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Abstr act

Inspired by game theory representations, Bayesian networks, influence
diagrams, structured Markov decision process models, logic programming,
and work in dynamical systems, the independent choice logic (ICL) isase-
mantic framework that allowsfor independent choices(made by variousagents,
including nature) and alogic program that gives the consequence of choices.
Thisrepresentation can be used as aspecification for agentsthat act inaworld,
make observations of that world and have memory, as well as a modelling
tool for dynamic environments with uncertainty. The rules specify the con-
sequences of an action, what can be sensed and the utility of outcomes. This
paper presents a possible-worlds semantics for ICL, and shows how to em-
bed influence diagrams, structured Markov decision processes, and both the
strategic (normal) form and extensive (game-tree) form of gameswithin the
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ICL. It'sargued that the I CL providesanatural and conciserepresentation for
multi-agent decision-making under uncertainty that allows for the represen-
tation of structured probability tables, the dynamic construction of networks
(through the use of logical variables) and a way to handle uncertainty and
decisionsin alogical representation.

1 Introduction

This paper presents the Independent Choice Logic (ICL), a logic for modelling
multipleagentsunder uncertainty. It'sinspired by gametheory [53; 32; 17], Bayesian
networks [35; 7], influence diagrams [23; 22], probabilistic Horn abduction [36],
structured representations of Bayesian networks and Markov decision processes
[5; 8; 7], agent modelling and dynamical systems[29; 57; 51; 48] and logical mod-
elling of action and change [27; 50; 45].

First we motivate | CL from anumber of different perspectives, then show how
it fitswithin the paradigms of knowledge representation (Section 1.1). In separate
subsectionswe present the foundations of | CL based on agents (Section 1.2), game
theory (Section 1.3), influence diagrams (Section 1.4) and logic (Section 1.5). We
then build the formal definition of the representation in Section 2. The mgority of
this paper presents examples of the use of thelogic, including showing how influ-
ence diagrams, Markov decision processes, and the strategic and extensive forms
of games can be represented.

Bayesian or belief networks [35] provide a useful representation for reason-
ing under uncertainty. Bayesian networks are a representation of independence
amongst random variables. The Bayesian network model doesn’t constrain how
avariable depends on its parents, nor does it specify a representation for the con-
ditional probability of avariable given its parentsin the network. The conditional
probabilitiesof variablesgiven their parents aretypically represented astables, but
can often be specified more compactly interms of trees[7] or rules[36]. Rulesare
more compact than trees (unless the trees can have shared structure and redundant
tests), in the sense that there are some functions where the tree representation is
exponentially larger than the rule representation, but the converse doesn’t hold.

1As we allow negation as failure in the rules, the rules can be seen as a DNF definition of a
concept (using Clark’s completion [11]). It is known that DNF formulae sometimes entail an ex-
ponential blow up in size when converted to decision trees [46]. Decision trees can be converted
simply to rules, with arulefor each leaf in the decision tree whose body correspondsto the path to
the leaf.



Rules have the added advantage that there is a natural extension to the first-order
case [36]. This paper builds on probabilistic Horn abduction [36], a first-order
rule-based representation for Bayesian networks, allowing negation as failure and
fewer restriction on the rules than in probabilistic Horn abduction. This paper ex-
tends the probabilistic framework to include utilities and decisions made by mul-
tiple agents, so that not only can the knowledge base be expressed compactly by
rules, but agents' policies can also be expressed by rules.

L ogic has become the primary focus of knowledge representation in Al. This
isbecauseit providesaway to give meaning to symbolsand away to specify what
you want to compute independently of how it's computed [42]. It has often been
argued (e.g., [33]) that any general representation schememust be at least asrich as
thefirst-order predicate cal culus. One of the problemswith thefirst order predicate
calculusisthe way it handles uncertainty; all it has available is digunction. This
isarather blunt instrument and doesn’'t do justice to al of the subtletiesinvolved
in reasoning under uncertainty. Rather than adding uncertainty to the first-order
predicate calculus [3; 24; 20; 19], which would entail having both disjunctive and
probabilistic uncertainty, this paper proposes that we should use probability and
decision theory, instead of digunction, to handle uncertainty. In the ICL, we start
with alogic doesn’'t include any uncertainty and is definitive on all propositions
(every theory entails exactly one of p or —p for all propositionsp). Agentsown al-
ternatives, which are sets of propositions. An agent getsto choose one value from
each alternative that it owns. Nature is a special agent; the alternatives owned by
nature have aprobability distribution over them. Thelogic givesthe consequences
of the choicesmade by nature and the agents. Thisallowsusto havethe advantages
of logic, with symbols that can be given denotations, specifications of valid con-
sequences and first-order representations, but also lets us use the normative tools
of decision/game theory notions to determine what an agent should do.

Models of dynamical systems (see e.g., [29; 44]) have traditionally been de-
scribed in terms of state spaces, for example treating state spaces in terms of vec-
tors of states and state transition functions in terms of matrices. It's often much
more convenient to describe astate spacein termsof propositions, and describethe
state transition function in terms of these propositions. The state transition func-
tion can be stated concisely in terms of Bayesian networks[12] or even more con-
cisely by trees[5; 8] or rules[40Q], never referring to the explicit state. The number
of variablesislogarithmic in the size of the state space. The effects of actionsare
typically local, the value of a variable depending only on a few other variables.
This provides the potential to take advantage of the compactness of the proposi-
tional representation. In the ICL we specify state transition functions in terms of
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rules. One advantage of rulesisthat they are closer to the traditional Al represen-
tations such as the situation calculus [31] (see [40]). The first-order nature of the
rules, with explicit reference to the stage or situation make the rules perspicuous.
The rule based representation also helps clarify the close relationship between re-
gression planning and dynamic programming.

1.1 Knowledge Representation
There are two different views of what a knowledge representation should be.

e Thefirst is that a knowledge representation should let users state whatever
knowledge they have in a reasonably natural way. Under this view it isn’t
appropriate for the designer of a knowledge representation to specify how a
piece of knowledge should be encoded. Reasoning can conclude what 1og-
icaly follows from the stated facts or can fill in missing factsin acommon
sense manner. An example of thisview isin the use of the first-order pred-
icate calculus for knowledge representation. It's a rich enough language to
let us state many facts about the world, but with primitive means to handle
uncertainty. Within this tradition, logics have been devel oped to handle un-
certainty and multiple agentsmaking decisions|3; 24; 20; 19; 15; 21]. Miss-
ing facts can be inferred using default reasoning [30], or by making maxi-
mum entropy or random worlds assumptions [4]. What's important is that
the user can add whatever they liketo the knowledge base, and the represen-
tation should be able to make appropriate inferences.

e The second view isthat a knowledge representation should provide a high-
level symbolic modelling language that makes some things easier to state.
Under this view a knowledge representation should specify how to model a
domain. It should guide users asto how they should think about the domain,
what they should say; and once some choices have been made, it prescribes
what information needs to be specified. An example is Bayesian networks
[35], which provideamodelling tool for representing i ndependence amongst
random variables. The user needs to specify the random variables of inter-
est, the values these variables can take, and the dependency amongst these
variables. Once these are specified the Bayesian network model prescribes
what probabilities need to be specified.

It isimportant not to confuse these, as judging a knowledge representation by the
inappropriate criteriawill lead to an unfair judgment. The knowledge representa-
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tion in this paper should be seen as an instance of the second. We don’t expect that
people will be able to just throw any knowledge in. For example, missing rules
have a particular meaning; if you want to assert ignorance there are specific ways
todoit.

1.2 Agents

An agent is something that acts in the world. An agent can, for example, be a
person, arobot, a worm, the wind, gravity, alamp, or anything else. Purposive
agents have preferences—they prefer some states of the world to other states—
and act in order to (try to) achieve worlds they prefer. The non-purposive agents
are grouped together and called “ nature” . Whether an agent ispurposiveor notisa
modelling assumption that may or may not be appropriate. For example, for some
applications it may be appropriate to model a dog as purposive, and for others it
may suffice to model adog as non-purposive.

Agents can have sensors, (possibly limited) memory, computational capabili-
ties and effectors. Agents reason and act in time.

An agent should react to the world; it has to condition its actions on what's
received by its sensors. These sensors may or may not reflect what's true in the
world;? sensors can be noisy, unreliable or broken; and even when sensors are re-
liablethereisstill ambiguity about theworld from sensors' readings. Anagent can
only condition its actions on what it knows, evenif it'svery weak such as* sensor
a appears to be outputting value v”. Similarly actuators may be noisy, unreliable,
slow or broken. What an agent can control is what message (command) it sends
to its actuators.

An agent can be seen as an implementation of atransduction [57; 47; 48; 39],
afunction from input (sensor readings) history into outputs (action attempts or ac-
tuator settings) at each time point. These are causal in the sense that the output
can only depend on current inputs and previous inputs and outputs; they can’'t be
conditional on future inputs or outputs.

A policy or strategy is a specification of what an agent will do under various
contingencies. That is, it's a representation of a transduction. A plan isapolicy
that includes either time or the stage as part of the contingencies conditioned on.

Our aim is to provide a representation in which we can define perception, ac-

20f course if there is no correlation between what a sensor reading tells us and what'strue in
theworld, and the preferences of the agent depend on what’strue in the world (asthey usualy do),
it may aswell ignore the sensor.



tions and preferencesfor agents. This can be used to define a policy, the notion of
when one policy is better than another (according to that agent’s preferences), and
S0 an appropriate notion of an optimal policy for an agent. Once we have defined
what an optimal policy is, we can use exact and approximation algorithmsto build
policiesfor agents.

We want to model agents and their environments with the same language. The
language should provide adecision theoretic, or gametheoretic (for more than one
agent) framework that can be used to build agentsthat can be shown to be optimal
(asin [48]) or at least to have a specification of the expected utility of an agent.
A planner in this framework is a program that generates a (possibly stochastic)
transduction for an agent to execute. The output of the planner should be suitable
for actually controlling an agent. It has to be more than a sequence of steps that
is the output of traditional planners. Here we consider reactive agents that have
internal state. Thispaper doesn’'t consider the problem of building aplanner. Even
for the single-agent propositional case, the problem of finding an optimal policy is
computationally prohibitive[25], but thisis more aproperty of the problem than of
the representation. By having arich representation we can discuss the complexity
of various restrictions and build approximation algorithms.

Under this view, beliefs, desires, intentions, and commitments [51] aren’t es-
sential to agenthood. 1t may, however, be the case that agents with beliefs, desires,
intentions, and commitments that, for example, communicate by way of speech
acts [51], perform better by some measure than those that do not. We don’t want
to define agenthood to exclude the possibility of formulating and testing this em-
pirical claim.

In this paper we provide arepresentation that can be used to model the world,
agents (including available sensors and actuators) and goals (in terms of the agents
utilities in different situations) that will allow us to design optimal (or approxi-
mately optimal) agents.

1.3 GameTheory

Game theory [53; 32; 17] is atheory of multi-agent reasoning under uncertainty.
The general ideais that thereis a set of players (agents) who make moves (take
actions) based on what they observe. The agents each try to do aswell asthey can
(maximizetheir utility).

Game theory is designed to be a general theory of economic behaviour [53]
that is a generalization of decision theory. The use of the term “game” here is
muchricher thantypically studiedin Al text booksfor parlour gamessuch aschess.
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These could be described as deterministic (there are no chance moves by nature),
perfect information (each player knows the previous moves of the other players),
zero-sum (one player can only win by making the other player lose), two-person
games. Each of these assumptions can be lifted [53].

A gameis a sequence of moves taken sequentially or concurrently by afinite
set of agents. Nature is usually treated as a special agent. There aretwo main (es-
sentially equivalent in power [17]) representations of games, namely the extensive
form and the normalized [53] (or strategic [32; 17]) form of a game.

The extensive form of a game is specified in terms of a tree; each node be-
longsto an agent, and the arcs from anode correspond to al of the possible moves
(actions) of that agent. A branch from the root to a leaf corresponds to a possible
play of the game. Information availability isrepresented in terms of infor mation
sets which are sets of nodes that an agent can’t distinguish. The aim is for each
agent to choose a move at each of the information sets.

