in a logical representation.

1 Introduction

This paper presents the Independent Choice Logic (ICL), a logic for modelling
multiple agents under uncertainty. It’s inspired by game theory [53; 32; 17], Bayesian
networks [35; 7], influence diagrams [23; 22], probabilistic Horn abduction [36],
structured representations of Bayesian networks and Markov decision processes
[5; 8; 7], agent modelling and dynamical systems [29; 57; 51; 48] and logical mod-
elling of action and change [27; 50; 45].

First we motivate ICL from a number of different perspectives, then show how
it fits within the paradigms of knowledge representation (Section 1.1). In separate
subsections we present the foundations of ICL based on agents (Section 1.2), game
theory (Section 1.3), influence diagrams (Section 1.4) and logic (Section 1.5). We
then build the formal definition of the representation in Section 2. The majority of
this paper presents examples of the use of the logic, including showing how influ-
ence diagrams, Markov decision processes, and the strategic and extensive forms
of games can be represented.

Bayesian or belief networks [35] provide a useful representation for reason-
ing under uncertainty. Bayesian networks are a representation of independence
amongst random variables. The Bayesian network model doesn’t constrain how
a variable depends on its parents, nor does it specify a representation for the con-
ditional probability of a variable given its parents in the network. The conditional
probabilities of variables given their parents are typically represented as tables, but
can often be specified more compactly in terms of trees [7] or rules [36]. Rules are
more compact than trees (unless the trees can have shared structure and redundant
tests), in the sense that there are some functions where the tree representation is
exponentially larger than the rule representation, but the converse doesn’t hold1.

1As we allow negation as failure in the rules, the rules can be seen as a DNF definition of a
concept (using Clark’s completion [11]). It is known that DNF formulae sometimes entail an ex-
ponential blow up in size when converted to decision trees [46]. Decision trees can be converted
simply to rules, with a rule for each leaf in the decision tree whose body corresponds to the path to
the leaf.
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Rules have the added advantage that there is a natural extension to the first-order
case [36]. This paper builds on probabilistic Horn abduction [36], a first-order
rule-based representation for Bayesian networks, allowing negation as failure and
fewer restriction on the rules than in probabilistic Horn abduction. This paper ex-
tends the probabilistic framework to include utilities and decisions made by mul-
tiple agents, so that not only can the knowledge base be expressed compactly by
rules, but agents’ policies can also be expressed by rules.

Logic has become the primary focus of knowledge representation in AI. This
is because it provides a way to give meaning to symbols and a way to specify what
you want to compute independently of how it’s computed [42]. It has often been
argued (e.g., [33]) that any general representation scheme must be at least as rich as
the first-order predicate calculus. One of the problems with the first order predicate
calculus is the way it handles uncertainty; all it has available is disjunction. This
is a rather blunt instrument and doesn’t do justice to all of the subtleties involved
in reasoning under uncertainty. Rather than adding uncertainty to the first-order
predicate calculus [3; 24; 20; 19], which would entail having both disjunctive and
probabilistic uncertainty, this paper proposes that we should use probability and
decision theory, instead of disjunction, to handle uncertainty. In the ICL, we start
with a logic doesn’t include any uncertainty and is definitive on all propositions
(every theory entails exactly one of � or ��� for all propositions � ). Agents own al-
ternatives, which are sets of propositions. An agent gets to choose one value from
each alternative that it owns. Nature is a special agent; the alternatives owned by
nature have a probability distribution over them. The logic gives the consequences
of the choices made by nature and the agents. This allows us to have the advantages
of logic, with symbols that can be given denotations, specifications of valid con-
sequences and first-order representations, but also lets us use the normative tools
of decision/game theory notions to determine what an agent should do.

Models of dynamical systems (see e.g., [29; 44]) have traditionally been de-
scribed in terms of state spaces, for example treating state spaces in terms of vec-
tors of states and state transition functions in terms of matrices. It’s often much
more convenient to describe a state space in terms of propositions, and describe the
state transition function in terms of these propositions. The state transition func-
tion can be stated concisely in terms of Bayesian networks [12] or even more con-
cisely by trees [5; 8] or rules [40], never referring to the explicit state. The number
of variables is logarithmic in the size of the state space. The effects of actions are
typically local, the value of a variable depending only on a few other variables.
This provides the potential to take advantage of the compactness of the proposi-
tional representation. In the ICL we specify state transition functions in terms of
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rules. One advantage of rules is that they are closer to the traditional AI represen-
tations such as the situation calculus [31] (see [40]). The first-order nature of the
rules, with explicit reference to the stage or situation make the rules perspicuous.
The rule based representation also helps clarify the close relationship between re-
gression planning and dynamic programming.

1.1 Knowledge Representation

There are two different views of what a knowledge representation should be.

� The first is that a knowledge representation should let users state whatever
knowledge they have in a reasonably natural way. Under this view it isn’t
appropriate for the designer of a knowledge representation to specify how a
piece of knowledge should be encoded. Reasoning can conclude what log-
ically follows from the stated facts or can fill in missing facts in a common
sense manner. An example of this view is in the use of the first-order pred-
icate calculus for knowledge representation. It’s a rich enough language to
let us state many facts about the world, but with primitive means to handle
uncertainty. Within this tradition, logics have been developed to handle un-
certainty and multiple agents making decisions [3; 24; 20; 19; 15; 21]. Miss-
ing facts can be inferred using default reasoning [30], or by making maxi-
mum entropy or random worlds assumptions [4]. What’s important is that
the user can add whatever they like to the knowledge base, and the represen-
tation should be able to make appropriate inferences.

� The second view is that a knowledge representation should provide a high-
level symbolic modelling language that makes some things easier to state.
Under this view a knowledge representation should specify how to model a
domain. It should guide users as to how they should think about the domain,
what they should say; and once some choices have been made, it prescribes
what information needs to be specified. An example is Bayesian networks
[35], which provide a modelling tool for representing independence amongst
random variables. The user needs to specify the random variables of inter-
est, the values these variables can take, and the dependency amongst these
variables. Once these are specified the Bayesian network model prescribes
what probabilities need to be specified.

It is important not to confuse these, as judging a knowledge representation by the
inappropriate criteria will lead to an unfair judgment. The knowledge representa-

4



tion in this paper should be seen as an instance of the second. We don’t expect that
people will be able to just throw any knowledge in. For example, missing rules
have a particular meaning; if you want to assert ignorance there are specific ways
to do it.

1.2 Agents

An agent is something that acts in the world. An agent can, for example, be a
person, a robot, a worm, the wind, gravity, a lamp, or anything else. Purposive
agents have preferences—they prefer some states of the world to other states—
and act in order to (try to) achieve worlds they prefer. The non-purposive agents
are grouped together and called “nature”. Whether an agent is purposive or not is a
modelling assumption that may or may not be appropriate. For example, for some
applications it may be appropriate to model a dog as purposive, and for others it
may suffice to model a dog as non-purposive.

Agents can have sensors, (possibly limited) memory, computational capabili-
ties and effectors. Agents reason and act in time.

An agent should react to the world; it has to condition its actions on what’s
received by its sensors. These sensors may or may not reflect what’s true in the
world;2 sensors can be noisy, unreliable or broken; and even when sensors are re-
liable there is still ambiguity about the world from sensors’ readings. An agent can
only condition its actions on what it knows, even if it’s very weak such as “sensor� appears to be outputting value 	 ”. Similarly actuators may be noisy, unreliable,
slow or broken. What an agent can control is what message (command) it sends
to its actuators.

An agent can be seen as an implementation of a transduction [57; 47; 48; 39],
a function from input (sensor readings) history into outputs (action attempts or ac-
tuator settings) at each time point. These are causal in the sense that the output
can only depend on current inputs and previous inputs and outputs; they can’t be
conditional on future inputs or outputs.

A policy or strategy is a specification of what an agent will do under various
contingencies. That is, it’s a representation of a transduction. A plan is a policy
that includes either time or the stage as part of the contingencies conditioned on.

Our aim is to provide a representation in which we can define perception, ac-

2Of course if there is no correlation between what a sensor reading tells us and what’s true in
the world, and the preferences of the agent depend on what’s true in the world (as they usually do),
it may as well ignore the sensor.
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tions and preferences for agents. This can be used to define a policy, the notion of
when one policy is better than another (according to that agent’s preferences), and
so an appropriate notion of an optimal policy for an agent. Once we have defined
what an optimal policy is, we can use exact and approximation algorithms to build
policies for agents.

We want to model agents and their environments with the same language. The
language should provide a decision theoretic, or game theoretic (for more than one
agent) framework that can be used to build agents that can be shown to be optimal
(as in [48]) or at least to have a specification of the expected utility of an agent.
A planner in this framework is a program that generates a (possibly stochastic)
transduction for an agent to execute. The output of the planner should be suitable
for actually controlling an agent. It has to be more than a sequence of steps that
is the output of traditional planners. Here we consider reactive agents that have
internal state. This paper doesn’t consider the problem of building a planner. Even
for the single-agent propositional case, the problem of finding an optimal policy is
computationally prohibitive [25], but this is more a property of the problem than of
the representation. By having a rich representation we can discuss the complexity
of various restrictions and build approximation algorithms.

Under this view, beliefs, desires, intentions, and commitments [51] aren’t es-
sential to agenthood. It may, however, be the case that agents with beliefs, desires,
intentions, and commitments that, for example, communicate by way of speech
acts [51], perform better by some measure than those that do not. We don’t want
to define agenthood to exclude the possibility of formulating and testing this em-
pirical claim.

In this paper we provide a representation that can be used to model the world,
agents (including available sensors and actuators) and goals (in terms of the agents
utilities in different situations) that will allow us to design optimal (or approxi-
mately optimal) agents.

1.3 Game Theory

Game theory [53; 32; 17] is a theory of multi-agent reasoning under uncertainty.
The general idea is that there is a set of players (agents) who make moves (take
actions) based on what they observe. The agents each try to do as well as they can
(maximize their utility).

Game theory is designed to be a general theory of economic behaviour [53]
that is a generalization of decision theory. The use of the term “game” here is
much richer than typically studied in AI text books for parlour games such as chess.
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These could be described as deterministic (there are no chance moves by nature),
perfect information (each player knows the previous moves of the other players),
zero-sum (one player can only win by making the other player lose), two-person
games. Each of these assumptions can be lifted [53].

A game is a sequence of moves taken sequentially or concurrently by a finite
set of agents. Nature is usually treated as a special agent. There are two main (es-
sentially equivalent in power [17]) representations of games, namely the extensive
form and the normalized [53] (or strategic [32; 17]) form of a game.

The extensive form of a game is specified in terms of a tree; each node be-
longs to an agent, and the arcs from a node correspond to all of the possible moves
(actions) of that agent. A branch from the root to a leaf corresponds to a possible
play of the game. Information availability is represented in terms of information
sets which are sets of nodes that an agent can’t distinguish. The aim is for each
agent to choose a move at each of the information sets.

In the strategic form of a game each player adopts a strategy, where a strategy
is “a plan ... which specifies what choices [an agent] will make in every possible
situation” [53, p. 79]. This is represented as a function from information available
to the agent’s move.

The initial framework developed here should be seen as a representation based
on the normalized form of a game, with a possible world corresponding to a com-
plete play of a game. In the ICL we add a logic program to give the consequences
of the play. This allows us to use a logical representation for the world and for
agents. Section 5.5 presents a representation that is closer to the extensive form of
a game.

Where there are agents with competing interests, the best strategy is often a
randomized strategy. In these cases the agent decides to randomly choose actions
based on some probability distribution.

Example 1.1 Consider a problem in designing soccer playing robots. In particular
we want to consider the problem of a penalty kick. Penalty kicks are used to decide
a winner in some soccer games that are tied at the end of regulation time. In a
penalty kick, there are two agents: a kicker who is trying to score a goal, and a
goalie who is trying to prevent the goal. The goalie must commit to either jumping
left or right before they know whether the kicker will kick right or left (of course,
neither want to let the other know which direction they will go). Suppose for this
example, that if the goalie jumps (to its) left and the kicker kicks (to its) left, there
is a 90% chance of a goal. Similarly if they both go (to their own) right, there is a
90% chance of a goal. If the kicker kicks left and the goalie jumps right there is a
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Figure 1: Expected pay-off matrix for the game of Example 1.1. Payoff 
�� �����"!��
indicates that the kicker has an expected payoff of �#� (where a goal is worth one,
and a block is worth zero for the kicker) and that the goalie has an expected payoff
of �$! (where a goal is worth zero, and a block is worth one for the goalie).

10% chance of a goal. If the kicker kicks right and the goalie jumps left, there is a
20% chance of a goal (this could happen if the goalie is right handed). See Figure 1
for a payoff matrix for this example. The goalie should not reason that “I am better
when I jump right so I should jump right”. For then the kicker (realizing this) will
always kick right. The goalie could then think that “as the kicker will kick right I
should jump left”. In which case the kicker should kick left. This is a never ending
regress. Such problems have been well studied in game theory [53]. It turns out
that the best strategy for the goalie is to randomize its choice. Similarly the best
strategy for the kicker is to randomize its choice. In this example it’s best for the
kicker to kick right with probability %�'& , and best for the goalie to jump right with
probability (�'& in the sense that if either deviate from this randomized strategy, the
other can exploit the deviation to have a higher chance of either scoring a goal or
stopping a goal (see Example 2.21 for a derivation of these numbers).

1.4 Influence Diagrams

Influence diagrams [23] (see the papers in [34]) are a graphical representation of
decision problems that extend Bayesian networks to include decision nodes and
value nodes. Influence diagrams provide a perspicuous representation for deci-
sion problems making explicit the probabilistic dependencies and the information
available when a decision is made (see e.g., [22])

The propositional version of the logic presented here can be seen as a represen-
tation for influence diagrams (see Section 3.1), where we can use rules to specify
conditional probabilities [36], rules to specify utility and the policies of agents are
specified as logic programs that imply what an agent will do based on its obser-
vations. The ICL allows specification of the influence diagram in a logic that lets
us axiomatise the dynamics of the world, derive implicit information from explicit
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knowledge, and has a formal and natural semantics.
The independent choice logic (ICL) preserves the representational clarity of

influence diagrams and extends them in four ways:
� The first advance is for representation of structured probability tables. The

use of rules allows for the compact representation of probability tables (sim-
ilar to the use of decision trees for specifying probability and utility tables
[52; 5]). For example, although some variable ) may depend on variables� , * and + , it may only depend on * when � has one value and on + when �
has another value. This asymmetric dependency can be easily expressed in
rules, forming a much more compact representation than the traditional ta-
bles. The rule structure can be exploited for efficiency [38; 5; 41]. The same
rule-based representation can be used to express the policies.

� The use of logical variables allows for a form of first-order influence dia-
grams. These form a method for the dynamic construction of influence dia-
grams [9; 36].

� The use of the rule base means we don’t have to specify in one step how a
variable depends on its parents; we can use arbitrary computation. For ex-
ample, we can axiomatise the dynamics of a domain and use the axiomati-
sation to specify how the position at one time depends on the position at a
previous time in a compact way. This features will be exploited for many of
the examples.

� The ICL can also handle multiple agents making decisions, permitting a form
of multiple-agent influence diagrams. We are thus importing the representa-
tional advantages of influence diagrams into game-theory representations.

Note that extending the representation to logical variables and multiple agents in-
creases the worst case computational complexity of deriving optimal plans;3 this is
because the problems that can be represented are more complex. It is not a problem
with the representation per se.