Inthestrategic form of a game each player adopts a strategy, where a strategy
is“aplan ... which specifies what choices [an agent] will make in every possible
situation” [53, p. 79). Thisisrepresented as afunction from information available
to the agent’s move.

Theinitial framework devel oped here should be seen as a representati on based
on the normalized form of agame, with a possible world corresponding to acom-
plete play of agame. Inthe ICL we add alogic program to give the consequences
of the play. Thisalows usto use alogica representation for the world and for
agents. Section 5.5 presents a representation that is closer to the extensive form of
agame.

Where there are agents with competing interests, the best strategy is often a
randomized strategy. In these cases the agent decidesto randomly choose actions
based on some probability distribution.

Example 1.1 Consider aproblemin designingsoccer playingrobots. Inparticular
wewant to consider the problem of apenalty kick. Penalty kicksare used to decide
awinner in some soccer games that are tied at the end of regulation time. In a
penalty kick, there are two agents. a kicker who is trying to score a goal, and a
goaliewhoistryingto prevent thegoal. The goalie must commit to either jumping
left or right before they know whether the kicker will kick right or left (of course,
neither want to let the other know which direction they will go). Suppose for this
example, that if the goalie jumps (to its) left and the kicker kicks (to its) left, there
iIsa90% chance of agoa. Similarly if they both go (to their own) right, thereisa
90% chance of agoal. If the kicker kicksleft and the goalie jumpsright thereisa
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godie
left right
kicker left | (0.9,0.1) | (0.1,0.9)
right | (0.2,0.8) | (0.9,0.1)

Figure 1: Expected pay-off matrix for the game of Example 1.1. Payoff (uy, us)
indicates that the kicker has an expected payoff of «; (where agoal isworth one,
and ablock isworth zero for the kicker) and that the goalie has an expected payoff
of u, (whereagoal isworth zero, and ablock is worth one for the goalie).

10% chance of agoal. If the kicker kicksright and the goalie jumps left, thereisa
20% chanceof agoal (thiscould happenif thegoalieisright handed). SeeFigure 1
for apayoff matrix for thisexample. The goalie should not reason that “| am better
when | jJump right so | should jump right”. For then the kicker (realizing this) will

awayskick right. The goalie could then think that “as the kicker will kick right |

should jump left”. Inwhich casethekicker should kick left. Thisisanever ending
regress. Such problems have been well studied in game theory [53]. It turns out
that the best strategy for the goalieis to randomize its choice. Similarly the best
strategy for the kicker isto randomize its choice. In thisexampleit’'s best for the
kicker to kick right with probability % and best for the goalie to jump right with
probability % in the sensethat if either deviate from this randomized strategy, the
other can exploit the deviation to have a higher chance of either scoring agoal or
stopping a goal (see Example 2.21 for a derivation of these numbers).

1.4 Influence Diagrams

I nfluence diagrams [23] (see the papersin [34]) are a graphical representation of
decision problems that extend Bayesian networks to include decision nodes and
value nodes. Influence diagrams provide a perspicuous representation for deci-
sion problems making explicit the probabilistic dependencies and the information
available when adecision is made (see e.g., [22])

The propositional version of thelogic presented here can be seen asarepresen-
tation for influence diagrams (see Section 3.1), where we can use rules to specify
conditional probabilities[36], rulesto specify utility and the policies of agentsare
specified as logic programs that imply what an agent will do based on its obser-
vations. The ICL allows specification of the influence diagram in alogic that lets
us axiomatise the dynamics of the world, derive implicit information from explicit
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knowledge, and has aformal and natural semantics.
The independent choice logic (ICL) preserves the representational clarity of
influence diagrams and extends them in four ways:

e Thefirst advanceis for representation of structured probability tables. The
use of rulesallowsfor the compact representation of probability tables (sim-
ilar to the use of decision trees for specifying probability and utility tables
[52; 5]). For example, although some variable d may depend on variables
a, b and ¢, it may only depend on b when « has one value and on ¢ when a
has another value. This asymmetric dependency can be easily expressed in
rules, forming a much more compact representation than the traditional ta-
bles. Therulestructure can be exploited for efficiency [38; 5; 41]. Thesame
rule-based representation can be used to express the policies.

e The use of logical variables allows for a form of first-order influence dia-
grams. These form a method for the dynamic construction of influence dia-
grams[9; 36].

e The use of the rule base means we don’t have to specify in one step how a
variable depends on its parents; we can use arbitrary computation. For ex-
ample, we can axiomatise the dynamics of adomain and use the axiomati-
sation to specify how the position at one time depends on the position at a
previoustime in acompact way. Thisfeatureswill be exploited for many of
the examples.

¢ ThelCL can also handle multiple agentsmaking decisions, permitting aform
of multiple-agent influence diagrams. We are thusimporting the representa-
tional advantages of influence diagrams into game-theory representations.

Note that extending the representation to logical variables and multiple agentsin-
creasesthe worst case computational complexity of deriving optimal plans;? thisis
because the problemsthat can be represented are more complex. Itisnot aproblem
with the representation per se.

1.5 Logic

Our aimisto definealogic whereall uncertainty isresolved by decision/gamethe-
ory rather than using digunction to encode uncertainty. We start with alogic that

3The use of variables makes it undecidable, but even without variables, multi-agent reasoning
is exponentially harder than modelling a single no-forgetting agent [25].
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has no uncertainty; it’'s definitive on the value of every proposition. We then show
how uncertainty can be modelled as alternativesthat are chosen by agents or have
a probability distribution over them. The logic tells us the consequences of the
choices.

We are treating logic as the modelling language of theworld. Rather than hav-
ing logic at the meta-level describing an object level in another language such as
GOLOG [28] or constraint nets[56], we are using the logic to represent the object
level. Thereis no other representation apart from the logic. We use the logic to
axiomatise the causal structure of the world and the causal structure of agents (all
of which are defined in terms of propositions).*

Rather than using digjunction to handleuncertainty, asinthepredicate cal culus,
wewant to use probability and decision theory to handle the uncertainty. Thereare
normative arguments as to why we should use probability and utilities for reason-
ing under uncertainty [49]. The aim hereis to get as much as we can from logic,
but using decision or game theory to handle all of the uncertainty.

Starting alogic without uncertainty potentially letsus sidestep many traditional
problems, or at least adopt simple solutions. For example, it seems as though the
frame problem in the situation calculus [31] is solved for the case with complete
knowledgeand deterministic actions[27; 50; 45]; when thereisincomplete knowl-
edge and nondeterministic actions, there are still many problems to be resolved
(see e.g., [6]). This paper takes quite a different view to other proposals, where
we resolve nondeterminism and uncertainty by considering “who gets to resolve
the uncertainty”. We consider all actions as deterministic but with hidden vari-
ables, and have probabilities over these variables or have them chosen by differ-
ent agents. This become avery powerful and arguably natural way to model non-
deterministic action (see Section 5.4 and [40]).

2 Independent ChoiceLogic

In this section we formalize the independent choice logic. Wefirst give a general
abstract definition of how an independent choice logic can be constructed from
abase logic. In order to make the paper and examples more concrete we adopt
acycliclogic programs under the stable model semantics as the base logic.

4All of the logical statements in this paper are at the object level (i.e., are about the domain
being axiomatised rather than being axioms about the formalism). Thiswasdonein order to reduce
confusion: we don’t need two different languages and the problems of quoting one language. All
of the meta-level statements here are given in English or normal mathematical notation.

10



Anindependent choicelogic (ICL) isalogic built with a specific semantic con-
struction. We assumethat we are given abase logic that conformsto somerestric-
tions. The construction below specifies how to build possible worlds. Possible
worldsare built by choosing propositions from sets of independent choice alterna-
tives. The base logic is used to determine truth in the possible worlds.

The base logic is defined on two languages, the language L r of facts, and the
language L, of queries, and a consequence relation |~ between elements of L
and elementsof L. Thatis, |~ isarelationon Lz x L. It'susualy written in
infix notation. We assume that languages £ and L arelogical languages which
share the same atomic formulae. After the definition of the semantic construction
we discuss what propertieswe want of Lz and L.

Definition 2.1 A baselogicisatriple (Lg, |~,Lq) suchthat L and £ arelan-
guagesand |~ isaconsequence relation.

Definition 2.2 An independent choice logic theory on base (Lr, |~,Lg) isa
pair (C, F), where

C, called the choice space, is a set of sets of ground atomic formulae from lan-
guage L, suchthat if y; € C, yo € Cand x1 # x2then x1 N x2 = {}. An
element of C iscalled an alternative. An element of an alternativeis called
an atomic choice.

JF, caled the factsor therule base, isa set of formulaeinlogic L.
The base logic is often omitted when it can be understood from context.

The semanticsof an ICL isdefined in termsof possibleworlds. Thereisapos-
sible world for each selection of one element from each alternative. The atoms
which follow using the consequence relation from these atoms together with F
aretruein this possible world.

Definition 2.3 Givenindependent choicelogic theory (C, F), aselector function
isamapping T : C — UC suchthat () € x foral x € C. Therange of selector
functionr, written R (7) istheset {7 (x) : x € C}. Therangeof aselector function
will be called atotal choice.

The basic semantic construction we want for the | CL isthat each selector function
correspondsto one possibleworld, where every element of therange of the selector
functionistrue. Thefacts F specify what elseistrue in the possible world.

First we define restrictions on the base logic to ensure that the semantic con-
struction gives awell defined semantics:
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Definition 2.4 Base logic (L, |~,Lg) and ICL theory (C, F) are definitive if
for every selector function 7,

e If ~aisthenegation of « inlanguage £,° then for each ground atoma of £,
either FUR(7) v a or FUR(7) h~ —a,anditisn’t thecasethat FUR(7) |~ a
and F U R(7) p —a, and

e if o isan atomic choicethen F U R(7) v« if and only if oo € R(7).

Definition 2.5 Suppose we are given definitive base logic (Lr, |, Lg) and ICL
theory (C, F). For each selector function  thereisapossibleworld w,. If fisa
formulain language £, and w. is a possible world, wewrite w, = 7 f, read
“ fistrueinworld w, basedon (C, F)", iff FUR(7) |~ f. When understood from
context, the (C, F) isomitted as a subscript of |=.

The fact that every proposition is either true or false in a possible world follows
from the definitiveness of the base logic.

Note that, for each alternative y € C and for each world w,, there is exactly
one element of x that’struein w.. In particular, w,. = 7(x), and w, = « for al

aex—{r(x)}

2.1 Thelanguages Ly and L

Languages £ and L, are logical languages which share the same propositions.
Thereason they are different is that we want to impose restrictions on each so that
they are appropriate for their task.

For the rest of this paper we assume that £, is the propositional logic with
atoms (propositions) corresponding to the set of ground atomsof £ . In this paper
we will ignore issues relating to variablesin £L,. We will allow arbitrary logical
connectives (e.g., conjunction, digunction, negation, etc.) in L.

If we want to use the independent choice framework we have to choosealogic
(language L plus consequence relation |~ ) that has the property that it gives us
aunique model for each total choice. This means two things:

e Each selection of an element from each alternativeis consistent. Thismeans
that thelogic can’'t allow aselection of choicesfrom somealternativestoim-
pose any restrictions on choices from other aternatives. This, for example,

SIf £ doesn’t contain a negation then the property we need is that the set of atomic formulae
that follow (using |~ ) from F U R (7) completely determines the other formulae that follow from
FUR(r). Thismeans, for examplethat if FUR(7) ~aVbthen FUR(T) o aor FUR(T) |~ b.
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disallowsthe logic from being the arbitrary predicate calculus or even Horn
clauses with integrity constraints [27].

e Eachtotal choicecan’'t be extended into more than one possible world. This
excludes us from having explicit disjunctions in our logic®. It also means,
for example, that we can’'t have logic programs under the stable model se-
mantics which may have none or more than one stable model”. We are also
excluding three valued models of logic programs (e.g., [43]) from consid-
eration (whether extending our semantics in thisway is useful or not is an
open question).

2.2 Acyclic Logic Programs

In order to use an ICL we must commit to abaselogic. In this paper, we consider
the language £ r to consist of logic programs with a unique stable model [18], and
the consequencerelationto betruthin the stablemodel [18]. Thatis, logic program
P |~ q if g istrue in the unique stable model of P. One way to ensure thereis a
unique stable model isto restrict the programsto be acyclic [2].