1.5 Logic

Our aim is to define a logic where all uncertainty is resolved by decision/game the-
ory rather than using disjunction to encode uncertainty. We start with a logic that

3The use of variables makes it undecidable, but even without variables, multi-agent reasoning
is exponentially harder than modelling a single no-forgetting agent [25].
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has no uncertainty; it’s definitive on the value of every proposition. We then show
how uncertainty can be modelled as alternatives that are chosen by agents or have
a probability distribution over them. The logic tells us the consequences of the
choices.

We are treating logic as the modelling language of the world. Rather than hav-
ing logic at the meta-level describing an object level in another language such as
GOLOG [28] or constraint nets [56], we are using the logic to represent the object
level. There is no other representation apart from the logic. We use the logic to
axiomatise the causal structure of the world and the causal structure of agents (all
of which are defined in terms of propositions).4

Rather than using disjunction to handle uncertainty, as in the predicate calculus,
we want to use probability and decision theory to handle the uncertainty. There are
normative arguments as to why we should use probability and utilities for reason-
ing under uncertainty [49]. The aim here is to get as much as we can from logic,
but using decision or game theory to handle all of the uncertainty.

Starting a logic without uncertainty potentially lets us sidestep many traditional
problems, or at least adopt simple solutions. For example, it seems as though the
frame problem in the situation calculus [31] is solved for the case with complete
knowledge and deterministic actions [27; 50; 45]; when there is incomplete knowl-
edge and nondeterministic actions, there are still many problems to be resolved
(see e.g., [6]). This paper takes quite a different view to other proposals, where
we resolve nondeterminism and uncertainty by considering “who gets to resolve
the uncertainty”. We consider all actions as deterministic but with hidden vari-
ables, and have probabilities over these variables or have them chosen by differ-
ent agents. This become a very powerful and arguably natural way to model non-
deterministic action (see Section 5.4 and [40]).

2 Independent Choice Logic

In this section we formalize the independent choice logic. We first give a general
abstract definition of how an independent choice logic can be constructed from
a base logic. In order to make the paper and examples more concrete we adopt
acyclic logic programs under the stable model semantics as the base logic.

4All of the logical statements in this paper are at the object level (i.e., are about the domain
being axiomatised rather than being axioms about the formalism). This was done in order to reduce
confusion: we don’t need two different languages and the problems of quoting one language. All
of the meta-level statements here are given in English or normal mathematical notation.
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An independent choice logic (ICL) is a logic built with a specific semantic con-
struction. We assume that we are given a base logic that conforms to some restric-
tions. The construction below specifies how to build possible worlds. Possible
worlds are built by choosing propositions from sets of independent choice alterna-
tives. The base logic is used to determine truth in the possible worlds.

The base logic is defined on two languages, the language ,.- of facts, and the
language ,./ of queries, and a consequence relation 0 1 between elements of ,2-
and elements of ,2/ . That is, 0 1 is a relation on ,.-435,2/ . It’s usually written in
infix notation. We assume that languages ,.- and ,./ are logical languages which
share the same atomic formulae. After the definition of the semantic construction
we discuss what properties we want of ,2- and ,2/ .

Definition 2.1 A base logic is a triple 
6, - �70 18�9, / � such that , - and , / are lan-
guages and 0 1 is a consequence relation.

Definition 2.2 An independent choice logic theory on base 
6,.-:�70 18�;,2/7� is a
pair 
=<:�;>5� , where

< , called the choice space, is a set of sets of ground atomic formulae from lan-
guage ,.- , such that if ?@�2AB< , ?C!DAE< and ?@�GFH ?7! then ?:�JI5?C! HLK�M . An
element of < is called an alternative. An element of an alternative is called
an atomic choice.

> , called the facts or the rule base, is a set of formulae in logic ,2- .

The base logic is often omitted when it can be understood from context.

The semantics of an ICL is defined in terms of possible worlds. There is a pos-
sible world for each selection of one element from each alternative. The atoms
which follow using the consequence relation from these atoms together with >
are true in this possible world.

Definition 2.3 Given independent choice logic theory 
6<N�;>5� , a selector function
is a mapping OEP�<RQ SJ< such that O T6?:U:AB? for all ?VAE< . The range of selector
function O , written WXTYO$U is the set K O T6?:U:P�?ZA5< M . The range of a selector function
will be called a total choice.

The basic semantic construction we want for the ICL is that each selector function
corresponds to one possible world, where every element of the range of the selector
function is true. The facts > specify what else is true in the possible world.

First we define restrictions on the base logic to ensure that the semantic con-
struction gives a well defined semantics:

11



Definition 2.4 Base logic 
6, - �70 1[�;, / � and ICL theory 
\<N�;>5� are definitive if
for every selector function O ,

� If � � is the negation of � in language ,2/ 5 then for each ground atom � of ,2/ ,
either >ES]WXT'O$UJ0 1 � or >5S]WXTYO$U#0 1Z� � , and it isn’t the case that >ES]WXT'O$UJ0 1 �
and >^S_W`TYO$UJ0 1Z� � , and

� if a is an atomic choice then >bS5WXTYO$U#0 1`a if and only if aZABWXT'O$U .
Definition 2.5 Suppose we are given definitive base logic 
6,2-:�70 1V�;,./:� and ICL
theory 
6<:�;>5� . For each selector function O there is a possible world c.d . If e is a
formula in language ,2/ , and c.d is a possible world, we write c.dX0 Hgfihkj l#m e , read
“ e is true in world c.d based on 
\<:�9>E� ”, iff >nSoWXT'O$UJ0 1pe . When understood from
context, the 
=<:�;>5� is omitted as a subscript of 0 H .

The fact that every proposition is either true or false in a possible world follows
from the definitiveness of the base logic.

Note that, for each alternative ?bAq< and for each world c.d , there is exactly
one element of ? that’s true in c.d . In particular, c.d50 H O�T6?:U , and c.dBF0 H a for allaZAB?`r K O T6?:U M .
2.1 The Languages sut and suv
Languages ,2- and ,2/ are logical languages which share the same propositions.
The reason they are different is that we want to impose restrictions on each so that
they are appropriate for their task.

For the rest of this paper we assume that ,2/ is the propositional logic with
atoms (propositions) corresponding to the set of ground atoms of ,.- . In this paper
we will ignore issues relating to variables in ,./ . We will allow arbitrary logical
connectives (e.g., conjunction, disjunction, negation, etc.) in ,./ .

If we want to use the independent choice framework we have to choose a logic
(language ,.- plus consequence relation 0 1 ) that has the property that it gives us
a unique model for each total choice. This means two things:

� Each selection of an element from each alternative is consistent. This means
that the logic can’t allow a selection of choices from some alternatives to im-
pose any restrictions on choices from other alternatives. This, for example,

5If wJx doesn’t contain a negation then the property we need is that the set of atomic formulae
that follow (using y z ) from {5|@}�~���� completely determines the other formulae that follow from{u|C}�~���� . This means, for example that if {�|�}�~�����y z����:� then {�|�}�~�����y z�� or {u|�}�~�����y z�� .
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disallows the logic from being the arbitrary predicate calculus or even Horn
clauses with integrity constraints [27].

� Each total choice can’t be extended into more than one possible world. This
excludes us from having explicit disjunctions in our logic6. It also means,
for example, that we can’t have logic programs under the stable model se-
mantics which may have none or more than one stable model7. We are also
excluding three valued models of logic programs (e.g., [43]) from consid-
eration (whether extending our semantics in this way is useful or not is an
open question).

2.2 Acyclic Logic Programs

In order to use an ICL we must commit to a base logic. In this paper, we consider
the language ,.- to consist of logic programs with a unique stable model [18], and
the consequence relation to be truth in the stable model [18]. That is, logic program� 0 1p� if � is true in the unique stable model of

�
. One way to ensure there is a

unique stable model is to restrict the programs to be acyclic [2].
In this section we give the language and the semantics of acyclic logic pro-

grams. The language follows Prolog’s conventions.

Definition 2.6 A variable is an alphanumeric string (possibly including “ ”) start-
ing with an upper case letter;

A constant or a function symbol or a predicate symbol is an alphanumeric string
not starting with an uppercase letter;

A term is either a variable, a constant, or has the form e]T6������
�
�
��;���DU where e is
a function symbol and ������
�
�
��;��� are terms.

An atom is either a predicate symbol, or has the form ��T6������
�
�
��;���DU where � is a
predicate symbol and ������
�
�
��;��� are terms.

6Disjunction can be seen as a form of uncertainty. In some sense what we are pursuing here is
that idea that all uncertainty can be relegated to the choice space, leaving the logic to give the conse-
quences of the choices. This should be contrasted with other approaches (e.g., [3]) that allow both
sorts of uncertainty. We end up with a much simpler language, but handle uncertainty by consid-
ering different agents getting to choose alternatives. Whether this is a good (both computationally
and ergonomically) idea is an empirical question currently under study.

7The program �����"���Y�D���"� has two stable models, one with � true and one with � true.
The program �.���"� has no stable models.
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A literal is either an atom or has the form �Ca where a is an atom.

A body is either a literal or a conjunction of bodies (the conjunction of �J� and ��!
is written as �J�J�5��! ).

A clause is either an atom or has the form aZ��� where a is an atom (called the
head of the clause) and � is a body. The latter form is called a rule.

A program is a set of clauses.

A ground term, atom or clause is one that doesn’t contain any variables. A ground
instance of a clause + is a clause obtained by uniformly replacing ground
terms for the variables in + .

Definition 2.7 The Herbrand base of program
�

is the set of ground instances of
the atoms formed from predicates, function symbols and constants in

�
(inventing

a new constant if
�

does not contain any constants).

Definition 2.8 ([2]) A logic program
�

is acyclic if there is an assignment of a
positive integer to each element of the Herbrand base of

�
such that, if

���
is the set

of ground instances of clauses in
�

, then for every rule in
���

the number assigned
to the atom in the head of the rule is greater than the number assigned to each atom
that appears in the body.

Acyclic programs are surprisingly general [2]. Note that acyclicity does not
preclude recursive definitions. It just means that all such definitions have to be
well founded.

Definition 2.9 An interpretation is an assignment of true or false to each member
of the Herbrand base. Interpretation � is a stable model [18] of logic program

�
if for every ground atom � , � is true in � if and only if � is in

�
or there is a rule�B��* in

���
such that * is true in � . Conjunction � ��* is true in � if both � and* are true in � . A negation � � is true in � if and only if � isn’t true in � .

Note that the negation here is the so-called negation-as-failure [11]. We can use
negation-as-failure in our knowledge base, although the standard procedural intu-
ition doesn’t necessarily hold [37].

Theorem 2.10 ([2]) An acyclic logic program has a unique stable model.
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Acyclicity is also important for the physical realization of our game theory
strategies; an agent can’t condition on a value that depends on what it’s going to
do (see Section 5.5).

In some sense the possible world c.d is the stable model of >�SZWXT'O$U ; they
assign exactly the same truth values to propositions.

Example 2.11 Suppose we have ICL theory with < H�K�K � � � � ! � � � M � K * � ��* ! M�M , and
with > H¡K +�� � � �¢* � ��+�� � � �¢* ! ��)¢� � � ��)X� � � ! �¢* � ��£u� +���£¤� �C) M .
There are 6 possible worlds with the following truth assignments:

cD¥�¦¨§ j © §«ª 0 H � � � � !¬� � � *­� �C*�! + ) £cD¥�¦¯® j © §«ª 0 H � � � � ! � � � *­� �C*�!¬�C+ �C) £cD¥�¦¯° j © §«ª 0 H � � �±� � ! � � *­� �C*�!¬�C+ ) �:£cD¥�¦¨§ j © ®�ª 0 H � � � � !¬� � � �C*�� *�! �C+ ) �:£
c ¥�¦¯® j © ®�ª 0 H � � � � ! � ��� �C* � * ! �C+ �C) £cD¥�¦¯° j © ®�ª 0 H � � � � � ! � � �C* � * ! + �C) £

Note that there are two sorts of atoms; atomic choices ( � ��� � !�� � � ��*�����*�! ) and de-
rived atoms ( +���)���£ ). The atomic choices that are true in the world are given by the
selector function for the world (here we have subscripted the worlds with the range
of the selector function), and there is a world for each selector function. The truth
of the derived atoms is defined by the rules and the range of the selector function.

2.3 The Multi-agent Independent Choice Logic

The Independent Choice Logic (ICL) specifies a way to build possible worlds. In
order to model multi-agent situations, we need to have more structure. In particular
we need different agents to be able to control different choices.

Definition 2.12 A multi-agent independent choice logic theory is a tuple 
=<:�;>¢��²_��+�³�´$�9µ�³·¶«¶Y£�µ���¸�¹��
where

< , the choice space, is as in Definition 2.2.

> , the facts, is an acyclic logic program such that no atomic choice unifies with
the head of any rule.

² is a finite set of agents. There is a distinguished agent � called “nature”.
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+�³�´$�9µ�³·¶«¶Y£�µ is a function from <pQº² . If +�³�´$�9µ�³�¶6¶Y£�µ�T6?:U H � then agent � is said to
control alternative ? . If � AX² is an agent, the set of alternatives controlled
by � is < ¦ H»K ?8AE<VP�+�³�´$�9µ�³�¶6¶Y£�µ T«?@U H � M . Note that < H½¼ ¦�¾�¿ < ¦ .

¸�¹ is a function SJ<�¹�Q ÀÁ������Â such that ÃJ?ÄAZ<Å¹ , Æ¢Ç ¾�È ¸�¹�TYa7U H � .8 That is, for
each alternative controlled by nature, ¸�¹ is a probability measure over the
atomic choices in the alternative.

Often, when the context is clear we refer to a multi-agent independent choice logic
theory simply as an independent choice logic theory.

The idea is that an agent gets to choose one element from each of the alternatives it
controls. The alternatives controlled by nature have a probability distribution over
them. The facts give the consequences of the choices by the agents.

2.3.1 Rules for utility

Game theory and decision theory are based on the notion of utility, a cardinal value
representing the worth to an agent of an outcome or possible world.9 Higher utili-
ties reflect preferred worlds. Agents act to increase their (expected) utility. Finding
optimal strategies becomes trickier when there are multiple agents with competing
objectives, but the idea of each agent trying to maximise its utility remains.

Utility is a function of both an agent and a world. Different agents have differ-
ent preferences and so different utilities in the possible worlds. Note that nature
(agent � ) doesn’t have a utility.

The logic program can have rules for ���9ÉY¶6É«�;Ê"T � ��� U , where ���9ÉY¶6É«�;Ê"T � �9�#U is true
in a possible world if � is the utility for agent � FH � in that world.

Definition 2.13 ICL theory 
=<:�;>¢��²_��+�³�´$�9µ�³�¶6¶Y£�µ·��¸�¹�� is

utility consistent for agent � A»² where � FH � if, for each possible world c d ,c d 0 H ���9ÉY¶«É6�9Ê$T � �Ë� � U]�¢�Ì�9ÉY¶«É6�9Ê"T � �;� ! U implies � � H � ! . The theory is utility
consistent if it’s utility consistent for all agents (other than agent � ).

8When Í isn’t discrete, we may need to use an integration rather than summation. To avoid
measurability and integrability issues, we assume in this paper that all sets are discrete and finite,
although the framework isn’t necessarily restricted to this case.

9The existence of a utility function, and the existence of a probability distribution is implied
from a set of intuitive axioms about rational preferences, such that agents try to maximise expected
utilities [53; 49]. Like most decision and game theory practitioners we take the notion of utility as
something that we want to represent and use to derive optimal actions for agents. There is a large
body of literature about how these utilities can be acquired (see e.g., papers in [34]).
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utility complete for agent � AÎ² where � FH � if, for each possible world c d ,
there is a unique number � such that c d 0 H ���9ÉY¶6É«�;Ê"T � ��� U . The theory is util-
ity complete if it’s utility complete for all agents (other than agent � ).

Thus an ICL theory is utility consistent and complete means that the ���9ÉY¶«É6�9Ê rela-
tion is a function for each possible world.

We assume that all of the theories are utility consistent and complete.

Example 2.14 Continuing example, 2.11 suppose the rules for utility are:

���9ÉY¶6É«�;Ê"T ��Ï £�´"�¨�Ð��Ñ U2� �:£���9ÉY¶6É«�;Ê"T ��Ï £�´"�¨�Ð��� U2� £:�Ò+���9ÉY¶6É«�;Ê"T ��Ï £�´"�¨�Ð��� U2� £:�¢�7+���9ÉY¶6É«�;Ê"T ��Ï £�´"�;!9��Ó�U2�Ô)
���9ÉY¶6É«�;Ê"T ��Ï £�´"�;!9��� U2� �C)

Note that, if these are all the rules for �Ì�9ÉY¶«É6�9Ê then the ICL is utility consistent and
complete for ��Ï £�´"��� and ��Ï £�´"�9! independently of the choice space and the other
rules.

The values for the possible worlds (omitting the false atomic choices) are:

cD¥�¦¨§ j © §«ª 0 H � �Õ*­� + ) £ ���;É'¶6É6�9Ê"T ��Ï £�´$��������UÕ�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"�9!;��Ó�UcD¥�¦¯® j © §«ª 0 H � !�*­���C+ �7) £ ���;É'¶6É6�9Ê"T ��Ï £�´$��������UÕ�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"�9!;��� U
c ¥�¦¯° j © §«ª 0 H � � *­���C+ ) �@£¬���;É'¶6É6�9Ê"T ��Ï £�´$������Ñ�UÕ�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"�9!;��Ó�Uc ¥�¦¨§ j © ®�ª 0 H � �Õ*�!Ô�C+ ) �@£¬���;É'¶6É6�9Ê"T ��Ï £�´$������Ñ�UÕ�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"�9!;��Ó�Uc ¥�¦¯® j © ®�ª 0 H � !�*�!Ô�C+ �7) £ ���;É'¶6É6�9Ê"T ��Ï £�´$��������UÕ�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"�9!;��� Uc ¥�¦¯° j © ®�ª 0 H � � *�! + �7) £ ���;É'¶6É6�9Ê"T ��Ï £�´$��������UÕ�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"�9!;��� U

2.3.2 Strategies

Given an ICL theory, agents adopt strategies. These are also often called policies
for the single agent case. These strategies specify which atomic choices an agent
chooses from the alternatives controlled by the agent. In general, a strategy can be
stochastic where the agent adopts a probability distribution over the alternatives it
controls.

Definition 2.15 If 
6<N�;>¢��²_��+�³·´"�9µ·³�¶«¶Ð£�µ���¸�¹¨� is a ICL theory and � A�² , � FH � ,
then a strategy for agent � is a function ¸ ¦ PÌSJ< ¦ Q ÀÖ������Â such that

Ã#?pAE< ¦p×Ç ¾�È ¸ ¦ T'aNU H �k
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In other words, for each alternative controlled by agent � , ¸ ¦ is a probability mea-
sure over the atomic choices in the alternative.

Definition 2.16 A pure strategy for agent � is a strategy for agent � such that the
range of ¸ ¦ is K ����� M . In other words, ¸ ¦ selects a member of each element of < ¦ to
have probability � , and the other members thus have probability � . A pure strategy
for agent � thus corresponds to a selector function on < ¦ .
Definition 2.17 A strategy profile is a function from agents (other than nature)
into strategies for the agents. If Ø is a strategy profile and � AÙ² , � FH � thenØ7T � U is a strategy for agent � . We write Ø7T � U as ¸ÛÚ¦ to emphasize that Ø induces a
probability over the alternatives controlled by agent � . (We also define ¸ Ú¹ H ¸ ¹ .)

Thus a strategy profile specifies what each agent will do in the sense of speci-
fying a probability distribution over their alternatives. Given the probability distri-
bution over alternatives, we can derive the expected utility, which is the weighted
sum of the utilities of the worlds (worlds weighted by their probability):

Definition 2.18 If ICL theory 
=<:�;>¢��²_��+�³�´$�9µ�³�¶6¶Y£�µ·��¸�¹�� is utility consistent and
complete, and Ø is a strategy profile, then the expected utility for agent � FH � ,
under strategy profile Ø is

Ü T � ��Ø�U H × d � T'Ø ��O$UD3¢�JT'O�� � U
(summing over all selector functions O ) where

�JT'O�� � U H � iff c.d¤0 H ���;É'¶6É6�9Ê"T � ��� U
(this is well defined as the theory is utility consistent and complete), and

��TYØ �ËO$U H�ÝÈ�¾ h ¸ ÚÞ=ß6à�áãâ�ßYäÁäÖå=â;æ È�ç TYO�T6?:U;U�

��TYØ ��O"U is the probability of world O under strategy profile Ø , and �èT'O�� � U is the util-
ity of world c.d for agent � .

Note that the expected utility is undefined unless there is a probability distribu-
tion over every alternative. In particular, for the multi-agent case, there is no such
thing as the expected utility for an agent of a strategy for that agent; the utility for
that agent depends on the strategies of the other agents as well.
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Each agent wants to choose a strategy that maximise its (expected) utility. For
the single agent, finite choice (i.e., a finite number of finite alternatives) case, this
definition is straightforward. Each of their (finite number of) strategies has an ex-
pected utility, and so they can choose a strategy with a maximal expected utility.
For the multiple agent case, an agent has to consider what other agents will choose,
and their choice depends on the first agent’s choice. How to choose strategies has
been well studied in game theory [53; 32; 17]. We can mirror the definitions of
game theory; for example, we can define the Nash equilibrium and Pareto opti-
mal (both of which reduce to maximum expected utility in the single agent case)
as follows:

Definition 2.19 Given utility consistent and complete ICL theory 
=<:�;>¢��²_��+�³�´$�9µ�³·¶«¶Y£�µ���¸�¹�� ,
strategy profile Ø is a Nash Equilibrium if no agent can increase its utility by
unilaterally deviating from Ø . Formally, Ø is a Nash equilibrium if for all agents� Aé² , if Ø ¦ is a strategy profile such that Ø ¦ T � � U H Ø7T � � U for all � � FH � thenÜ T � ��Ø ¦ U:ê Ü T � ��Ø�U .
In other words, no strategy profile Ø ¦ that’s the same as strategy profile Ø for all
agents other than � is better for � than Ø . That is, � cannot be better off by unilat-
erally deviating from Ø .

One of the fundamental results of game theory is that every finite game has at
least one Nash equilibrium [32; 17]. In general you need non-pure (randomised)
strategies for the equilibrium to exist. For a single agent in an uncertain environ-
ment, a Nash equilibrium is an optimal decision theoretic strategy.

Definition 2.20 Given utility consistent and complete ICL theory 
=<:�;>¢��²_��+�³�´$�9µ�³·¶«¶Y£�µ���¸�¹�� ,
strategy profile Ø is Pareto optimal if no agent can do better without some other
agents doing worse. Formally, Ø is Pareto optimal if for all strategies Ø � , if there
exists an agent � AX² such that Ü T � ��Ø � U2ë Ü T � ��Ø�U then there exists an agent � � A`²
such that Ü T � � ��Ø � U2ì Ü T � � ��Ø�U .

Other definitions from game theory can also be given in the logic of this pa-
per. What we are adding to game theory is the use of a logic program to model
the agents and the environment, and to provide a way to express independence (in
the same way that probabilistic Horn abduction [36] can be used to represent the
independence assumptions of Bayesian networks).
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Example 2.21 Here we show how to represent Example 1.1. In the facts we ax-
iomatise utility (this is a utility consistent and complete axiomatisation for both the
kicker and the goalie):

���9ÉY¶«É6�9Ê$T'í�ÉY+�í$£�µ����·U]� Ï ³ � ¶�

���9ÉY¶«É6�9Ê$T'í�ÉY+�í$£�µ���� U]� � Ï ³ � ¶�

���9ÉY¶«É6�9Ê$T Ï ³ � ¶«É¯£�����U]� Ï ³ � ¶¯

���9ÉY¶«É6�9Ê$T Ï ³ � ¶«É¯£�����U]� � Ï ³ � ¶�


In the facts we axiomatise when a goal is scored:10

Ï ³ � ¶��ºí�ÉY+�í�î�T¯ï¤U��uð��"ñ���î�T�ïòU]� Ï ³ � ¶ ÉYe î � ñB£ )�ÉYµ�
Ï ³ � ¶��ºí�ÉY+�í�î�TY¶Y£�e"��U ��ð��"ñ���î�TYµ�É Ï ����UJ� Ï ³ � ¶ ÉYe í�¶ ð�µ�
Ï ³ � ¶��ºí�ÉY+�í�î�TYµ�É Ï ����UJ��ð��"ñ��Åî�TY¶Y£�e"��U � Ï ³ � ¶ ÉYe í�µ ð�¶�

In < , we have one alternative owned by íÅÉY+�í"£�µ , namely K íÅÉY+�íÅî T'µ�É Ï ���¨UË��í�ÉY+�í�î�TY¶Y£�e$��U M ,
one alternative owned by Ï ³ � ¶«É¯£ , namely K ð��"ñ���î�T'µ·É Ï �Ì��UË�Yð��$ñ��Åî T'¶Ð£�e"�¨U M , and three
alternatives owned by nature, namely: K Ï ³ � ¶ ÉYe î � ñ`£ )�É'µ·�9´ ³ Ï ³ � ¶ ÉYe î � ñB£ )�ÉYµ M ,K Ï ³ � ¶ ÉYe í�¶ ð�µ���´ ³ Ï ³ � ¶ ÉYe í�¶ ð�µ M , and K Ï ³ � ¶ ÉYe í�µ ð�¶¯�k´ ³ Ï ³ � ¶ ÉYe í�µ ð�¶ M with
¸�¹�T Ï ³ � ¶ ÉYe î � ñB£ )�ÉYµ�U H ��
�� , ¸�¹�T Ï ³ � ¶ É'e í�¶ ð�µ�U H ��
�� and ¸ ¹kT Ï ³ � ¶ É'e í�µ ð�¶YU H
��
�� .

Suppose that the goalie is to choose a strategy with � ó H ¸"ó ß ¦ äiôãå T�ð��"ñ���TYµ�É Ï ����U;U
and the kicker is to choose a strategy with ��õ H ¸#õ ôãÞ õ å\â TYíÅÉY+�í�TYµ�É Ï ����U;U . In this setup,
there are four cases where Ï ³ � ¶ is true; these cases are exclusive, and so we can sum
the probabilities. Thus,

¸�T Ï ³ � ¶YU H ��õ9� ó­��
��ÛöqT;�orB�Åõ·U�T9�Ûr¢� ókU���
��ÛöÄT9�ÛrX�Åõ­U÷� ó­��
��.ö`��õ�T9�Ûr¢� ókU���
��
The problem for each agent is to choose their probability to maximise their ex-
pected utility. So the kicker has to choose ��õ to maximise the probability of a goal
and the goalie has to choose � ó to minimize the probability of a goal.

In a Nash equilibrium, neither agent can improve its expected utility by uni-
laterally changing its strategies. Take the kicker’s point of view. If there is a ran-
domised strategy, then, as the randomised strategy is a linear combination of the
payoffs of the pure strategies, the pure strategies must have the same values (oth-
erwise the kicker can improve its utility by choosing the pure strategy with the

10The atoms ø­ù���ú û�ü ý;��þoÿ ��û�� , ø­ù���ú û�ü ��ú ��� and ø�ù���ú û�ü ��� ��ú are independent causal hy-
potheses [36]. These are introduced so that we can have normal logical rules, and independent
alternatives.
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higher value). In a randomized equilibrium, the payoff for kicking right and kick-
ing left must be equal. The payoff for kicking right is the above formula with
� õ H � , the payoff for kicking left is the formula with � õ H � . These are equal
when: ��ó���
�� ö½T;�orR��ó�U���
�� H T;� rX��ó�UÐ��
��Göp��ó���
�� . Solving for � ó we can derive��ó H Ó�� ��Ñ . Thus the only time that the kicker would consider a mixed strategy is
when the goalie jumps right with probability (�'& . Using similar reasoning, we can
show that the only randomised equilibrium for the goalie is when �Åõ H �	� ��Ñ . It’s
easy to show there are no pure strategy equilibria. There is a unique Nash equilib-
rium with ��ó H (�'& �'��õ H %�'& . Under this equilibrium the probability of a goal is(�
�'&Y¹ H ��
�Ñk���
��� ; thus the kicker has a slight advantage (which should be expected,
as the goalie is slightly worse when it jumps left).

3 Embedding other formalisms in the ICL

In this section we show how influence diagrams, Markov decision problems (MDPs)
and the strategic form of games can be represented in the ICL. We will show rather
direct embeddings of these formalisms.

Another embedding should be noted, and that is that probabilistic Horn abduc-
tion [36], a restriction of ICL (with only choices by nature, no negation as failure
and more restrictions on the rules), can directly represent Bayesian networks [36].
The embedding of influence diagrams is based on this embedding.

3.1 Representing influence diagrams

An influence diagram or decision network [23] is a graphical representation of a
decision problem. (See Section 1.4.) We show how to translate an influence dia-
gram into a (single-agent) ICL theory such that there is an isomorphism between
the policies of the influence diagram and the strategies of the ICL, with correspond-
ing expected utilities equal. We only consider influence diagrams with a single
value node (any other influence diagram can be mapped onto this representation).

Definition 3.1 An influence diagram is a tuple 
�� ������� ��¸:��� � such that

� is a finite set of nodes, partitioned into the set � of random nodes, the set ï of
decision nodes and the singleton set K���M containing the value node. Ran-
dom nodes are drawn as ovals, decision nodes as rectangles and the value
node as a diamond.
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�����Ô3�� is the set of arcs such that 
�� ���g� forms an acyclic directed graph
(DAG). If 
�´ ô �Ë´����oA�� then ´ ô is said to be a parent of ´�� and ´�� is a child
of ´ ô . Define  7T'´èU HÎK ñ�P 
�ñX��´J�DA�� M . That is,  7TY´JU is the set of parents
of node ´ . We assume that the value node doesn’t have any children.� is a function from �ÄSXï into sets of variable values. � TY´JU , called the frame
of node ´ , is the set of values that the variable associated with node ´ can
take. We extend � to cover sets of nodes by � T K ´$¹���
�
�
��Ë´$� M U H � T'´$¹�U 3

�
�
$3!� T'´$�ÛU .

¸ is a probability function over the random nodes given their parents. That is,
for each "BA#� , ¸�T$" H 	J0% 7T&" U H c U is a non-negative number such that

Ã]c ×' ¾)( æ+* ç ¸�T$" H 	è0  7T&" U H cGU H �

The probability is often written simply as ¸�T&"70% 7T$"#U9U where the values 	XA� T$" U and c�A,� T$ 7T&" U;U are derived from context.

��P-� T$ 7T � U;U¤Q . . � is the utility function that gives the utility for different
values of the parents of � .

The parents of a random node represent probabilistic dependence (as is a Bayesian
network [35]). The parents of the value node represent functional dependence; the
utility only depends on the values of the parents of the value node. The parents of
a decision node represent information available; one value for each parent of the
decision node will be known when the decision is made.

If ) ô A ï , a decision function for ) ô is a function / ô P0� T$ 7TY) ô U;UoQ � TY) ô U . If
the decision nodes are 
')�����
�
�
���)�õ·� , a policy is a tuple 
&/�����
�
�
���/�õ�� where / ô is a
decision function for ) ô .