In this section we give the language and the semantics of acyclic logic pro-
grams. The language follows Prolog’s conventions.

Definition 2.6 A variableisan alphanumericstring (possibly including“_") start-
ing with an upper case letter;

A constant or afunction symbol or apredicatesymbol isan alphanumeric string
not starting with an uppercase | etter;

A term is either avariable, a constant, or has the form f(¢4,...,¢,) where f is
afunction symbol and ¢4, . . ., ¢,, are terms.

An atom is either a predicate symbol, or hasthe form p(ty, ..., ¢, ) wherepisa
predicate symbol and ¢4, ..., t,, areterms.

5Digjunction can be seen as aform of uncertainty. In some sense what we are pursuing hereis
that ideathat all uncertainty can be rel egated to the choi ce space, leaving thelogic to give the conse-
quences of the choices. This should be contrasted with other approaches (e.g., [3]) that allow both
sorts of uncertainty. We end up with a much simpler language, but handle uncertainty by consid-
ering different agents getting to choose aternatives. Whether thisis agood (both computationally
and ergonomically) ideais an empirical question currently under study.

"The program a < —b,b < —a hastwo stable models, one with a true and one with b true.
The program a « —a has no stable models.
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A literal is either an atom or has the form —a where o is an atom.

A body iseither aliteral or aconjunction of bodies (the conjunction of 3, and 3,
iswrittenas 31 A 35).

A clauseiseither an atom or hasthe form o < 3 where « isan atom (called the
head of the clause) and 3 isabody. The latter formiscaled arule.

A program isaset of clauses.

A ground term, atom or clauseisonethat doesn’t contain any variables. A ground
instance of a clause ¢ is a clause obtained by uniformly replacing ground
termsfor the variablesin c.

Definition 2.7 The Herbrand base of program P isthe set of ground instances of
the atomsformed from predicates, function symbols and constantsin P (inventing
anew constant if P does not contain any constants).

Definition 2.8 ([2]) A logic program P is acyclic if there is an assignment of a
positiveinteger to each element of the Herbrand base of P suchthat, if P’ isthe set
of ground instances of clausesin P, then for every rule in P’ the number assigned
to theatom in the head of theruleis greater than the number assigned to each atom
that appears in the body.

Acyclic programs are surprisingly general [2]. Note that acyclicity does not
preclude recursive definitions. It just means that all such definitions have to be
well founded.

Definition 2.9 Aninter pretation isan assignment of true or falseto each member
of the Herbrand base. Interpretation M isastable model [18] of logic program P
if for every ground atom £, k istruein M if and only if 2 isin’P or thereisarule
h «+ binP" suchthat b istruein M. Conjunction a A b istruein M if both « and
b aretruein M. A negation —a istruein M if and only if a isn't truein M.

Note that the negation here is the so-called negation-as-failure [11]. We can use
negation-as-failurein our knowledge base, although the standard procedural intu-
ition doesn’t necessarily hold [37].

Theorem 2.10 ([2]) An acyclic logic program has a unique stable model.

14



Acyclicity is aso important for the physical realization of our game theory
strategies; an agent can’'t condition on a value that depends on what it’s going to
do (see Section 5.5).

In some sense the possible world w is the stable model of F U R(7); they
assign exactly the same truth values to propositions.

Example 2.11 SupposewehavelCL theory withC = {{a1, aq, as}, {b1,b,}}, and
with F = {¢ ¢« a1 Abj,c « a3 ANby,d  ay,d < —ay ANby,e + c,e + —d}.
There are 6 possible worlds with the following truth assignments:

Wia b} = @ —ag —az by —by ¢ d e
Wiayp} = —a1 az —az by —by —e —d e
Wiaap} = —a@1 —az az by —by —e d e
Wia1 b} = @1 —ag —az —by by —e d o e
Wiaph} = —aG1 Gy —az —by by —c —d e
Wiaapy} = —a1 —ag az —by by ¢ —d e

Note that there are two sorts of atoms; atomic choices (a, aq, as, by, by) and de-
rived atoms (¢, d, €). The atomic choicesthat aretruein the world are given by the
selector function for theworld (here we have subscripted the worlds with therange
of the selector function), and thereisaworld for each selector function. The truth
of the derived atomsis defined by the rules and the range of the selector function.

2.3 TheMulti-agent Independent ChoiceLogic

The Independent Choice Logic (ICL) specifiesaway to build possible worlds. In
order to model multi-agent situations, we need to have more structure. In particul ar
we need different agents to be able to control different choices.

Definition 2.12 A multi-agentindependent choicelogictheoryisatuple(C, F, A, controller, Py)
where

C, the choice space, isasin Definition 2.2.

F, thefacts, is an acyclic logic program such that no atomic choice unifies with
the head of any rule.

A isafinite set of agents. Thereisadistinguished agent 0 called “nature’.
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controller isafunctionfromC — A. If controller(y) = a thenagent a issaidto
control aternative y. If a € A isan agent, the set of alternatives controlled
by aisC, = {x € C: controller(x) = a}. Notethat C = |, 4 Ca.

Py isafunction UCy — [0,1] suchthat Vx € Co, Yo, Po(a) = 1.8 Thatis, for
each alternative controlled by nature, F, is a probability measure over the
atomic choicesin the aternative.

Often, when the context is clear we refer to amulti-agent independent choicelogic
theory ssimply as an independent choice logic theory.

Theideaisthat an agent getsto choose one element from each of the alternativesit
controls. Thealternatives controlled by nature have aprobability distribution over
them. The facts give the consequences of the choices by the agents.

2.3.1 Rulesfor utility

Gametheory and decision theory are based on the notion of utility, acardinal value
representing the worth to an agent of an outcome or possibleworld.® Higher utili-
tiesreflect preferred worlds. Agentsact toincreasetheir (expected) utility. Finding
optimal strategies becomestrickier when there are multiple agents with competing
objectives, but the idea of each agent trying to maximise its utility remains.

Utility isafunction of both an agent and aworld. Different agents have differ-
ent preferences and so different utilities in the possible worlds. Note that nature
(agent 0) doesn’t have a utility.

The logic program can have rulesfor utility(a, u), where utility(a,u) istrue
inapossibleworld if u isthe utility for agent « = 0 in that world.

Definition 2.13 ICL theory (C, F, A, controller, Fy) is

utility consistent for agent « € A wherea # 0 if, for each possible world w.,
w; = utility(a,uy) A utility(a,us) impliesu; = uq. Thetheory is utility
consistent if it’s utility consistent for all agents (other than agent 0).

8When y isn't discrete, we may need to use an integration rather than summation. To avoid
measurability and integrability issues, we assume in this paper that all sets are discrete and finite,
although the framework isn’t necessarily restricted to this case.

9The existence of a utility function, and the existence of a probability distribution is implied
from aset of intuitive axiomsabout rational preferences, such that agentstry to maximise expected
utilities[53; 49]. Like most decision and game theory practitioners we take the notion of utility as
something that we want to represent and use to derive optimal actionsfor agents. Thereis alarge
body of literature about how these utilities can be acquired (see e.g., papersin [34]).
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utility completefor agent « € A wherea # 0 if, for each possible world w.,
thereisaunique number v such that w, = utility(a,u). Thetheory isutil-
ity completeif it's utility complete for all agents (other than agent 0).

Thusan ICL theory is utility consistent and complete means that the utility rela
tion isafunction for each possible world.

We assume that al of the theories are utility consistent and complete.
Example 2.14 Continuing example, 2.11 suppose the rules for utility are:

utility(agenty,5) < —e

utility(agenty,0) < e A ¢
utility(agenty,9) < e A ¢
utility(agents, 7) < d
utility(agents, 2) < —d

Notethat, if theseareal therulesfor uiil:ty then the ICL is utility consistent and
complete for agent; and agent, independently of the choice space and the other
rules.

The values for the possible worlds (omitting the fal se atomic choices) are:

Wi py FE a1 by ¢ d e utility(agent;,0) wutility(agents, 7)
Wiayhy FE a2 by —c —d e utility(agenty,9) wutilily(agents,2)
Wiaep} E a3z by —c d  —e wutility(agenty,5) wutility(agents,7)
Wia by FE a1 by —c d —e utility(agenty,5) utility(agents, 7)
Wiay by F G2 by —c —d e utility(agenty,9) wutlilily(agents,2)
Wiay by F a3 by ¢ —d e utility(agenty,0) wutilily(agents,2)

2.3.2 Strategies

Given an ICL theory, agents adopt strategies. These are also often called policies
for the single agent case. These strategies specify which atomic choices an agent
choosesfrom the alternatives controlled by the agent. In general, a strategy can be
stochastic where the agent adopts a probability distribution over the alternativesit
controls.

Definition 2.15 If (C,F, A, controller, Py) isalCL theory anda € A, a # 0,
then astrategy for agent « isafunction P, : UC, — [0, 1] such that

Vy € C, E P.(a) = 1.

aex
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In other words, for each alternative controlled by agent «, P, isaprobability mea-
sure over the atomic choicesin the aternative.

Definition 2.16 A purestrategy for agent « isastrategy for agent a such that the
rangeof P, is{0,1}. Inother words, P, selectsamember of each element of C, to
have probability 1, and the other membersthus have probability 0. A pure strategy
for agent a thus corresponds to a selector function on C,.

Definition 2.17 A strategy profile is a function from agents (other than nature)
into strategies for the agents. If o is a strategy profileand a € A, a # 0 then
o(a)isastrategy for agent a. Wewrite o(a) as P? to emphasize that o induces a
probability over the alternatives controlled by agent . (We also define P§ = F.)

Thus a strategy profile specifies what each agent will do in the sense of speci-
fying aprobability distribution over their alternatives. Given the probability distri-
bution over alternatives, we can derive the expected utility, which is the weighted
sum of the utilities of the worlds (worlds weighted by their probability):

Definition 2.18 If ICL theory (C, F, A, controller, P,) is utility consistent and
complete, and o is a strategy profile, then the expected utility for agent « # 0,
under strategy profile o is

e(a,0)=>_plo,7) x u(r,a)
(summing over al selector functions 7) where
u(r,a) = uiff w, | utility(a, u)
(thisiswell defined as the theory is utility consistent and complete), and

p(U7T) = H Pfantroller(x)(T(X))'
x€C
p(o, 7) isthe probability of world 7 under strategy profile o, and u(7, a) isthe util-
ity of world w, for agent a.

Note that the expected utility isundefined unlessthereisaprobability distribu-
tion over every alternative. In particular, for the multi-agent case, thereis no such
thing as the expected utility for an agent of a strategy for that agent; the utility for
that agent depends on the strategies of the other agents as well.
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Each agent wantsto choose a strategy that maximise its (expected) utility. For
the single agent, finite choice (i.e., afinite number of finite alternatives) case, this
definition is straightforward. Each of their (finite number of) strategies has an ex-
pected utility, and so they can choose a strategy with a maximal expected utility.
For the multiple agent case, an agent hasto consider what other agentswill choose,
and their choice depends on the first agent’s choice. How to choose strategies has
been well studied in game theory [53; 32; 17]. We can mirror the definitions of
game theory; for example, we can define the Nash equilibrium and Pareto opti-
mal (both of which reduce to maximum expected utility in the single agent case)
asfollows:

Definition 2.19 Givenutility consistentand completel CL theory (C, F, A, controller, Fy),
strategy profile o is a Nash Equilibrium if no agent can increase its utility by
unilaterally deviating from o. Formally, o isa Nash equilibrium if for all agents

a € A, if o, isastrategy profile such that o,(a’) = o(d’) for al o’ # a then

ela,0,) < ela, o).

In other words, no strategy profile o, that's the same as strategy profile o for all
agents other than a is better for a than o. That is, « cannot be better off by unilat-
erally deviating from o.

One of the fundamental results of game theory is that every finite game has at
least one Nash equilibrium [32; 17]. In general you need non-pure (randomised)
strategies for the equilibrium to exist. For asingle agent in an uncertain environ-
ment, a Nash equilibrium isan optimal decision theoretic strategy.