Policy / induces a conditional probability ¸21 on the decision variables defined
by

¸ 1 T') ô 0% 7T') ô U9U H43 � if / ô T$ 7TY) ô U;U H ) ô� otherwise

Suppose �4S¢ï H�K " �Ë��
�
�
���" à M . The joint distribution given policy / is:

¸ 1 T$" � ��
�
�
���" à U H Ý*�5 ¾76 ¸�T&" ô 0% 7T&" ô U;UD3 Ý*98 ¾): ¸ 1 T$";�k0  7T&"<��U;U
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Figure 2: An influence diagram

(what is meant by ¸=1 should be clear from context).
The expected utility of policy / is given by

Ü T$/ U H ×* § j%>%>%> j *�? ¸ 1 T&" � �)@)@)@���" à UD3,��T& 7T � U;U
H ×* § j%>%>%> j * ? Ý*�5 ¾)6 ¸�T$" ô 0% 7T$" ô U9UD3 Ý*98 ¾7: ¸21�T$" � 0  7T&" � U9UD3,��T$ 7T � U;U

where we are summing over all of the values of variables " ����
�
�
��A" à .
Example 3.2 Figure 2 shows an influence diagram with two decision nodes � � and) , four random nodes � , � î , * , *�î , and one value node ���9ÉY¶«É6�9Ê . The intuition for this
diagram is that there is one decision ) to be made that depends on � and * . *�î is a
noisy sensor for * and � î is a sensor for � that can be controlled by � � .

Associated with the influence diagram (not shown in the diagram) is a frame
for each variable, and the conditional probability table for each random variable
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given its parents. These probability tables for the random nodes are a major source
of complexity as their size is exponential in the number of parents of the node.

Suppose the frames are as follows:� T«� � U H K �"É Ï �J��¶«³�c M� T � U H K ¶«³�cg��ñB£�)�ÉY�"ñX���"É Ï � M� T � î�U H K �Å³·î���´J£ Ï M� T'*­U H K �Å³·î���´J£ Ï M� T'*�î�U H K �Å³·î���´J£ Ï M� T')�U H K ) � ��) ! ��) � M
There are ten probability distributions to be assigned; one for � , six for � î (one for
each assignment of values to � and � � , such as ¸�T � î H ��³�î�0 � H ¶«³�c��2� � H �"É Ï � U ),
one for * and two for *�î .

The mapping of an influence diagram into a (single agent) ICL theory is as fol-
lows:11

� Random variable " ô has value 	 ô is represented as the proposition " ô TY	 ô U .12

� Random variable " ô with í ô parents " ô § 
�
�
A" ôCB 5 is represented as a rule and
exponentially (in í ô ) many alternatives. There is one rule:

" ô T � ô U2�D" ô § T � ô § UJ�p
�
�
��E" ô B 5 T � ô B 5 UJ�Ò+ ô T � ô � � ô § ��
�
�
�� � ô B 5 U
For each assignment of values to the " ôF8 , that is for each G�	 ô § ��
�
�
���	 ôHB 5JI A� T$" ô § UD3�@)@7@ 3!� T&" ôHB 5 U there is an alternative controlled by nature:

K + ô TY	 � ��	 ô § ��
�
�
���	 ô B 5 U���
�
�
���+ ô T'	 â ��	 ô § ��
�
�
���	 ô B 5 U M
where � T&" ô U H�K 	 � ��
�
�
��Ë	 â M .
The probability of each atomic choice is the value of the corresponding con-
ditional probability:

¸ ¹ T'+ ô TY	 � ��	 ô § ��
�
�
���	 ô B 5 U9U H ¸�T&" ô H 	 � 0%" ô § H 	 ô § ��
�
�
���" ô B 5 H 	 ô B 5 U
11The mapping for random nodes is the same as the representation of Bayesian networks in prob-

abilistic Horn abduction [36].
12We have not used the standard probabilistic notation of K�LNMPO9L because logicians usually mean

something different by equality, namely that two terms denote the same object.

24



The conditional probabilities on the right hand side are provided as part of
the influence diagram. Note that under this mapping there are the same num-
ber of alternatives as there are rows in the probability tables for " ô , and the
same number of probabilities are provided.

In many cases the probability can be represented more compactly. In partic-
ular this occurs when some parents are irrelevant in the context of values to
other variables [7].

� Value node with parents " ô § 
�
�
9" ôHB 5 is represented as a rule of the form:

�Ì�9ÉY¶«É6�9Ê"T ��Ï £�´"����	�U]�D" ô § TY	 ô § UJ�`
�
�
��Q" ôCB 5 T'	 ôHB 5 U
for each G 	 ô § ��
�
�
���	 ôCB 5 I AR� T&" ô § U�3S@7@)@¨3T� T$" ôHB 5 U , where 	 H ��T'	 ô § ��
�
�
���	 ôCB 5 U .
As with chance nodes, in many cases the value function can be represented
more compactly than this.

� Decision variable " ô with í ô parents " ô § 
�
�
�" ô B 5 is represented as a rule and
exponentially (in í ô ) many alternatives. There is one rule:

" ô T � ô U2�D" ô § T � ô § UJ�p
�
�
��E" ôHB 5 T � ôHB 5 UJ�Ò+ ô T � ô � � ô § ��
�
�
�� � ôHB 5 U�

For each G 	 ô § ��
�
�
��Ë	 ô B 5 I AU� T$" ô § U�3V@)@)@.3W� T$" ô B 5 U there is an alternative
controlled by the agent:

K + ô TY	 �Ë��	 ô § ��
�
�
���	 ôHB 5 U���
�
�
���+ ô T'	 â ��	 ô § ��
�
�
���	 ôCB 5 U M
where � T$" ô U H K 	 � ��
�
�
���	 â M . Just as the influence diagram policy has to
choose a value for each value of the parents we have to choose a value for
each alternative. There is a one to one mapping between the alternatives and
the values of the parents of a node.

Example 3.3 Continuing Example 3.2, with the influence diagram of Figure 2,
variable � � has no parents, therefore there is one value to be chosen. This can be
represented as having K � � T'�$É�U��;� � TY¶«³·c U M A�< � . There are � independent choices
to be made for ) (one for each assignment of values to its parents). This can be
represented as the rule:

)�T�ï � U2��� � T&X � UJ� � î�T&� � UJ�¢*�î TJY � UJ�5) )�³�£�î�T¯ï � �AX � ��� � ��Y � U
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with

K ) )�³�£�î�TY)�����X � �A� � ��Y � UË��) )�³�£�î�T')�!·��X � ��� � ��Y � U��Ë) )�³�£�î�TY) � ��X � ��� � ��Y � U M A5< �
for each value of X � , � � , Y � .

Theorem 3.4 Given an influence diagram Z�ï and the corresponding ICL theory,
defined by the mapping above, there is a correspondence between the policies of
the influence diagram and the pure strategies of the ICL theory. The corresponding
policies and strategies have the same expected utility.

Proof: A policy of an influence diagram specifies a decision function for each
decision node. Each decision function is a function from the values of the parent
to the values of the nodes. A decision function, / ô corresponds to the selection of

+ ô T$/ ô T'	 ô § ��
�
�
���	 ôHB 5 U���	 ô § ��
�
�
��Ë	 ôHB 5 U
from the corresponding alternative. It is easy to see that different policies corre-
spond to different selections, and that different selections correspond to different
policies.

The expected utility of the influence diagram policy / is:

Ü T$/ U H ×* § j%>%>%> j *�? Ý*�5 ¾)6 ¸�T$" ô 0% 7T$" ô U9UD3 Ý*98 ¾7: ¸21�T$" � 0  7T&" � U9UD3,��T$ 7T � U;U
H ×* § j%>%>%> j * ? Ý*�5 ¾)6 ¸�¹�TY+ ô T$" ô �� 7T$" ô U9U;UD3 Ý*98 ¾): ¸]��T'+ � T$" � �� 7T$" � U;U9UD3,��T$ 7T � U;U

where + ô T&" ô �� 7T&" ô U;U has the obvious meaning, and ¸]� is the probability induced by
the policy. This is the expected utility of the PHA theory for the same policy.[
3.2 Markov Decision Processes

Markov decision processes [44] are models of single-agent stochastic sequential
decision problems where a notion of state conveys all of the information about the
past history.

A Markov decision process is defined in terms of a set \ of states, a set � of
actions, a state transition function ¸ µ�TYî���0 î�¹�� � U which specifies the probability that
î�� is the state resulting from carrying out action � in state î , and a reward function
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� T'î ß � � �Ëî � U that specifies the reward obtained when action � is carried out in î ¹
and the resulting state is î � .

A stationary policy is a selection of an action for each state; what the agent does
at any time depends on the state.

We can represent the choice function for an agent, assuming we want stationary
policies, as:

Ã]\ K )�³�T � ����\:U���
�
�
���)�³�T � �Û��\@U M AE<��
where )�³�T&����\:U is true if the agent will do action � in state \ and � H�K � ����
�
�
�� � � M
is the set of available actions. The agent gets to choose what it does for each state.
If we want a non-stationary policy (i.e., the policy depends on the time or stage),
we add a time parameter to )�³ .

We also axiomatise the state transition function, which specifies how states
transform under actions:

î�� � �¨£kTJ\ � �Ëî T$XGU9U:��î�� � ��£kT�\]��X U"�5)�³�T&����\@U]�5î�� �9µ � ´�î�T�\]������\ � U
where î�� � ��£kT�\]�AXGU is true if the system is in state \ at time X , and î�� �9µ � ´�î TJ\]������\ � U
is true if action � transforms state \ into state \ � . This is a stochastic transition:

Ã]\òÃ^� K î�� �9µ � ´�î�T�\]�����Ëî­¹�U���
�
�
��Ëî­� �9µ � ´ î�T�\]������î à U M AE<Å¹
where K î�¹���
�
�
���î à M is the set of all states. Note that these are alternatives controlled
by nature. ¸ ¹�T'î�� �;µ � ´ î�T�\]�A����\ � U9U is the probability that state \ � will be the result
of carrying out action � in state \ .

A reward function can be defined in terms of rules of the form:

µ�£�c � µ�)�TYµ ô ��X U:�Ôî�� � �¨£kT'î ô ��XGU
for each state î ô and for some number µ ô .

We typically don’t want to write Markov decision processes by explicitly refer-
ring to the states, but instead want to divide the state into propositions (or random
variables) [12]. This can reduce the size of the probabilistic assessment necessary.
This can be reduced further by the use of rules; these allows us to express structured
probability distributions concisely. This concise specification can be exploited for
computational gain; Boutilier et. al. [5] exploit the rule (or tree) structure of prob-
ability tables for computational gain for MDPs. The ICL representation also al-
lows for the concise axiomatisation in logic, with a well defined semantics, of the
dynamics of the system. This is similar to Kanazawa [24], but incorporates a par-
ticular, and we claim useful, probability independence.
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Example 3.5 Let’s axiomatise the structured MDP example of Boutilier et. al.[5]
in the independent choice logic. Essentially we can convert the trees into rules, but
we don’t need separate rules for each action (which is exactly the frame problem
[31]).

In this example, there are six state propositions: ¶6³�+ ³�e�e�T&X U , the location of the
robot is at the office (as opposed to being at the café) at time X ; c £���T&X U , the robot
is wet; �$ñ5*�µ�£�¶«¶ � T$XGU , the robot is carrying an umbrella; µ � ÉY´�ÉY´ Ï T$XGU , it is raining;µ��"+·T$XGU , the robot has coffee; and �"�"+·T$XGU , the user has coffee.

There are four actions: Ï ³�T$XGU , go to opposite location; *��"Ê�_�T$XGU , buy coffee;)�£�¶&_�T&X U , deliver coffee; and Ï £�����T&X U , get coffee.
We can specify the dynamics using logic, for example, the following clauses

define cG£�� and �"+�� :

c £���T&XZöÄ�·U2�ºcG£���T&X U
c £���T&XZöÄ�·U2� Ï ³ T$XGU��¢µ � ÉY´�ÉY´ Ï T$XGU��B�C�"ñ5*�µ�£�¶6¶ � T&X U
�"+��JT&XZöÄ�·U2�º�$+��JT&X U
�"+��JT&XZöÄ�·U2�º)�£�¶&_�T$XGU"�X�C�"+��JT$XGU��5¶«³·+ ³�e e�T$XGU]�5�"+�µ�T&X UJ�5)�£�¶�_Gî��$+�+�£·£�)�î�T&X U

where Ã^X K )�£�¶�_Gî·�"+�+­£�£�)�î�T&X U���)�£�¶&_ e � É«¶6î�T$XÛU M AE<�¹ , and Ã`XE¸�¹�TY)�£�¶&_ î��"+�+�£�£�)�î�T$XGU9U H��
�� . We can also define the reward function using rules:

µ�£�c � µ�)�T;�k
�����XGU2���"+��JT$XGU��X�7c £���T&X U
µ�£�c � µ�)�TY��
�����XGU2���"+��JT$XGU��¢cG£���T&X U
µ�£�c � µ�)�TY��
��k��XGU2�Ô�C�"+��JT&X UJ�B�Cc £���T$XGU
µ�£�c � µ�)�TY��
�����XGU2�Ô�C�"+��JT&X UJ�5c £���T&X U

For finite horizon problems, the value can be specified in terms of rules. For
example,

	 � ¶«� £��;³�TJ�RöW�.�AXnöÄ��U.��µ�£�c � µ�)�T�� �AXGU]�5	 � ¶«� £��;³�TJ�.�AXGUË

	 � ¶«� £��;³�T'������U�


where 	 � ¶6� £��9³�T � ��XGU is true if � is the sum of the rewards up to time X .
For infinite horizon problems, it is not so simple. You could imagine writing,

for the discounted reward function [44]:

	 � ¶6� £kT��pöa�¡3Eb]��X U:��µ�£�c � µ·)�TJ� ��X UJ�¢	 � ¶«�#£kTJ�.�AX öÄ��U
where b is the discount factor. However, such rules are problematic as the recur-
sion doesn’t terminate. It is probably better to define the value external to the logic.
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Having the specification of the value function separate from the other parts of the
problem specification, as is traditionally done in MDPs, doesn’t seem to be too
problematic.

3.3 The strategic form of a game

The most direct connection of the ICL is to the strategic form of a game (see Sec-
tion 5.5 for a comparison to the extensive form of a game).

The strategic form of a game [32; 17] is a tuple 
�²_��co��� � where

² is a non-empty set of players (agents),

c is a function from agents into non-empty sets (of pure strategies). Thus coT � U
is the set of all pure strategies for agent � .

� is a function

�EP�²^Q defDg¦�¾�¿ coT � U:Q .ih&jk
Suppose ² HbK � ����
�
�
 � à M and � AZ² . �JT � U is a function that given an ´ -tuple of
strategies, one for each agent in ² , returns the utility for agent � under this strat-
egy profile. Thus �èT � UËT;
'Ø ¦�§ ��
�
�
��ËØ ¦ ? �;U where Ø ¦ 5 AlcoT � ô U is the von Neumann–
Morgenstern utility for agent � when each player � ô chooses strategy Ø ¦ 5 .

The general idea is that each player chooses a strategy which specifies what
it will do under all contingencies. Following a complete play (specified by each
player’s strategy) each player receives a utility.

Note that there are two different forms which we treat as the same here. One is
where nature isn’t an agent, and all of the payoffs are expectations (averaging over
nature’s choices). The second is where nature is a player, and has a probability dis-
tribution over its strategies; this is called the Bayesian form of a game [17], where
the players have partial information about nature’s choice. The private informa-
tion about nature’s move is called the player’s type. The Bayesian form of a game
assumes that each player chooses its strategy after it learns its type. Such a distinc-
tion is beyond the scope of this paper, as we don’t consider how or when strategies
are computed (for example, whether they are computed online or offline).