Definition 2.20 Givenutility consistentand completel CL theory (C, F, A, controller, Fy),
strategy profile o is Pareto optimal if no agent can do better without some other

agents doing worse. Formally, o is Pareto optimal if for all strategies ¢, if there
existsanagent a € A suchthatz(a,o’) > ¢(a, o) thenthereexistsanagenta’ € A
suchthat (a’, 0') < e(d’, o).

Other definitions from game theory can also be given in the logic of this pa-
per. What we are adding to game theory is the use of alogic program to model
the agents and the environment, and to provide away to express independence (in
the same way that probabilistic Horn abduction [36] can be used to represent the
independence assumptions of Bayesian networks).
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Example 2.21 Here we show how to represent Example 1.1. In the facts we ax-
iomatise utility (thisisautility consistent and compl ete axiomatisationfor both the
kicker and the goalie):

utility(kicker, 1)
utility(kicker,0)
utility(goalie, 1) < goal.

+ goal.
+— —goal.

utility(goalie, 0) < —goal.
In the facts we axiomatise when agoal is scored:°

goal « kicks(D) A jumps(D) A goal_i f _same _dir.
goal « kicks(left) A jumps(right) A goal i f _kl_jr.
goal « kicks(right) A jumps(left) A goal_i f _kr_jl.

InC, wehaveonealternativeownedby kicker, namely {kicks(right), kicks(left)},
onealternativeownedby goalie, namely { jumps(right), jumps(le ft)},andthree
alternativesowned by nature, namely: {goal_i f _same_dir,no_goal i f _same_dir},
{goal i f_kl_jr, no_goal 1 f _ki_jr}, and {goal i f_kr_jl, no_goal i f _kr_jl} with
Po(goal i f _same_dir) = 0.9, Py(goal i f kl_jr) = 0.1 and Py(goal i f kr_jl) =
0.2.

Supposethat thegoalieisto chooseastrategy with p, = Pjoqiie(jump(right))
and thekicker isto chooseastrategy with pr, = Pricker (kick(right)). Inthissetup,
therearefour caseswhere goal istrue; these casesareexclusive, and sowe can sum
the probabilities. Thus,

P(goal) = prp,0.9 4+ (1 — pg)(1 —py)0.9 4+ (1 — pg)p,0.1 + pi(1 — p,)0.2

The problem for each agent is to choose their probability to maximise their ex-
pected utility. So the kicker hasto choose p;, to maximise the probability of agoal
and the goalie has to choose p, to minimize the probability of agoal.

In a Nash equilibrium, neither agent can improve its expected utility by uni-
laterally changing its strategies. Take the kicker’s point of view. If thereis aran-
domised strategy, then, as the randomised strategy is a linear combination of the
payoffs of the pure strategies, the pure strategies must have the same values (oth-
erwise the kicker can improve its utility by choosing the pure strategy with the

0The atoms goal _i f _same_dir, goal _if _kl_jr and goal_if _kr_jl are independent causal hy-
potheses [36]. These are introduced so that we can have normal logical rules, and independent
alternatives.
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higher value). In arandomized equilibrium, the payoff for kicking right and kick-
ing left must be equal. The payoff for kicking right is the above formula with
pr = 1, the payoff for kicking left is the formula with p, = 0. These are equal
when: p,0.9 + (1 — p,)0.2 = (1 — p,)0.9 + p,0.1. Solving for p, we can derive
p, = 7/15. Thus the only time that the kicker would consider a mixed strategy is
when the goalie jumps right with probability % Using similar reasoning, we can
show that the only randomised equilibrium for the goalieiswhen p;, = 8/15. It's
easy to show there are no pure strategy equilibria. Thereisaunique Nash equilib-
rium with p, = %,pk = &. Under this equilibrium the probability of agoal is
19— (.52666; thusthe kicker has a slight advantage (which should be expected,

150
asthe goalieis dlightly worse when it jumps | eft).

3 Embedding other formalismsin thel CL

In this sectionwe show how influencediagrams, Markov decision problems(MDPs)
and the strategic form of games can be represented inthe ICL. We will show rather
direct embeddings of these formalisms.

Another embedding should be noted, and that isthat probabilistic Horn abduc-
tion [36], arestriction of ICL (with only choices by nature, no negation as failure
and more restrictions on the rules), can directly represent Bayesian networks [36].
The embedding of influence diagramsis based on this embedding.

3.1 Representinginfluence diagrams

An influence diagram or decision network [23] is a graphical representation of a
decision problem. (See Section 1.4.) We show how to trandlate an influence dia-
gram into a (single-agent) ICL theory such that there is an isomorphism between
the policiesof theinfluencediagram and the strategies of thel CL, with correspond-
ing expected utilities equal. We only consider influence diagrams with a single
value node (any other influence diagram can be mapped onto this representation).

Definition 3.1 Aninfluencediagramisatuple (N, A, Q, P, U) such that

N isafinite set of nodes, partitioned into the set R of random nodes, the set D of
decision nodes and the singleton set {1/} containing the value node. Ran-
dom nodes are drawn as ovals, decision nodes as rectangles and the value
node as a diamond.
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A C N x N isthe set of arcs such that (N, A) forms an acyclic directed graph
(DAG). If (n;,n;) € Athenn; issaidto beaparent of n; and n; isachild
of n;. Definew(n) = {m : (m,n) € A}. Thatis, n(n) isthe set of parents
of node . We assume that the value node doesn’t have any children.

Q) isafunction from R U D into sets of variable values. {2(n), called the frame
of node n, isthe set of values that the variable associated with node » can
take. We extend () to cover sets of nodes by Q({nq,...,n,}) = Q(ng) x

P is a probability function over the random nodes given their parents. That is,
foreachz € R, P(x = v|n(z) = w) iSanon-negative number such that

Vw Y Plz=vlr(z)=w)=1

vEQ(x)

The probability is often written simply as P(z |7 (z)) wherethe values v €
Q(z) and w € Q(nw(z)) are derived from context.

U: Qr(V)) — R. U isthe utility function that gives the utility for different
values of the parents of V.

The parentsof arandom node represent probabilistic dependence (asisaBayesian
network [35]). The parents of the value node represent functional dependence; the
utility only depends on the values of the parents of the value node. The parents of
a decision node represent information available; one value for each parent of the
decision node will be known when the decision is made.

If d; € D, adecision function for d; isafunction §; : Q(7(d;)) — Q(d;). If
the decision nodes are (d;, ..., dx), apolicy isatuple (é1,...,d;) whered; isa
decision function for d;.

Policy 4 induces a conditional probability Ps on the decision variables defined
by

0 otherwise

Al - {
Suppose RU D = {z4,...,z,}. Thejoint distribution given policy 4 is:
Ps(z1,...,2,) = H P(xi|m(x;)) x H Ps(xj|m(z;))

r,ER xz;€D
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as

. —>

Figure 2: An influence diagram

(what ismeant by Ps should be clear from context).
The expected utility of policy 4 isgiven by

e(6) = D Ps(wr,o,w) x Un(V))

T1,.eny Tn

= > I Pilr(z) < I Pslajlm(e) < U(r(V))

T yeeny Tn r;ER z;€D

where we are summing over al of the values of variables =1, ..., z,,.

Example 3.2 Figure 2 showsan influencediagram with two decision nodesta and
d, four random nodes«, as, b, bs, and onevaluenode ut:lity. Theintuition for this
diagram isthat there is one decision d to be made that dependson « and b. bsisa
noisy sensor for b and as isasensor for « that can be controlled by ta.
Associated with the influence diagram (not shown in the diagram) is a frame
for each variable, and the conditional probability table for each random variable
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givenitsparents. These probability tablesfor the random nodes are amajor source
of complexity astheir sizeis exponential in the number of parents of the node.
Suppose the frames are as follows:

Qta) = {high,low}

Qa) = {low, medium,high}
Qas) = {pos,neg}

Q(b) = {pos,neg}
Q(bs) = {pos,neg}

Qd) = {di,dz,ds}

There areten probability distributionsto be assigned; onefor «, six for as (onefor
each assignment of valuesto a and ta, suchas P(as = pos|a = lowAta = high)),
onefor b and two for bs.

The mapping of aninfluence diagram into a(single agent) ICL theory isasfol-
lows: !

e Random variable z; has value v; is represented as the proposition z;(v;).*?

e Random variable z; with k; parents «;, ... z;, isrepresented asarule and
exponentialy (in k;) many alternatives. Thereisonerule:

‘IZ(VZ) <« ‘ril(vil) /\/\l’lki(‘/ﬂcl) /\ci(‘/“‘/il?"'?‘/ik')

2z

For each assignment of valuesto the z; , that is for each <vi1, e 7”iki> €
Qzi,) x - x Qz;, ) thereis an alternative controlled by nature:

{ci(vhvim . '7Uiki)7 ce 7ci(v7“7vi17 ce 7viki)}

where Q(z;) = {v1,...,v,.}.

The probability of each atomic choiceisthe value of the corresponding con-
ditional probability:

Po(ci(vy,vipy .., vzkl)) = P(x; = vi|zy = vigy. . vy Tiy, = viki)

1Themapping for random nodesisthe same asthe representation of Bayesian networksin prob-
abilistic Horn abduction [36].

2\We have not used the standard probabilistic notation of z; = v; becauselogicians usually mean
something different by equality, namely that two terms denote the same object.
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The conditional probabilities on the right hand side are provided as part of
theinfluence diagram. Notethat under this mapping there are the same num-
ber of alternatives as there are rows in the probability tables for z;, and the
same number of probabilities are provided.

In many casesthe probability can be represented more compactly. In partic-
ular this occurs when some parents are irrelevant in the context of valuesto
other variables[7].

Value node with parents z;, ... z;, isrepresented asarule of the form:

utility(agent,v) < z; (v, ) Ao A iy, (Uuz)

foreaCh<’UZ'1, .. '7vik¢> < Q(l'il)X' . xﬂ(l’iki),Wherev = U(Ui17 .. '7vik¢)'
As with chance nodes, in many cases the value function can be represented
more compactly than this.

Decision variable z; with k; parents z;, ... z;, isrepresented asarule and
exponentialy (in k;) many alternatives. Thereisonerule:

xl(vl) A xil(vil) ARERNA Liy, (‘/Zkt) A ci(Viv Vi ooy ‘/Zkz)
For each <vi1,...,viki> € Qzq,) X -+ X Q(miké) there is an aternative
controlled by the agent:

{ci(vlvvim .- '7Uiki)7 e 7ci(v7“7vi17 cee 7viki)}

where Q(z;) = {vi1,...,v.}. Just as the influence diagram policy has to
choose a value for each value of the parents we have to choose a value for
each alternative. Thereisaoneto one mapping between the alternatives and
the values of the parents of a node.

Example 3.3 Continuing Example 3.2, with the influence diagram of Figure 2,
variable ta has no parents, therefore there is one value to be chosen. This can be
represented as having {ta(hi), ta(low)} € Cy. There are 8 independent choices
to be made for d (one for each assignment of values to its parents). This can be
represented astherule:

d(DV) < ta(TV) N as(AV) A bs(BV) AN d_does(DV, TV, AV, BV)
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with
{d_does(dy, TV, AV, BV),d_does(ds, TV, AV, BV),d_does(ds, TV, AV, BV)} € C;
for each valueof 7'V, AV, BV.

Theorem 3.4 Given an influence diagram 7 D and the corresponding ICL theory,
defined by the mapping above, there is a correspondence between the policies of
theinfluence diagram and the pure strategiesof the ICL theory. The corresponding
policies and strategies have the same expected utility.

Proof: A policy of an influence diagram specifies a decision function for each
decision node. Each decision function is a function from the values of the parent
to the values of the nodes. A decision function, §; corresponds to the selection of

CZ'((SZ'(UZ'I, .- -,Uiki)yvila . ‘7Uiki)

from the corresponding alternative. It is easy to see that different policies corre-
spond to different selections, and that different selections correspond to different
policies.