The ICL can be seen as a particular representation for the strategic or the Bayesian
form of a game. The set of agents is the same. We divide the space of strategies
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for players into independent choices (i.e, we allow more structure in the strategy
space) and use a logic program to axiomatise the � function.

There is a direct mapping of the strategic or Bayesian form of a game into an
ICL theory: strategic game 
Y²_��co��� � is mapped into the multi-agent ICL theory
=<:�;>¢��²_��+�³�´$�9µ�³·¶«¶Y£�µ���¸�¹�� , where � is the same set, < is the set

K�K )�³�T � ô ��Ø ¦ 5 U:P�Ø ¦ 5 is a strategy for � ô M P � ô A`² M
where )�³�T � ô ��Ø ¦ 5 U is an atom that says that agent � ô is adopting strategy Ø ¦ 5 (all we
need is a name for each strategy), +�³�´"�;µ�³�¶«¶Ð£�µ is the function K )�³ T � ô ��Ø ¦ 5 UË��
�
�
 MnmQ� ô , ¸ ¹ is the probability distribution over types (for the Bayesian model of a game)
and > is is set of rules of the form

���9ÉY¶«É6�9Ê$T � �9���9ÉY¶6U]�Ô)�³�T � ����Ø ¦¨§ UJ�Î
�
�
��Ò)�³�T � à ��Ø ¦ ? U
where �Ì�9ÉY¶ H �JT � UËT;
YØ ¦�§ ��
�
�
���Ø ¦ ? �9U .

This mapping has trivialised the fact that there is a lot hidden in the structure of
the strategies. We have assumed we can name the strategies and say what follows
from them. For simple games we may be able to, but for most realistic situations
we want to be able to specify the choices at a lower level of detail, and be able to
control the selection of components of strategies. The consequence of a number
of different agents choosing strategies should involve reasoning about the building
blocks of the strategies (what is done under what circumstances), and reasoning
about the dynamics of the domain to determine the consequences of the actions.

4 The Dynamic ICL

The ICL presented so far is only good at representing problems where the the deci-
sion problem can be statically expressed (even if the problem to be solved involves
dynamics and change). Like the strategic form of a game, the building blocks of
the strategies have to be constructed ahead of time. For example, for the influence
diagram mapping we had to create an alternative corresponding to each assignment
of values to parents, rather than creating the appropriate rules for defining the pol-
icy on the fly.

There are a number of problems with this:

� What the agent will do (or attempt to do) is buried within the representation.
The alternatives are at a lower level than the choices faced by the agent; they
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specify what the agent will do under each contingency. While we can repre-
sent the dynamic structure structure of reasoning and acting, the formalism
presented so far gives us no help in doing so.

� We have to create an alternative for each independent choice that the agent
could make; that is, we have to a priori divide up information states for the
decision. The problem is that the a priori division needs to be at the finest
level of detail. For example, although some decision ) may have much in-
formation available when the decision is made (in the influence diagram )
may have many parents), the specification of what the agent should do may
not require all of the distinctions of the information state. There may be a
more concise encoding of the policy. Just as we have used rules as a concise
specification of probability distributions, we may like to express the policy
for an agent as rules.

� We may want to create alternatives on the fly; what options are available to
an agent and what information it knows may depend on the context, and it
may be more economical to create alternatives as needed, rather than having
to anticipate all of them as part of a strategy.

� We want to reason about the program the agent used to compute an action
rather than just the action itself [48].

We want to build a representation upon a more natural specification of dynamic
systems. We will extend the ICL to the dynamic ICL logic that is slightly more
complicated, but arguably more natural. We model the dynamics of the world rather
than the structure of the choices.

The dynamic ICL is more like a representation for the extensive form of a game
than a representation for the strategic form of a game; it will tell us how to construct
the appropriate game/decision tree (see Section 5.5). This will be done without
losing the advantages of the ICL, namely, the embedding of the independence of
Bayesian networks, the ability to represent structured decision tables, and the use
of logical variables.

We build the theory upon a general model of agents interacting in an environ-
ment. This is important as it places the ICL within a wider theoretical context, and
introduces the notions of traces, transductions, state and sensing.
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4.1 Dynamical Systems

Modelling dynamical systems [29; 13] is common in many areas of science, from
mechanical engineering to economics to ecology.

We assume a time structure o , that is totally ordered and has a metric over
intervals. o can either be continuous or discrete; for this paper we will consider
discrete time. (See [39] for a development of continuous time in this framework.)
A trace is a function from o into some domain ² .

A transduction is a function from (input) traces into (output) traces that is
“causal” in the sense that the output at time � can only depend in inputs at times � �
where � � êÎ� (i.e., the output at some time is a function of the input history up to
that time). An agent will be a specification of a transduction. Transductions form
a general abstraction of dynamic agents and dynamic systems in general [57; 47;
39], although they don’t adequately handle the case of nondeterministic agents13.

The state of an agent is that information that needs to be remembered in order
for the output to be a function of the state and the current inputs. At one extreme a
state can contain the entire history of the agent. At the other extreme an agent can
have no state and just react to its current inputs.

4.2 Agent Structure

So far we have modelled agents by naming them and specifying which choices they
control. It helps to do more than this; we want to provide some structure that makes
it easy to model actual agents. Not every logic program and set of assignments
of agents to choices will make sense. Agents have input and outputs; there are
some values that they have no access to, and some internal values that only they
can access.

We will model agents as a logic program that specifies how the outputs are en-
tailed by certain inputs [39]. This logic program can use the internal values and
sense values but can’t use those values the agent has no access to (i.e., can’t sense
or otherwise determine).

In modelling agents we have to be careful about a number of things:

13With deterministic agents, only the input history is needed. Nondeterministic agents (agents
need to be nondeterministic if they inhabit an environment with other (competing) agents, or if they
have limited memory), need to be able to recall their inputs as well as choice commitments made.
For example, for an agent with no inputs to implement ~���pY���9yÖ~rqsp$��� where “ y ” is nondeterministic
choice and “ p ” is sequential composition, at the second time step the agent has to be able to recall
what it chose in the first time step.
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� What are the inputs and what are the outputs? When we have noisy sensors
and actuators with slop and failure, we can’t condition on the values in the
world, but only on what our sensors tell us. We have to be able to model
what an agent can observe (and how it relates to the world), and what an
agent controls (and how it relates to what the agent actually does).

� We have to make sure that the agent can actually carry out the policy spec-
ified for the agent. An executable policy can’t depend on events the agent
can’t observe, or aren’t under the agent’s control.

� The logic programs are models of the agents. They aren’t the agents them-
selves. We want to be able to model many different sorts of agents, both nat-
ural and artificial. We want to be able to model agents that are implemented
as simple logic circuits or in some traditional programming language, for ex-
ample. We want to use the same language to model agents we design, agents
that our agent may encounter, and the environment. We also want to be able
to model how long the agent will take to execute an action (including the
time to execute the program to choose the action) [48]. This doesn’t mean
we couldn’t run this specification to make an agent (but it will be a different
agent, for example, if we forward chain on the axioms than if we backward
chain on the axioms; they will have very different timing properties).

We distinguish the “controller” and the “plant” of an agent [13]. (See Figure
3). The controller is that part that we have to optimize; it receives digital sig-
nals (“observations”) and outputs digital “controls” or “actuator commands”. The
plant or body is the physical embodiment of the agent that includes input devices
such as cameras, microphones, radio receivers as well as wheels, limbs and trans-
mitters. The plant receives “percepts” from the environment (e.g., sound, light,
radio signals), and sends observations to the controller. The observations are usu-
ally correlated with the percepts received, but are typically not identical as sensors
are noisy. The plant also receives controls from the controller and makes actions
in the environment (e.g., actually moving, sending messages).

Multiple agents will all interact through the environment; the only way for agents
to communicate is through the environment14 and they all act in the environment
(as in Figure 3). There may be many agents, all of which carry out actions in the
environment and receive percepts from the environment.

14If there is some form of direct communication channel, then this is also modelled as part of
the environment. This makes modelling more uniform and allows us to model noise and failure in
communication.
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Figure 3: An agent acting in an environment

As far as the outside world (including other agents) is concerned, an agent re-
ceives percepts such as messages, light, sounds, etc., and performs actions such
as moving limbs, sending messages. Thus other agents will tend to group the con-
troller and the plant together as “the agent” (or “the robot” for physical implemen-
tations).

As far as the controller is concerned, it can group the plant and the environment
together. It receives observations, and outputs controls. The distinction between
the plant and the environment is essentially arbitrary; we usually make the distinc-
tion because we often build controllers for particular plants, but for more general
environments. While the distinction between the controller and the plant may seem
to be arbitrary to an outside observer, when building an agent we have to commit
to a particular division in order to construct a controller. (Typically we want a hi-
erarchy of controllers and plants [1; 10; 55], but this is beyond the scope of this
paper.)

For the rest of this paper we take the controller’s point of view; we assume a
controller receives definitive observations and can issue controls to the plant. The
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plant will be modelled as part of the environment. In particular, uncertainty in ob-
servations (observations may not always reflect what’s true in the environment)
will be modelled in terms of rules that depend on the percepts as well as nature’s
choices.

4.3 Agent Specification Module

The agent specification module takes the controller’s point of view; the inputs will
be observations and the outputs will be controls. The agent will be able to condi-
tion on the observations and will need to choose values for the controls.

Agent specification modules will allow us to modularise our knowledge, and
use common computer science techniques like information hiding, abstract data
types and modular program design. We will generalise the ICL to the “dynamic
ICL” through the use of agent specification modules; this will allow a more concise
representation of decision problems.

Definition 4.1 An agent specification module for agent � FH � , written �t\vu ¦ ,
is a tuple 
6< ¦ ��w ¦ �� �� where

< ¦ is a set of alternatives controlled by � . This will be the set of possible actuator
commands for the agent; the agent can attempt to “do” one of the actuator
commands in each element of < ¦ .w ¦ , the observables, is a set of sets of ground atomic formulae. Elements of w ¦
are called observation alternatives; elements of observation alternatives
are called atomic observations. , the observable function, is a function  ÄP$< ¦ Q �
xzy . The idea is that when
the agent decides which element of alternative ?8AE< ¦ to choose, it will have
observed one atomic observation from each observation alternative in  7T6?:U .
Elements of  7T6?:U are the information available to the agent when it has to
choose an element of ? .  7T6?:U corresponds to the parents of a decision node
? in an influence diagram.

The following definition mirrors the analogous definition from game theory:

Definition 4.2 Agent � has perfect recall (or is no-forgetting) if it remembers
all of its previous observations and previous actions. Formally this means that the
element of < ¦ are totally ordered and if ?:�2AE< ¦ , ?C!DAE< ¦ , ?:�2ì4?7! then ?:�2A, 7T6?C!¨U
and  7T6?:�;UT�{ 7T6?C!¨U .
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A dynamic ICL theory consists of an agent specification module for each agent,
and a logic program, plus stochastic choices to axiomatise what follows from the
agent’s choices:

Definition 4.3 A dynamic independent choice logic theory is a tuple 
'²_�¯<Å¹��;>o¹���¸�¹����t\vu��
where

² is a finite set of agents containing a distinguished agent � called “nature”

<�¹ , nature’s choice space, is a choice space with alternatives controlled by nature

>Û¹ , nature’s facts, is a logic program such that no atomic choice unifies with the
head of any rule

¸ ¹ is a function SJ<Å¹ÛQ ÀÖ������Â such that ÃJ?pAE<Å¹_Æ¢Ç ¾�È ¸�¹kTYa7U H �
�t\vu is a function on �Rr K � M such that �t\vu ¦ is an agent specification module

for agent �
such that >Û¹ is acyclic with an acyclic ordering where Ã � AX² , Ã#?RA5< ¦ , Ã]apAB? ,
Ã]|^A} 7T«?@U , Ã]a � A~| , a � ì�a in the acyclic ordering. That is, there is an acyclic
ordering where the actions are after their corresponding observables.

Note that 
Y> ¹ �¯< ¹ ��¸ ¹ � will correspond to a particular (stochastic) strategy for
nature (see Definition 4.10). It’s a specification of what choices nature will make.
This specifies the stochastic dynamics of the system.

We have to make sure that the observables for each agent really cover the pos-
sibilities and really are alternatives.

Definition 4.4 Given dynamic ICL theory 
Y²_�¯< ¹ �;> ¹ ��¸ ¹ ���t\vu�� , set � of ground
formulae is non-exclusive if there exists a choice function O on ¼ ¦�¾�¿ < ¦ and there
exists a � Aa� , a ! A~� , a � FH a ! such that W`TYO$U]SB> ¹ 0 1`a � �Xa ! . Otherwise � is
exclusive. � is covering if for every choice function O on ¼ ¦¨¾�¿ < ¦ , there is aZA#�
such that WXTYO"UJS_>o¹@0 1`a .

For example, every choice alternative is exclusive and covering. Every set of the
form K � ��� � M is exclusive and covering. A less trivial example is: given < HK�K � ��* M � K +·�Ë) M � K £k��e M�M , and > H�K Ï � � ����� *Û�V+·�ËÉò� *Û�V) M , K Ï �Ë�è�ËÉ M is
an exclusive and covering set. If Ï � £ were added to > then K Ï ���J��É M would no
longer be exclusive.
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Definition 4.5 A dynamic ICL theory is observation consistent if for every � A
² , every element of w ¦ is exclusive with respect to the dynamic ICL theory. A
dynamic ICL theory is observation complete if for every � A4² , every element
of w ¦ is covering.

The above definitions are to make sure that we can treat the elements of w as
random variables. Unlike elements of < , they aren’t exclusive and covering by def-
inition. We will always require a theory to be observation consistent, but, when we
have negation as failure in the logic [37], we will not require the theory to be obser-
vation complete (there may be an extra, unnamed element of each element of w ).
Note that observation consistency isn’t a severe restriction; we can always makew a set of singleton sets, but then we can’t exploit the structure of observations.

Example 4.6 For example, suppose we have K �"É Ï �J��ñB£�)�ÉY�"ñX��¶6³�c M as an obser-
vation alternative. We want the theory to never allow choices of the agents to
entail both �"É Ï � and ñ`£�)�ÉY�"ñ . This means that a strategy can be specified as a
function from this set into actuator settings. If these values were not exclusive,
we could make sets K �"É Ï �J���C�"É Ï � M , K ñ`£�)�ÉY�"ñX���CñB£�)�ÉY�"ñ M , and K ¶6³�c ���C¶6³�c M into
observation alternatives (which are each exclusive and covering), but this would
mean a strategy would be a function from the cross product of these into actuator
settings. If K �"É Ï �J��ñB£�)�ÉY�"ñX��¶6³�c M isn’t covering, we also have to cover the case�C�"É Ï ���¢�Cñ`£�)�ÉY�"ñ^�X�C¶6³�c in defining a strategy.

The general idea is that the agent will always observe one element of each
member of  7T6?:U before choosing one element of ? . The acyclicity restrictions and
the observation completeness and consistency requirements above ensure this tem-
poral ordering is possible.

In this paper we assume all our theories are observation consistent and com-
plete.

4.4 Pure Strategies

A pure strategy is a specification of what an agent will do based on what it ob-
serves. This strategy is represented as a logic program. There are restrictions on
the logic program to ensure an agent can’t condition on values to which it doesn’t
have access.

Definition 4.7 If 
=< ¦ ��w ¦ �� ¦ � is an agent specification module for agent � A�² ,
then a pure strategy for agent � is a logic program > ¦ such that
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� > ¦ is acyclic with an acyclic ordering such that, for every ?�A < ¦ , every
element of each element of  ¦ T«?@U is before every element of ? . That is, the
agent can observe before making the decision.

� For every ? A < ¦ , and for every selection function Os� æ È�ç on  7T6?:U , there is a
unique anAB? that is true in the unique stable model of > ¦ S¤WXTYO�� æ È�ç U . That
is, whatever is observed, the logic program specifies what the agent will do.

� The heads of rules in > ¦ only unify with either local atoms (that don’t unify
with atoms in the agent specification module of any other agent or in >Û¹ ) or
members of choice alternatives in ? ¦ . Thus > ¦ can only be used to imply
alternatives owned by agent � , perhaps with some local atoms as intermedi-
aries.

� For each ?VAE< ¦ , the only formulae that can appear in the bodies of rules in> ¦ to prove an element of ? are: elements of members of  7T6?:U , local atoms
and atoms whose definition doesn’t depend on the choices of other agents
(and formulae built from these). While we don’t want to restrict the com-
plexity of programs to compute the choice from an element of ? , the choice
can’t depend on values that the agent can’t observe or otherwise compute.

Thus a strategy for an agent is just a program to specify what the agent will do
based on what information it receives.

Definition 4.8 Given a dynamic ICL theory, a (pure) strategy profile is a selec-
tion of one (pure) strategy for each agent (other than nature). Thus a strategy profile
is a logic program > H ¼ ¦�¾�¿ > ¦ that specifies what each agent will attempt to do.

There are two (equivalent) ways to define the semantics. One it to have a pos-
sible world for each selection of an element from each alternative controlled by
nature, and to have > specify what’s true in each world. In this case, the probabil-
ity of a world is independent of the strategy, but a strategy profile specifies what’s
true in each world. The second is to have a possible world for each selection of one
element from each alternative. In this case, what’s true in a world doesn’t depend
on the strategy profile chosen, but the probability of a world does. The second has
many possible worlds with zero probability that were not created in the first sce-
nario. We will define the first method formally here.
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Definition 4.9 If dynamic ICL theory 
�²_�¯< ¹ �;> ¹ ��¸ ¹ ���t\vu�� is utility complete,
and > is a pure strategy profile, then the expected utility of strategy profile > for
agent � is

Ü T � �;>5U H × d ��TYO$UD3¢�JTYO�� � �;>EU
(summing over all selector functions O on <�¹ ) where

�JT'O�� � �;>5U H � if WXT'O$UJS5>^0 1X���9ÉY¶«É6�9Ê$T � �Ë�#U
(this is well defined as the theory is utility complete), and

��TYO$U H ÝÈk¾ h�� ¸ ¹�T'O T6?:U;U
�JTYO�� � �;>EU is the utility of world c.d for agent � under strategy profile > . ��TYO$U is
the probability of world O .

4.5 Stochastic Strategies

As in the goal kick example above, it’s often desirable for agents to adopt random
strategies. In this section we define random (stochastic) strategies. The general
idea is that a random strategy is a probability distribution over pure strategies.

Definition 4.10 If 
6< ¦ ��w ¦ �� ¦ � is an agent specification module for agent � AZ² ,
then a (stochastic) strategy for agent � is a tuple 
6> ¦ �¯< �¦ ��¸ ¦ � where < �¦ is a choice
space whose atomic choices do not appear outside of this strategy, ¸ ¦ is a proba-
bility distribution over each element of < �¦ (i.e., Ã#?RA5< �¦ �$Ã]apAB?2�J��ê»¸ ¦ TYa7U.êL�
and Æ Ç ¾�È ¸�TYa7U H � ), and > is a logic program such that for all selector functionsO ¦ on < �¦ , >¡SBW`TYO ¦ U is a pure strategy (the element of W`TYO ¦ U will be local atoms
in the strategy).

Example 4.11 Suppose 
 K�K ��� ��)�³�co´���¶Y£�e$� M�M � K�K �"É Ï �J��ñB£�)�ÉY�"ñ �Ë¶6³�c M�M �� �� , where 7T K � ����)�³�cÛ´]��¶Y£�e"� M U H�K�K �"É Ï �J��ñB£�)�ÉY�"ñ �Ë¶6³�c M�M is an agent specification module
for agent � . That is, � can do one of K ��� �Ë)�³·co´��Ë¶Ð£�e$� M , and when it has to act, it
will know which of K �$É Ï �è�Ëñ`£�)�ÉY�"ñX��¶«³�c M is true. One stochastic strategy could
have facts:

���5�Ô�"É Ï ���5�"�J�
)�³�co´R���"É Ï ���¢)��J�
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¶Y£�e$�2�Ô�"É Ï ���5¶«�è�
���5�ÔñB£�)�ÉY�"ñ �¢�"ñX�
)�³�co´R��ñB£�)�ÉY�"ñ �Ò)�ñX�
¶Y£�e$�2�Ô¶«³�cg�

choice space < �¦ HÔK�K �"�è�Ë)��è�Ë¶6� M � K �"ñX��)�ñ M�M , and ¸ ¦ given by ¸ ¦ TY�"� U H ��
 Ó ,¸ ¦ T')�� U H ��
�� , ¸ ¦ TY¶«�#U H ��
�� , ¸ ¦ T'�$ñBU H ��
+� , and ¸ ¦ TYñ5� U H ��
F� .
Definition 4.12 A strategy profile Ø is an assignment of a stochastic strategy for
each agent (i.e., for each � AL² , Ø7T � U is a stochastic strategy). If Ø is a strategy
profile, define >¤Ú¦ to be the first component of Ø7T � U , <JÚ¦ to be the second component
of Ø7T � U , and ¸oÚ¦ to be the third component of Ø7T � U .
It remains to define the expected value of a strategy profile.

Definition 4.13 If dynamic ICL theory 
�²_��<�¹��;>Û¹���¸ ¹�����\�uL� is utility consistent
and complete, and Ø is a stochastic strategy profile, then the expected utility Ø for
agent � is

Ü T � ��Ø�U H × d � T'O���Ø�UD3¢�JT'O�� � ��Ø�U
(summing over all selector functions O on <�¹:S ¼ ¦�¾�¿ <JÚ¦ ) where

�JT'O�� � ��Ø�U H � if W`TYO$UJS > Ú 0 1`�Ì�9ÉY¶«É6�9Ê"T � ��� U
where >¤Ú H ¼ ¦¨¾�¿ >¤Ú¦ ( � is well defined as the theory is utility consistent and
complete), and

��TYO���Ø�U H Ý¦�¾�¿ ÝÈ�¾ h��y ¸ Ú¦ TYO T«?@U9U
�JTYO�� � �;>EU is the utility of world c.d for agent � under strategy profile > . � T'O���Ø�U is
the probability of world O under strategy profile Ø .

5 Discussion

In this section we discuss some modelling issues for the dynamic ICL. We first dis-
cuss how to model information-producing actions, how to model noisy sensors and
actuators, what it means to execute a stochastic strategy, and finally the relation-
ship to the extensive form of a game. Section 6 presents some detailed examples.
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5.1 Passive Sensors and Information Seeking Actions

The observations represent passive sensors that (at each time) receive values from
the environment (one value from each observation alternative). We also don’t dis-
tinguish between information-producing actions and actions that “change the world”;
there is only one type of action. The nature module will specify the consequences
of doing an action.

We can model “information-producing actions” by having actions whose effect
to make a sensor have a value that correlates with some value in the world. For
example, the information producing action “look” may affect what’s sensed by the
eyes; if the agent doesn’t “look” they will sense the value “nothing”, if they do
look (in a certain direction) they may sense what’s in that direction. Of course the
“look” action may be unreliable (the lights may be out), and it may take an arbitrary
amount of time to achieve its effect (as in a medical test).

What’s also important is that the agent can only condition on its sense values or
on values derived from these. The agent can’t condition on what it has no access
to (e.g., the true state of the world). Similarly, the agent can only control what
message is sent to its actuators; what it actually does may be quite different.

Section 6.1 gives a detailed example and discussion of modelling passive sen-
sors and information seeking actions.

5.2 Noisy Sensors and Actuators

There is a straightforward way to model noisy sensors and actuators. This follows
the distinction between the plant and the environment depicted in Figure 3. The
general idea is to axiomatise how the observations are a function of the percepts
plus noise. Similarly we can axiomatise how the actions of the agent are a function
of the controls plus noise (for slop, errors, slippage, etc).

We can divide up the noise into systematic errors (e.g., that the sensor is actu-
ally broken, and always makes the same error) and intermittent noise (the indepen-
dent error for each reading), and a continuum in between. For example, consider
a sensor for checking road speeds on a highway [16]:

Example 5.1 In this example we show how to axiomatise a noisy sensor that can
break down. The sensor is either working or not. If it’s working there is some
“normal” error from the true reading. If the sensor is not working it produces some
reading at random (independent of the actual velocity).

î�£�´ î�£ 	�£�¶6³�+�É6�9Ê$T � ö ï � ��X U2�
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	�£�¶6³�+�É6�9Ê î�£�´�î�³·µ |��pT&X UJ�
	�£�¶6³�+�É6�9Ê$T � ��X U��
´�³·µ�ñ � ¶ £�µ�µ·³�µ�T¯ï � ��XGUË


î�£�´ î�£ 	�£�¶6³�+�É6�9Ê$TJ� � ��XGU]�
�C	�£�¶«³�+�É«�;Ê î £�´�î·³�µ |��pT&X UJ�
£�µ�µ�³·µ µ £ � )�ÉY´ Ï T�ï � ��X U�


We need to have a probability distribution over the normal errors. For example if
the errors are discrete in 10km/h steps, we can specify something like:

Ã^X K ´�³�µ·ñ � ¶ £�µ�µ�³�µ T�ï � ��X UoP�ï � A K r�������r ������r�������������������������� M�M AE<Å¹
¸�¹�TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T9r�������X U;U H ��
����
¸�¹�TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T9r ������X U;U H ��
����
¸ ¹ TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T9r�������X U;U H ��
����
¸�¹�TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T'����X U;U H ��
��
¸ ¹ TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T9�����AXGU9U H ��
��
�
¸�¹�TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T$�����AXGU9U H ��
��
�
¸ ¹ TY´�³�µ·ñ � ¶ £�µ�µ�³·µ�T$�����AXGU9U H ��
����

Similarly we can define £�µ�µ�³�µ µ�£ � )�ÉY´ Ï which provides a probability distribution
over error readings. There is nothing in principle that prevents us from having a
non-discrete distribution, such as a normal (Gaussian) distribution over errors. We
have not presented that here as the mathematics is more complicated; we would
need to consider measurable sets of speeds rather than the speed themselves.

Whether the sensor is working at some time isn’t independent of whether it’s
working at some other time. We need to axiomatise the dynamics of sensor failure
(i.e., we need to specify the probability distribution over time). The sensor can
break at any time; suppose it has a �	� chance of breaking at any time when it had
been working and a Ñ	� chance of being fixed up when it was broken (we could
also axiomatise a more complicated dynamics of how the sensor can get fixed, but
this will show the main point). 	�£�¶6³�+�É6�9Ê î�£�´�î�³·µ |t� can be axiomatised as:

	�£�¶6³�+�É6�9Ê î�£�´ î�³�µ |��pT&X8öÄ�·U2�
	�£�¶6³�+�É6�9Ê î�£�´�î�³·µ |��pT&X UJ�
�C	�£�¶«³�+�É«�;Ê î £�´�î·³�µ *�µ�£ � í�î�T&X U�


	�£�¶6³�+�É6�9Ê î�£�´ î�³�µ |��pT&X8öÄ�·U2�
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�C	�£�¶«³�+�É«�;Ê î £�´�î·³�µ |��pT&X UJ�
	�£�¶6³�+�É6�9Ê î�£�´�î�³·µ e É$"#£�)�T$XGUË


Ã^X K 	�£�¶=³�+�É6�9Ê î�£�´�î�³·µ *�µ £ � í�î�T&X U���	�£�¶6³�+�É6�9Ê î�£�´�î�³·µ µ £�ñ � ÉY´ î |t�pT$XGU M AE<Å¹
Ã^X K 	�£�¶=³�+�É6�9Ê î�£�´�î�³·µ e É$"#£�)�T$XGUË��	Ì£�¶«³�+�É6�9Ê î�£�´�î�³·µ µ�£�ñ � ÉY´�î *�µ�³�í$£�´�T$XGU M A5<�¹

with ¸ ¹�T'	Ì£�¶«³�+�É6�9Ê î�£�´ î�³�µ *�µ�£ � í�î�T&X U;U H ��
��k� and ¸�¹�TY	�£�¶6³�+�É6�9Ê î�£�´ î�³�µ e�É&" £�)�U H
��
���Ñ . In addition, we need to define the initial value of 	�£�¶«³�+�É«�;Ê î £�´�î·³�µ |�� , for
example as a member of an alternative controlled by nature.

5.3 Executing a strategy

What does it mean for an agent to execute a strategy? If the strategy for the agent
is pure, then it will tell the agent what to do based on its sensor values. The agent
will “do” the unambiguous actions that are entailed. If the strategy for the agent
isn’t pure, then there may be a number of things that the agent could attempt to
do based on its inputs. To follow a strategy it should pick the actions randomly
according to the distribution specified in the strategy.

Picking strategies at random doesn’t mean that there must be a random number
generator in the robot (or access to some really random quantum phenomenon),
although it could. For example, for the soccer playing robots we could compile in
the randomness, by choosing offline whether it should go right or left according to
the random strategy. If we did this then we would have to hide our design from our
opponent designer and replace our robot after a single penalty kick. An alternative
would be to have two non-random robots, where we choose one at random for each
penalty kick. These two robots, together with the choosing mechanism, can be
seen as one randomizing agent. The most important property is that the other agent
isn’t able to predict what our agent will do.

It’s silly to think of an agent cheating, by not choosing from the random distri-
bution. This is particularly the case when we consider that the agent gets to choose
whichever strategy it wants. Cheating with one strategy is the same as choosing
a different strategy. We will then consider it to be that strategy that the agent is
carrying out. This doesn’t mean that an agent can’t lie about what strategy it’s car-
rying out. What an agent says about what it will do will be another action of the
agent, and it can do whatever it wants.
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5.4 Non-deterministic Actions and the Frame Problem

There has been much work on logical specifications of actions and change. The
specification of actions that solves the frame problem is well understood for the
deterministic case with complete knowledge [27; 50; 45]. These axiomatisations
assume the closure of the axiomatisation for change. See [2] for a detailed descrip-
tion of axiomatising change with acyclic programs.

What’s added in this work is a way to handle non-deterministic actions and
partial knowledge. The central idea is that determinism and complete knowledge
(as assumed in negation as failure) occurs for each world. We can have a distribu-
tion over worlds. When we have uncertainty, it’s useful to consider the question
of “who chooses the value”. Often it’s random, but often it’s another agent. What
we require is that the axiomatiser resolves this ambiguity.

Example 5.2 We can axiomatise a coin toss, where, when a coin is tossed, it lands
heads Ñk�	� of the time and tails Ñk�	� of the time; when it isn’t tossed, it remains in
the state (heads or tails) it was before:

� £ � )�î TJ_ �AXRöÄ�·U �
�9³�î�î £�)�TJ_ ��X U �
� £ � )�î �9�"µ�´ î ��� T�_ ��X U�


� £ � )�î TJ_ �AXRöÄ�·U �
�]�9³�î·î�£�)�T�_ ��X U �
� £ � )�î�TJ_ ��X U�


� � ÉY¶«î TJ_ �AXGU]� �7� £ � )�î TJ_ �AXGU
where � £ � )�î�TJ_ ��X U is true if coin _ has heads up at time X . �#£ � )�î �9�"µ�´ î ��� T�_ ��X U
is true at time X if heads would turn up on coin _ is it were tossed at time X . It’s
defined as:

Ã]_RÃ^X K � £ � )�î �9�"µ·´�î ����T�_ ��XGUË�;� � É'¶6î �9�"µ·´�î ����T�_ ��XGU M AE<�¹
with Ã�_ZÃ^X[¸�¹�TY� £ � )�î �9�"µ·´�î ��� T�_ ��X U;U H ��
�Ñ .
Many of the papers that present a solution to the frame problem [27; 50; 45; 2] use
the situation calculus for representing change, rather than the discrete time model
used here. See [40] for a description of how the situation calculus can be combined
with the independent choice logic.
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5.5 The Extensive Form of a Game

The extensive form of a game [53; 32; 17] is a representation of a game in terms
of a game tree, a generalisation of a decision tree to include different agents mak-
ing decisions at each node, and having information sets of nodes that agents can’t
distinguish.