The expected utility of the influence diagram policy ¢ is:

e0) = X I Plailn(z) x I Pslajla(a;) x U (V)

= _Z HRPo(Cz’(%J(%))) X HDP1(CJ‘(%7T(%'))) x U(r(V))

where ¢;(z;, 7(z;)) hasthe obvious meaning, and P; isthe probability induced by
the policy. Thisisthe expected utility of the PHA theory for the same policy.
O

3.2 Markov Decision Processes

Markov decision processes [44] are models of single-agent stochastic sequential
decision problemswhere anotion of state conveysall of the information about the
past history.

A Markov decision processis defined interms of aset S of states, aset A of
actions, astate transition function Pr(s;|so, a) which specifiesthe probability that
sy isthe state resulting from carrying out action « in state s, and areward function
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R(s,,a,s1) that specifies the reward obtained when action « is carried out in s
and the resulting state is s; .

A stationary policy isaselection of an action for each state; what the agent does
at any time depends on the state.

We can represent the choice function for an agent, assuming we want stationary
policies, as.

VS {do(a1,S),...,do(am,S)} € C

wheredo( A, S) istrueif theagentwill doaction AinstateS and A = {a1,...,an,}
isthe set of available actions. The agent getsto choose what it doesfor each state.
If we want a non-stationary policy (i.e., the policy depends on the time or stage),
we add atime parameter to do.

We aso axiomatise the state transition function, which specifies how states
transform under actions:

state(S',s(T)) < state(S,T) A do(A,S) A st_trans(S, A, S")

wherestate(S, T')istrueif thesystemisinstate S attime 7', and st _trans(S, A, S")
istrueif action A transforms state S into state S’. Thisisastochastic transition:

VSYA {sttrans(S, A, so),...,stirans(S, A, s,)} € Co

where{so, ..., s, }istheset of al states. Notethat theseare alternativescontrolled
by nature. Py(st_trans(S, A, S")) isthe probability that state S” will be the result
of carrying out action A in state S.

A reward function can be defined in terms of rules of the form:

reward(r;, T') < state(s;,T)

for each state s; and for some number ;.

Wetypically don’t want to write Markov decision processesby explicitly refer-
ring to the states, but instead want to divide the state into propositions (or random
variables) [12]. This can reduce the size of the probabilistic assessment necessary.
Thiscanbereduced further by theuse of rules; theseallowsusto expressstructured
probability distributions concisely. This concise specification can be exploited for
computational gain; Boutilier et. a. [5] exploit the rule (or tree) structure of prob-
ability tables for computational gain for MDPs. The ICL representation also a-
lows for the concise axiomatisation in logic, with awell defined semantics, of the
dynamics of the system. Thisis similar to Kanazawa [24], but incorporates a par-
ticular, and we claim useful, probability independence.
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Example 3.5 Let's axiomatisethe structured MDP example of Boutilier et. al.[5]
intheindependent choicelogic. Essentially we can convert the treesinto rules, but
we don’'t need separate rules for each action (which is exactly the frame problem
[31]).

Inthisexample, therearesix state propositions: loc_of f(T'), thelocation of the
robot is at the office (as opposed to being at the café) at time 7'; wet(T'), the robot
iswet; umbrella(T'), therobot is carrying an umbrella; raining(T'), it israining;
rhe(T'), therobot has coffee; and uhe(T'), the user has coffee.

There are four actions: go(T'), go to opposite location; buyC(1'), buy coffee;
delC(T), deliver coffee; and getU ('), get coffee.

We can specify the dynamics using logic, for example, the following clauses
define wet and hcu:

wet(T 4+ 1) « wet(T)

wet(T 4+ 1) < go(T) A raining(T) A ~umbrella(T')

heu(T 4+ 1) < heu(T)

heu(T 4+ 1) <= delC(T) N =heu(T) ANloc-of f(T) A her(T) A delC succeeds(T)

whereVT {delCsucceeds(T), delC fails(T)} € Co,and VT Py(delCsucceeds(T')) =
0.8. We can aso define the reward function using rules:

reward(1.0,T) < heu(T) N —~wet(T)
reward(0.9,7) < heu(T) N wet(T)
reward(0.1,T) « —hcu(T) N —~wet(T)
reward(0.0,7) < —hcu(T) N wet(T)
For finite horizon problems, the value can be specified in terms of rules. For
example,
valueto(R+ U, T + 1) « reward(R,T) N valueto(U,T).
valueto(0,0).
wherevalueto(V,T') istrueif V' isthe sum of the rewardsup to time 7'.

For infinite horizon problems, it is not so simple. You could imagine writing,
for the discounted reward function [44]:

value(R+ U x v, T) < reward(R,T) AN value(U,T + 1)

where ~ is the discount factor. However, such rules are problematic as the recur-
siondoesn’t terminate. It isprobably better to definethe value external tothelogic.
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Having the specification of the value function separate from the other parts of the
problem specification, as is traditionally done in MDPs, doesn’t seem to be too
problematic.

3.3 Thestrategic form of a game

The most direct connection of the ICL isto the strategic form of agame (see Sec-
tion 5.5 for a comparison to the extensive form of a game).
The strategic form of agame[32; 17] isatuple (A, 3, u) where

A isanon-empty set of players (agents),

¥ isafunction from agents into non-empty sets (of pure strategies). Thus ¥(«a)
isthe set of all pure strategiesfor agent a.

v isafunction

u:.A—>( X E(a)%ﬂ‘ﬁ)

€A

Suppose A = {ay,...a,} and a € A. u(a) isafunction that given an n-tuple of
strategies, one for each agent in A, returns the utility for agent « under this strat-
egy profile. Thusu(a)({o,,,...,0.,)) Whereo,, € ¥(a;) isthe von Neumann—
Morgenstern utility for agent « when each player a; chooses strategy o, .

The general ideais that each player chooses a strategy which specifies what
it will do under al contingencies. Following a complete play (specified by each
player’s strategy) each player receives a utility.

Note that there are two different forms which we treat asthe same here. Oneis
where natureisn’t an agent, and al of the payoffs are expectations (averaging over
nature'schoices). Thesecondiswherenatureisaplayer, and hasaprobability dis-
tribution over its strategies; thisis called the Bayesian form of agame[17], where
the players have partial information about nature’s choice. The private informa-
tion about nature’smove is called the player’stype. The Bayesian form of agame
assumesthat each player choosesits strategy after it learnsitstype. Such adistinc-
tion isbeyond the scope of this paper, aswe don’'t consider how or when strategies
are computed (for example, whether they are computed online or offline).

ThelCL can be seen asaparticul ar representation for the strategic or the Bayesian
form of agame. The set of agents is the same. We divide the space of strategies
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for players into independent choices (i.e, we alow more structure in the strategy
space) and use alogic program to axiomatise the « function.

Thereis adirect mapping of the strategic or Bayesian form of a gameinto an
ICL theory: strategic game (A, ¥, u) is mapped into the multi-agent ICL theory
(C,F, A, controller, Fy), where A is the same set, C isthe set

{{do(a;,04,) : 0., iISastrategy for a;} : a; € A}

where do(a;, 0,,) isan atom that says that agent «; isadopting strategy o, (all we
need is aname for each strategy), controller isthe function {do(a;,0,,),...} —
a;, Py isthe probability distribution over types (for the Bayesian model of agame)
and F isis set of rules of theform

utility(a, util) < do(ay,04,) A ... Ndo(ay,,04,)

where util = u(a)({(oa,,...,04,)).

Thismapping hastrivialised the fact that thereisalot hidden in the structure of
the strategies. We have assumed we can name the strategies and say what follows
from them. For ssmple games we may be able to, but for most realistic situations
we want to be able to specify the choices at alower level of detail, and be able to
control the selection of components of strategies. The consequence of a number
of different agents choosing strategies should invol ve reasoning about the building
blocks of the strategies (what is done under what circumstances), and reasoning
about the dynamics of the domain to determine the consequences of the actions.

4 TheDynamic|ICL

ThelCL presented so far isonly good at representing problemswhere the the deci-
sion problem can be statically expressed (even if the problemto be solved involves
dynamics and change). Like the strategic form of a game, the building blocks of
the strategies have to be constructed ahead of time. For example, for the influence
diagram mapping we had to create an alternative corresponding to each assignment
of valuesto parents, rather than creating the appropriate rules for defining the pol-
icy on thefly.
There are a number of problemswith this:

e What the agent will do (or attempt to do) is buried within the representation.
Theadlternativesare at alower level than the choicesfaced by the agent; they

30



specify what the agent will do under each contingency. While we can repre-
sent the dynamic structure structure of reasoning and acting, the formalism
presented so far gives us no help in doing so.

e We haveto create an alternative for each independent choice that the agent
could make; that is, we have to a priori divide up information states for the
decision. The problem is that the a priori division needs to be at the finest
level of detail. For example, although some decision d may have much in-
formation available when the decision is made (in the influence diagram d
may have many parents), the specification of what the agent should do may
not require all of the distinctions of the information state. There may be a
more concise encoding of the policy. Just aswe have used rules asaconcise
specification of probability distributions, we may like to express the policy
for an agent asrules.

e We may want to create alternatives on the fly; what options are available to
an agent and what information it knows may depend on the context, and it
may be more economical to create alternatives as needed, rather than having
to anticipate all of them as part of a strategy.

¢ We want to reason about the program the agent used to compute an action
rather than just the action itself [48].

We want to build a representation upon a more natural specification of dynamic
systems. We will extend the ICL to the dynamic ICL logic that is slightly more
complicated, but arguably morenatural. WWe model the dynamicsof theworld rather
than the structure of the choices.

ThedynamicICL ismorelike arepresentation for the extensiveform of agame
than arepresentation for the strategic form of agame; it will tell ushow to construct
the appropriate game/decision tree (see Section 5.5). This will be done without
losing the advantages of the ICL, namely, the embedding of the independence of
Bayesian networks, the ability to represent structured decision tables, and the use
of logical variables.

We build the theory upon a general model of agents interacting in an environ-
ment. Thisisimportant asit placesthe |CL within awider theoretical context, and
introduces the notions of traces, transductions, state and sensing.
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4.1 Dynamical Systems

Modelling dynamical systems[29; 13] is common in many areas of science, from
mechanical engineering to economics to ecology.

We assume a time structure 7, that is totally ordered and has a metric over
intervals. 7 can either be continuous or discrete; for this paper we will consider
discretetime. (See[39] for adevelopment of continuoustimein this framework.)
A traceisafunction from 7 into some domain A.

A transduction is a function from (input) traces into (output) traces that is
“causal” in the sense that the output at time ¢ can only depend in inputs at times ¢
wheret’ < t (i.e., the output at some time is afunction of the input history up to
that time). An agent will be a specification of atransduction. Transductions form
ageneral abstraction of dynamic agents and dynamic systemsin genera [57; 47;
39], although they don’t adequately handle the case of nondeterministic agents'3.

The state of an agent isthat information that needs to be remembered in order
for the output to be afunction of the state and the current inputs. At one extreme a
state can contain the entire history of the agent. At the other extreme an agent can
have no state and just react to its current inputs.

4.2 Agent Structure

So far wehave modelled agents by naming them and specifying which choicesthey
control. It helpsto do morethan this; wewant to provide some structure that makes
it easy to model actual agents. Not every logic program and set of assignments
of agents to choices will make sense. Agents have input and outputs; there are
some values that they have no access to, and some internal values that only they
can access.

We will model agentsasalogic program that specifies how the outputs are en-
tailed by certain inputs [39]. This logic program can use the internal values and
sense values but can’t use those val ues the agent has no accessto (i.e., can't sense
or otherwise determine).

In modelling agents we have to be careful about a number of things:

Bwith deterministic agents, only the input history is needed. Nondeterministic agents (agents
need to be nondeterministicif they inhabit an environment with other (competing) agents, or if they
have limited memory), need to be ableto recall their inputs as well as choice commitments made.
For example, for an agent with no inputs to implement (a; b)|(c; d) where*|” is nondeterministic
choiceand “;” is sequential composition, at the second time step the agent has to be able to recall
what it chose in the first time step.
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¢ What are theinputs and what are the outputs? When we have noisy sensors
and actuators with slop and failure, we can’'t condition on the valuesin the
world, but only on what our sensors tell us. We have to be able to model
what an agent can observe (and how it relates to the world), and what an
agent controls (and how it relates to what the agent actually does).