“The extensive form of a game contains the following information:

1. the set of players

2. the order of the moves, i.e., who moves when

3. the players’ payoffs as a function of the moves that were made

4. what the players’ choices are when they move

5. what each player knows when he makes his choices

6. the probability distribution over any exogenous events.”[17, p. 77]

There is a direct mapping between the dynamic ICL and the extensive form of a
game. ² is the set of players. The logic program specifies the payoffs as a function
of the moves (actions) of the players. The set < ¦ specifies the players’ choices when
they move. The  function specifies what each player knows when it makes its
move. ¸ ¹ provides a probability function over exogenous events represented as
the independent random variables in <Å¹ .

The order of the moves is defined by the acyclicity of the knowledge base. The
moves must be ordered so that the information is available before the decision is
made. If there is some acyclicity ordering such that ? � is before ? ! then ? � can
be made before ? ! ; if there is another acyclicity ordering where ? ! is before ? � ,
then it doesn’t matter in which order the choices are made (as all of the information
available for each choice can’t depend on the other choice).

While the acyclicity of the rule base was chosen in order to allow for a simple
semantic framework [36], it can be justified by appealing to the structure of games.

6 Examples in Detail

In this section we present three different examples of using the ICL. The first demon-
strates so-called “information seeking actions” and noisy sensors and actuators.
The second presents a decision-theoretic planning example. The third defines a
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Figure 4: Influence diagram for our idealised example

two-player, imperfect information game of blind tic-tac-toe. There are intended to
show the details of the representation, and were not chosen because they are ele-
gant examples for the formalism.

6.1 Information Seeking Actions and Noisy Sensors

In this section we give an idealised single agent in an environment example, show-
ing how to model the following:

� Information producing actions, such as tests in diagnosis and positioning a
camera in robotics, or asking a question in a user modelling situation

� Conditional plans (conditioning on sense values)

� How a passive sensor can be used to model an active sensor that “looks”

� How noisy sensors and actuators can be modelled (Section 6.1.4).

6.1.1 Information producing actions

The ¶«³·³�íz� decision of Figure 4 can be seen as an information producing action.
It lets information about É'î�Xoµ�� £ be available to the next action. It also has a cost
associated with it.
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The agents action can either be ¶«³�³�í or )�³·´"� ¶«³·³�í . The action can be modelled
by having

K ¶«³�³�í ��)�³�´$� ¶«³�³�í M AE<
with our agent controlling this alternative.

In the rule base we model how actions by the agent and truths in the world affect
sense values for the agent. Here is an idealised example for the case where there
is no noise. (Section 6.1.4 considers noise.) Suppose that following the looking,
the agent can sense either ��³�î , ´è£ Ï or ´�³­�9�"ÉY´ Ï . For the case with no noise, the
environment model has the following axioms in > :

î�£�´ î�£kT��Å³�î U2��¶«³·³�í��5ÉYî �9µ·� £k

î�£�´ î�£kTY´J£ Ï U:��¶6³�³�í��¢�7É'î �9µ�� £�

î�£�´ î�£kTY´�³��;�"ÉY´ Ï U:�Ô)�³�´"� ¶«³�³·í�


Thus “ ¶6³�³�í ” provides information about “ ÉYî �9µ��#£ ” to “ )�³ É6� ”.

6.1.2 Conditioning on sense values

The agent can sense the world, and then decide what to do based on the sense val-
ues.

Continuing our example, suppose that the agent has possible actions )�³ É6����)�³�´"� )�³ É«� ,
and has the sense values above. There are three independent choices the agent can
make, namely whether or not to )�³ É6� for each of the three contingencies.

Within the ICL this can be modelled by having the axioms:

)�³ É6�.��î�£�´ î�£kT��Å³·î�UJ�¢)�³ ÉYe �Å³·î�

)�³�´"� )�³ É«�.�ºî £�´�î £kT���³�î�UJ�5)�³�´$� É'e ��³�î�

)�³ É6�.��î�£�´ î�£kTY´J£ Ï U��¢)�³ É'e ´è£ Ï 

)�³�´"� )�³ É«�.�ºî £�´�î £kT'´è£ Ï U �Ò)�³·´"� ÉYe ´J£ Ï 

)�³ É6�.��î�£�´ î�£kTY´�³­�9�"ÉY´ Ï UJ�5)�³ ÉYe ´ ³��9�$É'´ Ï 

)�³�´"� )�³ É«�.�ºî £�´�î £kT'´ ³��9�$É'´ Ï U �Ò)�³�´$� ÉYe ´ ³��9�$É'´ Ï 


and by having the following alternatives in < , controlled by our agent:

K )�³ ÉYe �Å³�î �Ë)�³·´"� ÉYe ��³�î MK )�³ ÉYe ´J£ Ï ��)�³�´$� ÉYe ´è£ Ï MK )�³ ÉYe ´�³��;�"ÉY´ Ï ��)�³�´$� É'e ´ ³��9�"ÉY´ Ï M
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Within the dynamic ICL we specify:

K )�³ É6����)�³�´$� )�³ É6� M AE< ¦ ó å=à�áw ¦ ó å\à�á H½K�K î�£�´�î�£�T���³�î�U���î�£�´ î�£kTY´J£ Ï U���î�£�´ î�£kTY´�³­�9�"ÉY´ Ï U M�M 7T K )�³ É«���Ë)�³·´"� )�³ É6� M U H�K�K î�£�´ î�£kT��Å³�î UË��î�£�´ î�£kTY´è£ Ï UË��î�£�´�î�£�T'´ ³��9�"ÉY´ Ï U M�M
The rules that need to be provided as part defining the ICL are created as part of
the agent’s strategy in the dynamic ICL.

6.1.3 Utility model

Finally, a utility model (part of the environment model) specifies how the utility
varies depending on what’s true and what the agent does. Here is an example of
such an an axiomatisation (given that our agent is ��Ï £�´$��� ):

���9ÉY¶«É6�9Ê$T � Ï £�´"�;����¸ µ�É&��£Dr�X�_�U:�
��£�î�� +�³�î���T&X�_�U"�
�Åµ·É$��£�T�¸ µ·É$��£·UË


��£�î�� +�³�î���TYÑ�U.��¶«³�³·í�

��£�î�� +�³�î���TY��U.��)�³�´$� ¶6³�³�í 

�Åµ�É&��£kT;����U2�Ô)�³ É6�J�ÒÉYî �9µ�� £k

�Åµ�É&��£kTY� U2�º)�³·´"� )�³ É6�J�5ÉYî �9µ·� £k

�Åµ�É&��£kTY� U2�º)�³·´"� )�³ É6�J�B�CÉYî �;µ�� £k

�Åµ�É&��£kT;�·U2�º)�³ É6�]�B�CÉYî �9µ·� £k


6.1.4 Noisy Actuators and Sensors

In Section 6.1.1 we assume that there were no noise in either actuator settings or in
sense values. We can model actuator noise, for example in the “looking” actuator,
by something like:

î�£�£ �Ô¶«³·³�í��5¶«³�³�í�ÉY´ Ï cÛ³�µ�í�î
î�£�£ �Ô)�³�´$� ¶6³�³�í��Ò´ ³�� ¶6³�³�í�ÉY´ Ï )�³�£�î�´$� cÛ³�µ�í

with following in < , controlled by nature:

K ¶«³�³�í�ÉY´ Ï co³�µ·íÅî �Ë¶6³�³�í�ÉY´ Ï )�³�£�î·´"� co³�µ�í MK ´�³�� ¶«³�³·íÅÉY´ Ï co³·µ�í�î���´�³�� ¶6³�³�í�ÉY´ Ï )�³�£�î�´$� cÛ³�µ�í M
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¸ ¹ TY¶«³�³·íÅÉY´ Ï co³·µ�í�î�U is the probability that the agent succeeds in seeing when it
looks. ¸ ¹ TY´�³�� ¶«³�³·íÅÉY´ Ï )�³�£�î·´"� co³�µ�í$U is the probability that that agent sees when
it doesn’t look.

Noisy sensors can be modelled similarly. Assume that the value sensed only
depends on whether the agent sees, but that there is no noise with respect to not
seeing. There are two alternatives controlled by nature:

K e � ¶«î�£ ��³�î�É6�9ÉY	�£��9�;µ�� £ ´J£ ÏÅ� �9ÉY	�£ MK e � ¶«î�£ ´è£ ÏÅ� �;É'	Ì£k�;�9µ�� £ �Å³�î·É«�;É'	Ì£ M
and the following facts:

î�£�´ î�£kT��Å³�î U2��î�£�£.�5É'î �9µ�� £@� �9µ·� £ �Å³·î�É6�9ÉY	�£k

î�£�´ î�£kTY´J£ Ï U:��î £�£2�5ÉYî �9µ�� £.�5e � ¶«î�£ ´è£ ÏÅ� �;É'	Ì£k

î�£�´ î�£kTY´J£ Ï U:��î £�£2�B�CÉYî �;µ�� £:�_�9µ�� £ ´J£ ÏÅ� �9ÉY	�£�

î�£�´ î�£kT��Å³�î U2��î�£�£.�B�CÉYî �9µ��#£:�Òe � ¶6î�£ ��³�î�É6�9ÉY	�£k

î�£�´ î�£kTY´�³��;�"ÉY´ Ï U:� �Cî�£�£k


¸�¹�TYe � ¶«î�£ ��³�î�É6�9ÉY	Ì£�U is the probability of a false-positive; when the sensor reports
positive when the value in the world is not true. ¸�¹�T'e � ¶6î�£ ´J£ ÏÅ� �9ÉY	�£·U is the prob-
ability of a false-negative; when the sensor reports negative when the value in the
world is true.

6.2 Shipping Widget s

In this section we present an example of Draper et. al. [14]. The example is that
of a robot that must process a widget. Its goal is to have the widget painted and
processed and then to notify its supervisor that it’s done. Processing consists of
rejecting flawed widgets and shipping unflawed widgets. The robot can inspect
the widget to see if it’s blemished, which initially correlates with the widget being
flawed. Painting the widget usually results in the widget being painted but removes
blemishes.

AGENT MODULE We first represent the robot. The robot has one sensor for
detecting blemishes. î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)���X U is true if the robot senses that the wid-
get is blemished at time X .

The robot has � actions (exactly one of which is possible at any time), namely
to reject, ship, notify, paint or inspect the widget or do nothing. )�³�T&���AXGU is true if
the robot does action � at time X .
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The robot specification module for µ�³�*�³­� is the tuple 
6< â�ß © ß6á ��w â�ß © ß«á �� �� where

< â�ß © ß«á H�K�K )�³�TYµ�£9ð�£�+¨����X U���)�³�T'î·�"É�����X U���)�³�TY´�³��;É'e Ê"��XGUË��)�³�T�� � ÉY´"����XGUË�
)�³�TYÉY´�î��$£�+¨����X U��Ë)�³ T'´ ³��9�"ÉY´ Ï ��X U M P�X is a time M 
w âÐß © ß6á H�K�K �Cî�£�´�î�£�T'*�¶Y£�ñ5ÉYî��#£�)���X U��9î�£�´ î�£kTY*�¶6£�ñ ÉYî��#£�)���XÛU M P�X is a time M 
 7T K )�³�TYµ�£9ðÌ£�+�����XGUË��)�³�TYî��"É�� �AXGUË��)�³�TY´ ³��9ÉYe�Ê$��X U��Ë)�³ T�� � ÉY´$����X U��
)�³�TYÉY´�î��$£�+¨����X U��Ë)�³ T'´ ³��9�"ÉY´ Ï ��X U M UH K�K �Cî�£�´�î�£�T'*�¶Y£�ñ5ÉYî��#£�)���X � U���î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)���X � U M P�X � êVX M 


In other words, at each time, the robot gets to choose which of the six actions it
carries out. When it’s making this decision, it knows whether or not it has sensed
blemishes in the past.

NATURE MODULE: The remaining thing to define is the rules and alternatives
controlled by nature. This specifies the dynamics of the world. We axiomatise how
the robot’s actions affect the world, how the world affects the senses of the robot.

The widget being painted persists in the world. Painting the widget can result
in the widget being painted (with probability ��
���Ñ ). We assume that whether paint-
ing works doesn’t depend on the time (a second painting will not make the widget
more likely to be painted). Painting only works if it hasn’t already been shipped
or rejected. Once painted, a widget remains painted.

� � É'´$��£�)�T&XZöÄ�·U2�
)�³�T�� � É'´$����X U �
� � ÉY´"� cÛ³�µ�í�îÛ�
�Cî��"É����"£�)�T$XGUJ�
�Cµ�£9ðÌ£�+���£�)�T$XGUË


� � É'´$��£�)�T&XZöÄ�·U2�
� � ÉY´"��£�)�T$XGUË


Painting succeeds ��Ñ�� of the time:
K � � É'´$� co³·µ�í�î��Y� � É'´$� e � ÉY¶6î M AE< ¹
¸�¹�T�� � É'´$� co³·µ�í�î�U H ��
���Ñ���¸ ¹kT�� � ÉY´"� e � ÉY¶«î U H ��
���Ñ

Note that we have not parametrized � � ÉY´"� cÛ³�µ�í�î by the time. This is lets us model
the fact that repainting will not help when painting failed the first time. In any pos-
sible world where � � ÉY´"� e � ÉY¶6î is true, painting always results in the widget being
painted, and if it is false, painting always results in the widget being painted.
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The widget is blemished if and only if it’s flawed and not painted:

*�¶Y£�ñ5ÉYî�� £�)�T&X U]�
e�¶ � cG£�)�T$XGU��
��� � ÉY´"�¨£�)�T$XGUË


Note that the use of logic programs, assuming the stable model semantics entails
that the rules mean “if and only if” (in the same way Clark’s completion [11] does).

Whether the widget is flawed or not persists:

e�¶ � c £�)�T$X[öq�·U2�8e ¶ � cG£�)�T&X U�

The widget is processed if it’s rejected and flawed or shipped and not flawed:

�Åµ�³·+�£�î�î £�)�T$XGU2�
µ�£9ð�£�+���£�)�T&X U$�
e�¶ � cG£�)�T$XGUË


�Åµ�³·+�£�î�î £�)�T$XGU2�
î��"É����"£�)�T&X UJ�
�Ce ¶ � cG£�)�T&X U�


The widget is shipped if the robot ships it, and being shipped persists:

î��"É��k�$£�)�T&X U2�±)�³�T'î·�"É�����X U�

î��"É��k�$£�)�T&Xnöq�·U2�Ôî��"É��k�$£�)�T&X U�


The widget is rejected if the robot rejects it, and being rejected persists:

µ�£9ð�£�+¨��£�)�T&X U7�º)�³�TYµ�£9ðÌ£�+�����XGUË

µ�£9ð�£�+¨��£�)�T&XRöq�·UD��µ�£9ð�£�+���£�)�T&X U�


We axiomatise how what the robot senses is affected by the robot’s actions and the
world:

î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)���X öq�·U2�
)�³�TYÉ'´ î��$£�+����AXGU��
*�¶Ð£�ñ5ÉYî�� £�)�T&X U��
�Ce � ¶«î £ �Å³�î T$XGUË
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The sensor gives a false positive with probability ��
�� . Unlike whether painting
succeeds, suppose the probability of the sensor giving a false positive at each time
is independent of what happens at other times:

K e � ¶«î�£ ��³�î�T&X U���´�³�� e � ¶«î�£ ��³�î�T&X U M A5<�¹
¸ ¹ TYe � ¶«î�£ ��³�î�T&X U;U H ��
��
¸�¹�TY´�³�� e � ¶«î�£ ��³�î�T&X U;U H ��
��

�k�	� of widgets are initially flawed:

K e�¶ � c £�)�T'� UË���"´ e ¶ � cG£�)�TY��U M AE<Å¹
¸�¹�TYe�¶ � c £�)�T'� U9U H ��
+�
¸�¹�TY�"´�e ¶ � c £�)�TY� U9U H ��
 Ó

Finally we specify how the utility is dependent on the world and actions of the
robot. The utility is one if the widget is painted and processed the first time the
robot notifies, and is zero otherwise.

���9ÉY¶«É6�9Ê$T'µ�³·*�³������·UC�
)�³�TY´�³��;É'e Ê"��XGUJ�
�C´ ³��9ÉYe�É¯£�) *�£�e ³�µ�£kT&X U �
� � ÉY´"��£�)�T$XGU��
�Åµ·³�+�£�î·î�£�)�T&X U�


���9ÉY¶«É6�9Ê$T'µ�³·*�³������ UC� �C���9ÉY¶6É«�;Ê"TYµ�³�*�³­������U�

´�³��;É'e É¯£�) *­£�e�³·µ�£kT&X U:��Xè� ìaX8�5)�³�TY´�³­�9ÉYe�Ê$�AXè��U�


One (pure) policy for our robot is the logic program:

)�³�T'ÉY´ î��$£�+������ UË

)�³�T�� � ÉY´$������U�

)�³�T'µ £9ð�£�+¨������U2�±î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)����·UË

)�³�T'î·�"É������ U �Ô�7î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)����·UË

)�³�T'´ ³��9ÉYe Ê"��� UË


This has expected utility ��
�����Ñ . Note that in the problem formulation, we need to
paint blemished widgets.
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This policy isn’t optimal. Policy:

)�³�T'ÉY´ î��$£�+������ UË

)�³�T'ÉY´ î��$£�+������·UË

)�³�T�� � ÉY´$������U�

)�³�T'µ £9ð�£�+¨������U2�±î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)����·UË

)�³�T'µ £9ð�£�+¨������U2�±î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)���� UË

)�³�T'î·�"É������ U �Ô�7î�£�´ î�£kTY*�¶Y£�ñ5ÉYî�� £�)����·U"�X�Cî�£�´ î�£kTY*�¶Ð£�ñ5ÉYî�� £�)��Ë� U�

)�³�T'´ ³��9ÉYe Ê"�9��UË


has expected utility ��
�����Ó���Ñ . There is no optimal policy for this example (it isn’t
a finite game so Nash’s theorem doesn’t apply here), we can add more “inspect”s
to keep raising the expected utility.

The best policy without inspecting, namely K )�³�T�� � ÉY´$������U���)�³�TYî��"É������·UË��)�³�T'´ ³��9ÉYe Ê"��� U M
has expected utility ��
+���kÑ .

Of course, we can always define the utility so that the robot is penalized for
taking too much time, e.g., by defining utility by:

���9ÉY¶«É6�9Ê$T'µ�³·*�³������:r}X������ U �Ôµ�£�c � µ�)�£�)�T$XGUË

���9ÉY¶«É6�9Ê$T'µ�³·*�³������ UC� �Cµ�£�c � µ�)�£�) � � î�³·ñB£ �9ÉYñB£�

µ�£�c � µ�)�£�) � � î�³�ñB£ �9ÉYñB£o�Ôµ�£�c � µ�)�£�)�T&X U�

µ�£�c � µ�)�£�)�T&X U:�

)�³�TY´�³��;É'e Ê"��XGUJ�
�C´ ³��9ÉYe�É¯£�) *�£�e ³�µ�£kT&X U �
� � ÉY´"��£�)�T$XGU��
�Åµ·³�+�£�î·î�£�)�T&X U�


Under the revised utility, the first policy above (with a single inspect) is optimal,
with expected utility ��
+�k��Ñ .
6.3 Blind tic-tac-toe

Koller and Pfeffer [26] present a game description language Gala. In that language
they represent the game “blind tic-tac-toe”. We represent the same game in the
ICL in order to present a parlour-game example and to enable us to compare the
representation with Gala.

Blind tic-tac-toe is an imperfect information version of standard tic-tac-toe:
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“As in regular tic-tac-toe, the players take turns placing marks in squares.
However, on his turn, each player can choose to mark either an X or an
O; he reveals to his opponent the square in which he makes the mark,
but not what type of make he makes. As usual, the goal is to complete
a line of three squares with the same mark.”[26]

The basic idea in defining such a game is to axiomatise the dynamics of the
game in the logic. The rules should imply the consequences of the choices made
by agents.

First we need a representation for the state of the game. In this game, the or-
der of the moves is important as well as who put what where (as the last player
who places a marker to make three in a row wins). We can represent the state of
the game as a list of the form �Å�Ì��T��B���:���L�"³����L� � ��U which means that the player
“ �L�"³ ” (either � or * ) put “ ��� � � ” (an ³ or an " ) at position T��¢���òU . The first ele-
ment of the list was the last element placed there.

The first rule defines the first move. The second rule for the state progression
defines subsequent moves:

î�� � �¨£kTËÀ ������T��¢���:��� Ï £�´$�����L� � ��UYÂ'�;î�TY��U;U]�
î�� � µ��9î�T&� Ï £�´"�¨U"�
+��"³·³�î�£�î�T&� Ï £�´$���Y�Å¶ � +�£�T��B�A�@���L� � �¨UË��� UË


î�� � �¨£kTËÀ ������T��¢���:��� Ï £�´$�����L� � ��U��Y�Å����T��_�����@�����.����� �$U�0�� £�î��¯Â'��î�T&X U;U:�
î�� � ��£kT�À ������T�� � ���.�����.����� �$U�0�� £�î��¯Â'��X U �
�Ce É'´ ÉYî�� £�)�T�À �Å����T��_�����Û�����.� ���4�"U�0�� £�î­��Â«UJ�
³����Å³�´è£�´$��T&�2� ��� Ï £�´"�¨UJ�
+��"³·³�î�£�î�T&� Ï £�´$���Y�Å¶ � +�£�T��B�A�@���L� � �¨UË��X U�


We can define auxiliary relations such as who starts, and how the moves alternate,
and when the game is finished.

î�� � µ­�9î�T � U�

³��k��³�´è£�´$��T � ��*�U�

³��k��³�´è£�´$��T'*·� � U�

e�ÉY´ É'î·� £�)�T�\:U:�

)�µ � cgTJ\@UË

e�ÉY´ É'î·� £�)�T�\:U:�
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coÉY´ î�T$����\:U�

)�µ � cgTJ\:U.�

¶Y£�´ Ï �9�JT�\]����U�

We can axiomatise the utility functions. Note that we are relying on the fact that
for any particular set of choices by agents, there is only one win state or one draw
state.

���9ÉY¶«É6�9Ê$T � ���·UC�
coÉY´ î�T � ��\:UË


���9ÉY¶«É6�9Ê$T � �9� UC�
coÉY´ î�T'*·��\:UË


���9ÉY¶«É6�9Ê$T � �9��
�Ñ UC�
)�µ � cgTJ\@UË


���9ÉY¶«É6�9Ê$T'*·���·U]�
coÉY´ î�T'*·��\:UË


���9ÉY¶«É6�9Ê$T'*·�Ë� U]�
coÉY´ î�T � ��\:UË


���9ÉY¶«É6�9Ê$T � �9��
�Ñ UC�
)�µ � cgTJ\@UË


We can axiomatise the choices by the agents:15

+��"³�³·î�£�î�T&� Ï £�´"���'��¶ � +�£kT��¢���@����� � ��U���X U]�
+��"³·³�î�£��ZT$� Ï £�´$���9�¢��XGUJ�
+��"³·³�î�£7�_T&� Ï £�´"�����B��X U"�
+��"³·³�î�£��L� � ��T&� Ï £�´"������� � ����XGUË


The agents get to choose the � position, the � position, and what mark they make.
Thus,

Ã^X K +��"³�³·î�£��ZT$� Ï £�´$�����k��XGUË��+��$³�³�î�£��ZT&� Ï £�´"��������X U��Ë+��"³�³�î £��VT&� Ï £�´$��������X U M AE<;��ó å=à�á
15This is one simple way to axiomatise the choices. It means that agents can choose to place a

mark in an occupied space (presumably they will be penalized by losing if they choose an occupied
spot). Another method is that the agent can derive a list of free spaces from the sensed information,
and then can only choose an element from this list.
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Ã^X K +��"³�³·î�£7�_T&� Ï £�´"��������X U��Ë+��"³�³�î £7��T&� Ï £�´"��������X U��Ë+��"³�³�î £7��T&� Ï £�´"��������X U M AE< ��ó å\à�á
Ã^X K +��"³�³·î�£��L� � ��T&� Ï £�´"����³���XGUË��+��$³�³�î�£���� � ��T&� Ï £�´$����"J��XGU M AE<;� ó å=à�á

Now we have to decide what an agent gets to observe when making their de-
cision. We assume that for each of these choices the agent gets to observe a fil-
tered version of the state, which consists of a list of ��³�î co�"³�T��¢���@�����"³�U for each
square and a list of ��³�î co� � ��T��B���:���L� � ��U for the squares they occupy:

î�£�´ î�£kT&� Ï £�´"����¸ ³·î �L�"³ �7É'î­����¸ ³�î ��� � � �CÉYî����AXGUC�
î�� � ��£kT�\]�AXGU"�
£7"��9µ � +�� ��³�î co�"³ ¶«ÉYî���TJ\]��¸ ³�î ���"³ �CÉYî��¨UJ�
£7"��9µ � +�� ��³�î co� � � ¶«ÉYî���T$� Ï £�´$����\]��¸ ³�î �L� � � �7É'î­��UË


£7"��9µ � +�� �Å³·î cÛ�"³ ¶«ÉYî���T�À Â'��À Â«U
£7"��9µ � +�� �Å³·î cÛ�"³ ¶«ÉYî���T�À �Å����T��B�A�@��� Ï £�´"�����L� � �;U�0F\2��Â'��À ��³�î co�"³ T��B�A�@���L�"³�U�0Á¸���Â6U �

£7"��9µ � +�� ��³�î co�"³ ¶«ÉYî���TJ\2����¸��·UË

Similarly for £7"��;µ � +¨� �Å³�î cÛ� � � ¶6É'î­� .

The observable function can be given by:16

 7T K +��"³�³�î�£��VT&� Ï £�´"��������X U���+��"³�³·î�£��ZT$� Ï £�´$��������XGUË��+��$³�³�î�£��ZT&� Ï £�´"��������X U M UH K�K î�£�´ î�£kT&� Ï £�´$����¸ ³�î �L�"³ �CÉYî�����¸ ³�î ��� � � �CÉYî����AXGU M
P�¸ ³·î ���"³ �CÉYî�����¸ ³�î �L� � � �CÉYî�� are appropriate lists M 


The other two choices have similar information sets, but include the previous de-
cisions (i.e., the agent knows which � it chose when choosing a � ).

For those who don’t like to read declarative logical formulae, the best way to
understand these rules is to think about building a game tree by forward chaining
on the rules. � starts and so must make a choice of the � position, the � position,
and what mark they are making. This forms an 18-way split in the game tree (there
are 18 different choices available to � ). Then the state evolves by * making a move.
There are 9 different information states for * , and they have to choose one of 18
choices (or 16 if the alternative axiomatisation is made). And so on building the
game tree.

It’s envisioned that such a representation could be used to build the same game
tree as for Gala [26], and can use the same efficient algorithms. The representation

16We have neither presented a syntax for � , nor a syntax for the choices. This is because we only
wanted to present object level rules, in order to not have to present two different logical formalisms.
It’s hoped that this set notation gets the general idea across.

56



proposed in this paper is more declarative (in that we can give a declarative possi-
ble worlds semantics for the whole framework, and all of the logical rules can be
interpreted as statements about the domain), and more general in that it’s not tuned
specifically to 2-person alternating games. In fact the ICL isn’t tuned for any par-
ticular application; there are no built in predicates, and no syntax beyond that of
the logic. This may mean that Gala is more natural for those games it’s designed
for, but we believe that the more general language will be more useful for general
specification of decision problems under uncertainty.

7 Conclusion

This paper has presented a logic that allows for what’s arguably a natural specifi-
cation of multi-agent decision problems. There is a simple semantic framework in
terms of possible worlds semantics. It lets us use logic to specify the dynamics of
the world, while retaining the elegance and generality of game theory.

What we are adding to game theory is an object-level representation of the do-
main. We can axiomatise how actions (moves) affect the world, how the utility
is derived from simpler components, and how sensors work. All of these axioms
can be interpreted within the simple logic. It allows us to represent the probabilis-
tic dependencies in a domain, in much the same way that influence diagrams pro-
vide a more intuitive representation for many problems than decision trees [23;
22]. We also allow for a form of parametrized rules by the use of logical variables
that allow us to construct large game trees from smaller components.

We are adding to influence diagrams, the ability to represent multiple agents,
the ability to represent17 structured probability and decision tables, and a way to
have a dynamic construction of influence diagrams (with a similar motivation to
Breese [9], but having logic programs as object-level statements about the world
rather than at the meta-level as does Breese). We also allow for the designer to ax-
iomatise the dynamics of the system, instead of having to summarize it in a single
step as a probability distribution.

We are adding to logic a new way to handle and think about non-determinism
and uncertainty. Rather than just using disjunction which doesn’t seem to be subtle
enough for the range of forms of uncertainty that we need to handle, we provide a
mechanism in terms of independent choices to handle uncertainty. We argue that
considering different agents making choices is the right way to think about uncer-

17In other papers we show how the structure can be exploited for computational gain [38; 41].
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tainty in a logical formalism. The ICL is weaker than other mixes of logic and
decision theory for modelling agents [3; 24; 20; 19] which have added probability
and decisions to a rich logic. They don’t have general independence assumptions
(although they can state independence assumptions), and have to cope with many
different forms of uncertainty (e.g., disjunction as well as choices by agents). The
goals of this paper are different: we are investigating a different way of viewing
uncertainty for modelling agents. We are looking for ways to make representations
of the world simpler. Whether we have succeeded in this is an open question.

Conspicuous by its absence in this paper is a discussion on computation. In
this context, computation can mean three things: (1) building a situated agent that
embodies a strategy; (2) simulating a policy and environment; or (3) finding an
optimal strategy. A Prolog implementation of the second that finds expected utili-
ties of strategies is available from the author’s web page.18 It should be noted that
the computational complexity of finding Nash equilibria, even the propositional,
single-agent without perfect recall case is exponentially harder to solve than an
influence diagram [25]. Intuitively this is because dynamic programming doesn’t
work when we have a forgetful agent; we can’t solve the last decision indepen-
dently of the earlier decisions [54]. This isn’t a problem with the representation;
it’s the problems that are difficult. It isn’t clear whether the representation in this
formalism makes the problems more difficult to solve. There is some, however,
evidence that the representation presented here makes solving a decision problem
easier than in an influence diagram, as we can exploit the rules structure. [5; 38;
41] There is much more work to be done on exact and approximate algorithms for
the problems represented in the ICL.
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