¢ We have to make sure that the agent can actually carry out the policy spec-
ified for the agent. An executable policy can’'t depend on events the agent
can’'t observe, or aren’'t under the agent’s control.

e Thelogic programs are models of the agents. They aren’t the agents them-
selves. We want to be ableto model many different sorts of agents, both nat-
ural and artificial. We want to be able to model agents that are implemented
assimplelogic circuitsor in sometraditional programming language, for ex-
ample. We want to use the samelanguage to model agentswe design, agents
that our agent may encounter, and the environment. We also want to be able
to model how long the agent will take to execute an action (including the
time to execute the program to choose the action) [48]. This doesn’'t mean
we couldn’t run this specification to make an agent (but it will be adifferent
agent, for example, if we forward chain on the axioms than if we backward
chain on the axioms; they will have very different timing properties).

We distinguish the “controller” and the “plant” of an agent [13]. (See Figure
3). The controller isthat part that we have to optimize; it receives digital sig-
nals (“observations’) and outputs digital “controls’ or “actuator commands’. The
plant or body is the physical embodiment of the agent that includes input devices
such as cameras, microphones, radio receivers aswell aswheels, [imbs and trans-
mitters. The plant receives “percepts’ from the environment (e.g., sound, light,
radio signals), and sends observations to the controller. The observations are usu-
ally correlated with the percepts received, but are typically not identical as sensors
are noisy. The plant also receives controls from the controller and makes actions
in the environment (e.g., actually moving, sending messages).

Multipleagentswill all interact through the environment; theonly way for agents
to communicate is through the environment!4 and they all act in the environment
(asin Figure 3). There may be many agents, all of which carry out actions in the
environment and receive percepts from the environment.

141f there is some form of direct communication channel, then this is also modelled as part of
the environment. This makes modelling more uniform and allows usto model noise and failurein
communication.
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Figure 3: An agent acting in an environment

Asfar asthe outside world (including other agents) is concerned, an agent re-
ceives percepts such as messages, light, sounds, etc., and performs actions such
asmoving limbs, sending messages. Thus other agents will tend to group the con-
troller and the plant together as“the agent” (or “the robot” for physical implemen-
tations).

Asfar asthecontroller isconcerned, it can group the plant and the environment
together. It receives observations, and outputs controls. The distinction between
the plant and the environment is essentially arbitrary; we usually makethe distinc-
tion because we often build controllers for particular plants, but for more general
environments. Whilethe distinction between the controller and the plant may seem
to be arbitrary to an outside observer, when building an agent we have to commit
to aparticular division in order to construct a controller. (Typically we want a hi-
erarchy of controllers and plants [1; 10; 55], but this is beyond the scope of this
paper.)

For the rest of this paper we take the controller’s point of view; we assume a
controller receives definitive observations and can issue controlsto the plant. The
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plant will be modelled as part of the environment. In particular, uncertainty in ob-
servations (observations may not always reflect what's true in the environment)
will be modelled in terms of rules that depend on the percepts as well as nature’s
choices.

4.3 Agent Specification M odule

The agent specification modul e takes the controller’ s point of view; theinputswill
be observations and the outputs will be controls. The agent will be able to condi-
tion on the observations and will need to choose values for the controls.

Agent specification modules will allow us to modularise our knowledge, and
use common computer science techniques like information hiding, abstract data
types and modular program design. We will generalise the ICL to the “dynamic
ICL” through the use of agent specification modules; thiswill allow amoreconcise
representation of decision problems.

Definition 4.1 An agent specification module for agent a # 0, written ASM,,
isatuple (C,, O,, ) where

C, isaset of alternatives controlled by . Thiswill be the set of possible actuator
commands for the agent; the agent can attempt to “do” one of the actuator
commandsin each element of C,,.

O,, the observables, isaset of setsof ground atomic formulae. Elements of O,
are called observation alternatives, elements of observation aternatives
are called atomic observations.

7, the observable function, isafunction = : C, — 29 . Theideaisthat when
the agent decideswhich element of aternative y € C, tochoose, it will have
observed one atomic observation from each observation alternativein = ( x).
Elements of 7 (y) are the information available to the agent when it has to
choose an element of y. 7(x) corresponds to the parents of a decision node
Y inan influence diagram.

The following definition mirrors the anal ogous definition from game theory:

Definition 4.2 Agent « has perfect recall (or is no-forgetting) if it remembers
al of its previous observations and previous actions. Formally this means that the
element of C, aretotally orderedandif x; € C,, x2 € Ca, x1 < x2theny; € m(x2)
and m(x1) C m(x2)-

35



A dynamic | CL theory consists of an agent specification modul e for each agent,
and alogic program, plus stochastic choices to axiomatise what follows from the
agent’s choices:

Definition 4.3 A dynamicindependent choicelogictheoryisatuple(A, Cy, Fo, Py, ASM)
where

A isafinite set of agents containing a distinguished agent 0 called “nature”
Co, Natur € schoice space, isachoice space with alternativescontrolled by nature

Fo, Nature’' sfacts, is alogic program such that no atomic choice unifies with the
head of any rule

Py isafunction UCy — [0,1] suchthat Vx € Co 3 ,e, FPo(a) =1

a€x

ASM isafunctionon A — {0} suchthat AS M, isan agent specification module
for agent a

such that F; is acyclic with an acyclic ordering whereVa € A, Vy € C,, Va € ¥,
YO € m(x), Vo' € O, o < aintheacyclic ordering. That is, thereis an acyclic
ordering where the actions are after their corresponding observables.

Note that (F;, Co, Fo) will correspond to a particular (stochastic) strategy for
nature (see Definition 4.10). It's a specification of what choices nature will make.
This specifies the stochastic dynamics of the system.

We have to make sure that the observablesfor each agent really cover the pos-
sihilitiesand really are alternatives.

Definition 4.4 Givendynamic ICL theory (A, Cy, Fo, Py, ASM), set T' of ground
formulaeis non-exclusiveif there exists a choice function ~ on {J,c 4 C, and there
existsay € T', ay € T, oy # ay suchthat R(7) U Fo v aq A az. Otherwise T is
exclusive. I' iscovering if for every choicefunction = onJ,c 4 C,, thereisa € T
suchthat R(7) U Fy |~ .

For example, every choice alternative is exclusive and covering. Every set of the
form {a,—a} is exclusive and covering. A less trivia exampleis: givenC =
{{a,b},{c,d}, {e, f}},and F = {g < a,h < bAc,i < bAd},{g,h,i}is
an exclusive and covering set. If g «+ e were added to F then {g, h, ¢} would no
longer be exclusive.
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Definition 4.5 A dynamic ICL theory isobservation consistent if for every a €
A, every element of O, is exclusive with respect to the dynamic ICL theory. A
dynamic ICL theory is observation completeif for every a € A, every element
of O, iscovering.

The above definitions are to make sure that we can treat the elements of O as
random variables. Unlikeelementsof C, they aren’t exclusiveand covering by def-
inition. We will awaysrequireatheory to be observation consistent, but, when we
have negation asfailureinthelogic[37], wewill not requirethetheory to be obser-
vation complete (there may be an extra, unnamed element of each element of O).
Note that observation consistency isn’t a severe restriction; we can aways make
O aset of singleton sets, but then we can’t exploit the structure of observations.

Example 4.6 For example, suppose we have {high, medium,low} asan obser-
vation alternative. We want the theory to never allow choices of the agents to
entail both high and medium. This means that a strategy can be specified as a
function from this set into actuator settings. If these values were not exclusive,
we could makesets { high, ~high}, {medium, —medium},and {low, =low} into
observation alternatives (which are each exclusive and covering), but this would
mean a strategy would be a function from the cross product of these into actuator
settings. If {high, medium,low} isn't covering, we also have to cover the case
—high N =medium A —low in defining a strategy.

The general idea is that the agent will always observe one element of each
member of 7 ( y) before choosing one element of x. The acyclicity restrictionsand
the observation compl etenessand consistency requirementsabove ensurethistem-
poral ordering is possible.

In this paper we assume all our theories are observation consistent and com-
plete.

4.4 Pure Strategies

A pure strategy is a specification of what an agent will do based on what it ob-
serves. This strategy is represented as a logic program. There are restrictions on
the logic program to ensure an agent can’'t condition on valuesto which it doesn’t
have access.

Definition 4.7 If (C,, O,, m,) is an agent specification module for agent « € A,
then apurestrategy for agent « isalogic program F, such that
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e F, isacyclic with an acyclic ordering such that, for every y € C,, every
element of each element of 7, (x) is before every element of x. That is, the
agent can observe before making the decision.

e Forevery x € C,, and for every selection function 7.,y on 7(x), thereisa
uniquea € x that istruein the unique stable model of 7, U R(7,()). That
is, whatever is observed, the logic program specifies what the agent will do.

e Theheadsof rulesin F, only unify with either local atoms (that don’t unify
with atomsin the agent specification module of any other agent or in ) or
members of choice alternativesin y,. Thus F, can only be used to imply
aternatives owned by agent «, perhapswith some local atoms asintermedi-
aries.

e Foreach x € C,, the only formulae that can appear in the bodies of rulesin
JF. to prove an element of x are: elements of membersof = (), local atoms
and atoms whose definition doesn’t depend on the choices of other agents
(and formulae built from these). While we don’t want to restrict the com-
plexity of programsto compute the choice from an element of y, the choice
can’t depend on values that the agent can’'t observe or otherwise compute.

Thus a strategy for an agent is just a program to specify what the agent will do
based on what information it receives.

Definition 4.8 Given adynamic ICL theory, a (pure) strategy profileis a selec-
tion of one (pure) strategy for each agent (other than nature). Thusastrategy profile
isalogic program F = (J,c 4 F. that specifieswhat each agent will attempt to do.

There are two (equivalent) ways to define the semantics. Oneit to have a pos-
sible world for each selection of an element from each alternative controlled by
nature, and to have F specify what’struein each world. In this case, the probabil-
ity of aworld isindependent of the strategy, but a strategy profile specifieswhat’s
truein each world. The second isto haveapossibleworld for each selection of one
element from each alternative. In this case, what’s true in aworld doesn’t depend
on the strategy profile chosen, but the probability of aworld does. The second has
many possible worlds with zero probability that were not created in the first sce-
nario. We will define the first method formally here.
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Definition 4.9 If dynamic ICL theory (A, Co, Fo, Fo, ASM) is utility complete,
and F isapure strategy profile, then the expected utility of strategy profile F for
agenta is

e(a, F) = Zp(r) X u(r,a,F)

(summing over al selector functions = on Cy) where
u(r,a, F)=u if R(r)UF putility(a,u)
(thisiswell defined as the theory is utility complete), and

p(7) = 11 Po(7(x))

u(7,a, F) isthe utility of world w, for agent a under strategy profile . p(7) is
the probability of world .

45 Stochastic Strategies

Asinthe goal kick example above, it's often desirable for agentsto adopt random
strategies. In this section we define random (stochastic) strategies. The generd
ideais that arandom strategy is a probability distribution over pure strategies.

Definition 4.10 If (C,, O,, m,) isan agent specification module for agent a« € A,
then a (stochastic) strategy for agent a isatuple (F,,C., P,) whereC! isachoice
space whose atomic choices do not appear outside of this strategy, P, isa proba-
bility distribution over eachelementof C! (i.e.,,Vx € C/, Va € x, 0 < P, (o) <1
and)" e, P(a) = 1), and F isalogic program such that for all selector functions
., onC., F U R(r,) isapure strategy (the element of R(r,) will belocal atoms
in the strategy).

Example4.11 Suppose({{up, down,left}}, {{high, medium,low}}, m), where
m({up, down,left}) = {{high, medium,low}} isan agent specification module
for agent a. That is, a can do one of {up, down,left}, and when it has to act, it
will know which of {high, medium,low} istrue. One stochastic strategy could
have facts:

up < high A uh,
down < high N\ dh,
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left < high N lh,

up + medium A um,
down < medium N\ dm,
left « low,

choice space C! = {{uh,dh,lh},{um,dm}}, and P, givenby P,(uh) = 0.7,
P,(dh) = 0.2, P,(lh) = 0.1, P,(um) = 0.6, and P,(mh) = 0.4.

Definition 4.12 A strategy profile o is an assignment of a stochastic strategy for
each agent (i.e., for each a € A, o(a) isastochastic strategy). If o is a strategy
profile, define 77 to bethefirst component of o(a),C? to bethe second component
of o(a), and P7 to be the third component of o(a).

It remainsto define the expected value of a strategy profile.

Definition 4.13 If dynamic ICL theory (A, Co, Fo, Po, AS M) is utility consistent
and complete, and o isastochastic strategy profile, then the expected utility o for
agent a is

e(a,0)=>_ p(r,0) x u(r,a,0)
(summing over all selector functions T onCy U U,c 4 C7) Where
u(r,a,0)=u if R(r)UF utility(a,u)

where 77 = U,c4 F7 (v is well defined as the theory is utility consistent and
complete), and

p(r,o0) =11 II P7(7(x))

a€A xeCS

u(7,a, F)istheutility of world w. for agent « under strategy profile F. p(r,c) is
the probability of world = under strategy profile o.

5 Discussion
In this section we discuss some modellingissuesfor thedynamic ICL. Wefirst dis-
cuss how to model information-produci ng actions, how to model noisy sensorsand

actuators, what it means to execute a stochastic strategy, and finally the relation-
ship to the extensive form of agame. Section 6 presents some detailed examples.

40



5.1 Passive Sensorsand Information Seeking Actions

The observations represent passive sensors that (at each time) receive valuesfrom
the environment (one value from each observation alternative). We also don't dis-
tinguish between information-producing actions and actionsthat “ changetheworld”;
thereis only one type of action. The nature module will specify the consequences
of doing an action.

We can model “information-producing actions’ by having actionswhose effect
to make a sensor have a value that correlates with some value in the world. For
example, theinformation producing action “look” may affect what’s sensed by the
eyes; if the agent doesn't “look” they will sense the value “nothing”, if they do
look (in a certain direction) they may sense what’sin that direction. Of course the
“look” action may beunreliable (thelightsmay beout), and it may takean arbitrary
amount of time to achieve its effect (asin amedical test).

What's al so important isthat the agent can only condition onits sensevaluesor
on values derived from these. The agent can’t condition on what it has no access
to (e.g., the true state of the world). Similarly, the agent can only control what
message is sent to its actuators; what it actually does may be quite different.

Section 6.1 gives adetailed example and discussion of modelling passive sen-
sors and information seeking actions.

5.2 Noisy Sensorsand Actuators

Thereisastraightforward way to model noisy sensorsand actuators. Thisfollows
the distinction between the plant and the environment depicted in Figure 3. The
general ideais to axiomatise how the observations are a function of the percepts
plusnoise. Similarly we can axiomatise how the actions of the agent are afunction
of the controls plus noise (for slop, errors, sippage, etc).

We can divide up the noise into systematic errors (e.g., that the sensor is actu-
aly broken, and always makesthe same error) and intermittent noise (the indepen-
dent error for each reading), and a continuum in between. For example, consider
asensor for checking road speeds on a highway [16]:

Example5.1 In this example we show how to axiomatise a noisy sensor that can
break down. The sensor is either working or not. If it's working there is some
“normal” error fromthetruereading. If the sensor isnot working it produces some
reading at random (independent of the actua velocity).

sensevelocity(V + DV, T)
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velocity sensor OK(T) A

velocity(V, T) A

normal _error(DV,T).
sense_velocity(EV,T)

—welocity_sensor OK(T) A

error_reading(DV,T).

We need to have a probability distribution over the normal errors. For exampleif
the errors are discrete in 10km/h steps, we can specify something like:

VT {normal_error(DV,T) : DV € {-30,-20,—-10,0,10,20,30}} € Co

)
Po(normal_error(—30,T)) = 0.01
Po(normal_error(—20,T)) = 0.03
Po(normal_error(—10,T)) = 0.06
Po(normal_error(0,7T)) = 0.8
Po(normal_error(10,T)) = 0.06
Po(normal_error(30,T)) = 0.03
Py(normal_error(30,7)) = 0.01

Similarly we can define error_reading which provides a probability distribution
over error readings. Thereis nothing in principle that prevents us from having a
non-discrete distribution, such asanormal (Gaussian) distribution over errors. We
have not presented that here as the mathematics is more complicated; we would
need to consider measurabl e sets of speeds rather than the speed themselves.
Whether the sensor is working at some time isn’t independent of whether it's
working at some other time. We need to axiomatise the dynamics of sensor failure
(i.e., we need to specify the probability distribution over time). The sensor can
break at any time; supposeit hasa 2% chance of breaking at any time when it had
been working and a 5% chance of being fixed up when it was broken (we could
al so axiomatise amore complicated dynamics of how the sensor can get fixed, but
thiswill show the main point). velocity_sensor_O K can be axiomatised as:

velocity sensor OK (T + 1) +
velocity sensor OK (T) A
—welocity_sensor_breaks(T).

velocity sensor OK (T + 1) +
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—welocity_sensor OK(T) A
velocity sensor_fixed(T).

VT {velocity_sensor_breaks(T),velocity_sensor_remains OK(T)} € Co
VT{velocity_sensor_fized(T),velocity_sensor_remains_broken(T)} € Cy

with Py(velocity _sensor_breaks(T)) = 0.02 and Py(velocity _sensor_fized) =
0.05. In addition, we need to define the initial value of velocity_sensor OK, for
example as a member of an alternative controlled by nature.

5.3 Executing a strategy

What does it mean for an agent to execute a strategy? If the strategy for the agent
ispure, then it will tell the agent what to do based on its sensor values. The agent
will “do” the unambiguous actions that are entailed. If the strategy for the agent
isn't pure, then there may be a number of things that the agent could attempt to
do based on itsinputs. To follow a strategy it should pick the actions randomly
according to the distribution specified in the strategy.

Picking strategies at random doesn’t mean that there must be arandom number
generator in the robot (or access to some really random quantum phenomenon),
although it could. For example, for the soccer playing robots we could compilein
the randomness, by choosing offline whether it should go right or left according to
therandom strategy. If we did thisthen wewould haveto hide our design from our
opponent designer and replace our robot after asingle penalty kick. An alternative
would beto have two non-random robots, where we choose one at randomfor each
penalty kick. These two robots, together with the choosing mechanism, can be
seen as onerandomizing agent. The most important property isthat the other agent
isn't able to predict what our agent will do.

It'ssilly to think of an agent cheating, by not choosing from the random distri-
bution. Thisisparticularly the case when we consider that the agent getsto choose
whichever strategy it wants. Cheating with one strategy is the same as choosing
adifferent strategy. We will then consider it to be that strategy that the agent is
carrying out. Thisdoesn't mean that an agent can’t lie about what strategy it’s car-
rying out. What an agent says about what it will do will be another action of the
agent, and it can do whatever it wants.
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5.4 Non-deterministic Actionsand the Frame Problem

There has been much work on logical specifications of actions and change. The
specification of actions that solves the frame problem is well understood for the
deterministic case with complete knowledge [27; 50; 45]. These axiomatisations
assumethe closure of the axiomatisation for change. See[2] for adetailed descrip-
tion of axiomatising change with acyclic programs.

What's added in this work is a way to handle non-deterministic actions and
partial knowledge. The central ideais that determinism and complete knowledge
(asassumed in negation as failure) occursfor each world. We can have adistribu-
tion over worlds. When we have uncertainty, it’s useful to consider the question
of “who chooses the value’. Often it’s random, but often it’s another agent. What
werequire is that the axiomatiser resolves this ambiguity.

Example 5.2 We can axiomatise a coin toss, where, when acoinistossed, it lands
heads 50% of thetime and tails 50% of thetime; when it isn't tossed, it remainsin
the state (heads or tails) it was before:

heads(C,T + 1) «
tossed(C,T) A
heads_turns_up(C,T).

heads(C, T + 1)
—tossed(C,T) A
heads(C,T).

tails(C,T) < —heads(C,T)

whereheads(C, T')istrueif coinC hasheadsupattime?'. heads_turns_up(C,T)

istrue at time 7" if heads would turn up on coin C' isit weretossed at time 7'. It's
defined as:

VYOVT {heads_turns_up(C,T), tails turns_up(C,T)} € Co
withVC VT Py(heads_turns_up(C,T)) = 0.5.

Many of the papersthat present a solution to the frame problem [27; 50; 45; 2] use
the situation calculusfor representing change, rather than the discrete time model
used here. See[40] for adescription of how the situation cal culus can be combined
with the independent choice logic.



55 TheExtensive Form of a Game

The extensive form of a game [53; 32; 17] is arepresentation of agame in terms
of agametree, a generalisation of a decision treeto include different agents mak-
ing decisions at each node, and having information sets of nodes that agents can’t
distinguish.

“The extensive form of a game contains the following information:

[ —

. the set of players
. the order of the moves, i.e., who moves when

. the players payoffs as afunction of the moves that were made

2

3

4. what the players' choices are when they move

5. what each player knows when he makes his choices
6

. the probability distribution over any exogenous events.”[17, p. 77]

Thereisadirect mapping between the dynamic I CL and the extensiveform of a
game. A istheset of players. Thelogic program specifiesthe payoffsasafunction
of themoves(actions) of theplayers. ThesetC, specifiestheplayers choiceswhen
they move. The = function specifies what each player knows when it makes its
move. F, provides a probability function over exogenous events represented as
the independent random variablesin C,.

The order of the movesisdefined by the acyclicity of the knowledge base. The
moves must be ordered so that the information is available before the decision is
made. If there is some acyclicity ordering such that v, is before x, then y, can
be made before y,; if thereis another acyclicity ordering where y, is before v,
thenit doesn’t matter in which order the choicesare made (as all of theinformation
available for each choice can’'t depend on the other choice).

While the acyclicity of the rule base was chosen in order to allow for asimple
semantic framework [36], it can bejustified by appealing to the structure of games.

6 Examplesin Detail
In thissectionwe present three different examplesof usingthel CL. Thefirst demon-

strates so-called “information seeking actions’ and noisy sensors and actuators.
The second presents a decision-theoretic planning example. The third defines a
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/7

look? dolt?

Figure 4: Influence diagram for our idealised example

two-player, imperfect information game of blind tic-tac-toe. There are intended to
show the details of the representation, and were not chosen because they are ele-
gant examples for the formalism.

6.1 Information Seeking Actionsand Noisy Sensors

In this section we give an idealised single agent in an environment exampl e, show-
ing how to model the following:

¢ Information producing actions, such as tests in diagnosis and positioning a
camerain robotics, or asking a question in a user modelling situation

e Conditional plans (conditioning on sense values)
e How a passive sensor can be used to model an active sensor that “looks”

e How noisy sensors and actuators can be modelled (Section 6.1.4).

6.1.1 Information producing actions

The look? decision of Figure 4 can be seen as an information producing action.
It lets information about :s7'rue be available to the next action. It also has a cost
associated withit.
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The agents action can either be ook or dont _look. The action can be modelled
by having

{look, dont_look} € C

with our agent controlling this alternative.

Intherulebasewe model how actionsby theagent and truthsin the world affect
sense values for the agent. Here is an idealised example for the case where there
isno noise. (Section 6.1.4 considers noise.) Suppose that following the looking,
the agent can sense either pos, neg or nothing. For the case with no noise, the
environment model has the following axiomsin F:

sense(pos) < look N is_lrue.
sense(neq) < look N —is_true.

sense(nothing) < dont_look.

Thus*“look” providesinformation about “is_{rue” to“do_it”.

6.1.2 Conditioning on sense values

The agent can sense the world, and then decide what to do based on the sense val-
ues.
Continuing our example, supposethat theagent has possibleactionsdo_it, dont _do_it,
and hasthe sense values above. There are three independent choices the agent can
make, namely whether or not to do_:¢ for each of the three contingencies.
Within the ICL this can be modelled by having the axioms:

do_il + sense(pos) A do_if_pos.

dont_do_it < sense(pos) A dont_i f_pos.

do_it + sense(neg) A doif_neg.

dont_do_it <+ sense(neg) A dont_if_neg.

do_it + sense(nothing) A do_i f _nothing.
dont_do_it «+ sense(nothing) A dont_i f_nothing.

and by having the following aternativesin C, controlled by our agent:

{do_i f_pos,dont_if_pos}
{do_if_neg,dont_if neg}
{do_i f_nothing, dont_if _nothing}
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Within the dynamic ICL we specify:

{do_it,dont_do_it} € Cyyent
Ougent = {{sense(pos), sense(negq), sense(nothing)}}
m({do_it,dont_do_it}) = {{sense(pos), sense(neq), sense(nothing)}}

The rules that need to be provided as part defining the ICL are created as part of
the agent’s strategy in the dynamic ICL.

6.1.3 Utility model

Finally, a utility model (part of the environment model) specifies how the utility
varies depending on what’s true and what the agent does. Here is an example of
such an an axiomatisation (given that our agent is agent,):

utility(agenty, Prize — TC) «
test_cost(TC) A
prize( Prize).
test_cost(5) « look.
test_cost(0) « dont_look.
prize(10) < do_it A is_true.
prize(0) < dont_do_it A\ is_true.
prize(8) < dont_do_it \ —is_true.
prize(l) < do_it N\ —is_true.

6.1.4 Noisy Actuatorsand Sensors

In Section 6.1.1 we assume that there were no noisein either actuator settingsor in
sense values. We can model actuator noise, for examplein the “looking” actuator,
by something like:

see « look N looking_works
see < dont_look A not_looking_doesnt work

with following in C, controlled by nature:

{looking_works,looking_doesnt_work}

{not_looking_works, not_looking_doesnt_work}
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Po(looking_works) is the probability that the agent succeeds in seeing when it
looks. Py(not_looking-doesnt_work) isthe probability that that agent sees when
it doesn’t look.

Noisy sensors can be modelled similarly. Assume that the value sensed only
depends on whether the agent sees, but that there is no noise with respect to not
seeing. There are two alternatives controlled by nature:

{false_positive, true negative}

{false_negative, lrue_positive}
and the following facts:

sense(pos) < see N is_true A true_positive.

sense(neg) < see A is_true A\ false_negative.
sense(neg) < see A —is_true A true_negative.
sense(pos) < see A —is_true A\ false_positive.

sense(nothing) < —see.

Po(false_positive) isthe probability of afalse-positive; when the sensor reports
positive when the value in the world is not true. Fy( false_negative)isthe prob-
ability of afalse-negative; when the sensor reports negative when the value in the
world istrue.

6.2 Shipping Widget s

In this section we present an example of Draper et. al. [14]. The example is that
of arobot that must process a widget. Its goal is to have the widget painted and
processed and then to notify its supervisor that it's done. Processing consists of
rejecting flawed widgets and shipping unflawed widgets. The robot can inspect
the widget to seeif it's blemished, which initially correlates with the widget being
flawed. Paintingthewidget usually resultsin thewidget being painted but removes
blemishes.

AGENT MODULE Wefirst represent the robot. The robot has one sensor for
detecting blemishes. sense(blemished, T') istrueif the robot senses that the wid-
getisblemished at time T'.

Therobot has 6 actions (exactly one of whichis possible at any time), namely
to reject, ship, notify, paint or inspect the widget or do nothing. do( A, T') istrueif
the robot does action A attime 7'.
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The robot specification module for robot isthetuple (C,opot, Oy obot, ™) Where
Crobot = {{do(reject,T),do(ship,T),do(notify,T),do(paint,T),
do(inspect, T),do(nothing,T)} : T isatime}.
Orobot = {{—sense(blemished, T'), sense(blemished, T)} : T isatime}.
n({do(reject,T), do(ship,T),do(notify,T),do(paint,T),
do(inspect, T, do(nothing,T)})
= {{-sense(blemished, T"), sense(blemished, T")} : T" < T'}.
In other words, at each time, the robot gets to choose which of the six actions it

carries out. When it’s making this decision, it knows whether or not it has sensed
blemishesin the past.

NATUREMODULE: Theremainingthingtodefineistherulesand aternatives
controlled by nature. This specifiesthe dynamicsof theworld. We axiomatise how
the robot’s actions affect the world, how the world affects the senses of the robot.
The widget being painted persistsin the world. Painting the widget can result
inthe widget being painted (with probability 0.95). We assume that whether paint-
ing works doesn’t depend on the time (a second painting will not make the widget
more likely to be painted). Painting only works if it hasn’'t already been shipped
or rejected. Once painted, awidget remains painted.
painted(T + 1)
do(paint, T) A
paint_works A
—shipped(T) A
—rejected(T).
painted(T + 1)
painted(T).
Painting succeeds 95% of the time:
{paint_works, paint_fails} € Cy
Po(paint_works) = 0.95, Py(paint_fails) = 0.05
Notethat we have not parametrized paint_works by thetime. Thisisletsusmodel
the fact that repainting will not help when painting failed thefirst time. Inany pos-

sible world where paint_fails istrue, painting always results in the widget being
painted, and if it isfalse, painting always results in the widget being painted.
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The widget is blemished if and only if it's flawed and not painted:

blemuished(T') +
flawed(T) A
—painted(T).

Note that the use of logic programs, assuming the stable model semantics entails

that therulesmean “if and only if” (inthe sameway Clark’s completion[11] does).
Whether the widget is flawed or not persists:

flawed(T + 1) « flawed(T).
The widget is processed if it’s rejected and flawed or shipped and not flawed:

)
rejected(T) A
flawed(T).
processed(T) «
shipped(T) A
= flawed(T).

processed(T

The widget is shipped if the robot shipsit, and being shipped persists:
shipped(T) « do(ship,T).
shipped(T + 1) < shipped(T).

The widget isrejected if the robot rejects it, and being rejected persists:
rejected(T) « do(reject,T).
rejected(T + 1) < rejected(T).

We axiomatise how what the robot sensesis affected by the robot’ s actions and the
world:

sense(blemished, T+ 1) +
do(inspect,T') N
blemuished(T) A
= false_pos(T).
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The sensor gives a false positive with probability 0.1. Unlike whether painting
succeeds, suppose the probability of the sensor giving afalse positive at each time
is independent of what happens at other times:

{false_pos(T),not_false_pos(T)} € Co
Po(false_pos(T)) = 0.1
Po(not_false_pos(T)) = 0.9

30% of widgetsareinitially flawed:

{flawed(0), un flawed(0)} € Cy
Po(flawed(0)) = 0.3
Po(unflawed(0)) = 0.7

Finally we specify how the utility is dependent on the world and actions of the
robot. The utility isone if the widget is painted and processed the first time the
robot notifies, and is zero otherwise.

utility(robot, 1)

do(notify,T) A

—noti fied_before(T) A

painted(T) A

processed(T).
utility(robot, 0) « —utility(robot, 1).
notified_be fore(T) < Ty < T A do(notify,T1).

One (pure) policy for our robot is the logic program:
do(inspect,0).

do(paint,1).

do(ship,2) < —sense(blemished, 1).

(
(
do(reject,2) « sense(blemished,1).
(
do(notify,3).

This has expected utility 0.925. Note that in the problem formulation, we need to
paint blemished widgets.
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This policy isn’'t optimal. Policy:

do(inspect 0).
do(inspect, 1).
do(paint,?2).
do(reject,3) « sense(blemished,1).
do(re]ect 3) « sense(blemished, 2).
do(ship,3) < —sense(blemished, 1) A —sense(blemished,?2).

do(notify,4).

has expected utility 0.94715. There is no optimal policy for this example (it isn’t
afinite game so Nash’'s theorem doesn’'t apply here), we can add more “inspect”s
to keep raising the expected utility.

Thebest policy without inspecting, namely {do(paint, 0), do(ship, 1), do(noti fy,2)}
has expected utility 0.665.

Of course, we can always define the utility so that the robot is penalized for
taking too much time, e.g., by defining utility by:

utility(robot, 1 — T'/10) + rewarded(T).
utility(robot,0) «— —rewarded_at_some_time.
rewarded_alt_some_time < rewarded(T).
rewarded(T)

do(notify,T) A

—noti fied_be fore(T) A

painted(T) A

processed(T).

Under the revised utility, the first policy above (with asingle inspect) is optimal,
with expected utility 0.625.

6.3 Blind tic-tac-toe

Koller and Pfeffer [26] present agame description language Gala. In that language
they represent the game “blind tic-tac-toe”. We represent the same game in the
ICL in order to present a parlour-game example and to enable us to compare the
representation with Gala.

Blind tic-tac-toe is an imperfect information version of standard tic-tac-toe:
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“Asinregular tic-tac-toe, the playerstaketurnsplacing marksin squares.
However, on histurn, each player can chooseto mark either an X or an
0; herevealsto his opponent the square in which he makes the mark,
but not what type of make he makes. Asusual, the goal isto complete
aline of three squares with the same mark.”[26]

The basic ideain defining such a game is to axiomatise the dynamics of the
gamein thelogic. The rules should imply the consequences of the choices made
by agents.

First we need a representation for the state of the game. In this game, the or-
der of the moves is important as well as who put what where (as the last player
who places a marker to make three in arow wins). We can represent the state of
the game asalist of theform put( X, Y, Who, W hat) which meansthat the player
“Who" (either a or b) put “What” (an o or an x) at position (X, Y'). Thefirst ele-
ment of the list was the last element placed there.

Thefirst rule defines the first move. The second rule for the state progression

defines subsequent moves.

state([put(X,Y, Agent, What)], s(0)) «
starts(Agent) A
chooses(Agent, place(X,Y, What),0).
state([put(X,Y, Agent, What), put(Xp,Yp, Ap, Wp)|Rest], s(T)) +
state([put(Xp,Yp, Ap, Wp)|Rest], T) A
= finished([put(Xp,Yp, Ap, Wp)|Rest]) A
opponent(Ap, Agent) A
chooses(Agent, place(X,Y, What), T).

We can define auxiliary relations such as who starts, and how the moves aternate,
and when the gameis finished.

starts(a).
opponent(a,b).
opponent (b, a).
finished(S) +
draw(S).
finished(S) +



wins(A,S).
draw(S) «
length(S,9).

We can axiomatise the utility functions. Note that we are relying on the fact that
for any particular set of choices by agents, thereis only onewin state or one draw
state.
utility(a, 1) «
wins(a, S).
utility(a,0) «
wins(b, S).
utility(a,0.5) «
draw(S).
utility(b, 1) «
wins(b, ).
utility(b,0) «
wins(a, S).
utility(a,0.5) «
draw(S).

We can axiomatise the choices by the agents:*®

chooses(Agent, place(X,Y, What),T) +
choose X (Agent, X, T) N
chooseY (Agent, X, T) A
chooseW hat(Agent, What,T).

The agentsget to choosethe X position, the Y position, and what mark they make.
Thus,

VT {choose X (Agent,1,T), chooseX (Agent,2,T),chooseX(Agent,3,T)} € Cagent

BThis is one simple way to axiomatise the choices. It means that agents can choose to place a
mark in an occupied space (presumably they will be penalized by losing if they choose an occupied
spot). Another method isthat the agent can derivealist of free spacesfrom the sensed information,
and then can only choose an element from this list.
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VT {chooseY (Agent,1,T), chooseY (Agent,2,T), chooseY (Agent,3,T)} € Cagent
VT {chooseW hat(Agent, o0, T), chooseW hat(Agent,x, T)} € Cagent

Now we have to decide what an agent gets to observe when making their de-
cision. We assume that for each of these choices the agent gets to observe afil-
tered version of the state, which consistsof alist of pos_who( X, Y, W ho) for each
square and alist of pos_what(X,Y, What) for the squares they occupy:

sense(Agent, Pos Who_List, Pos. What_List, T) +
state(S,T) A
extract_pos_who list(S, Pos - Who_List) A
extract_pos_what_list(Agent, S, Pos W hat_List).

extract_pos_who list([],[])
extract_pos_who list([put(X,Y, Agent, What)|S1], [pos who(X,Y, Who)|P1]) +

extract_pos_who list(S1, P1).

Similarly for extract_pos_what list.
The observable function can be given by:1¢

m({chooseX(Agent,1,T), chooseX(Agent,2,T), chooseX(Agent,3,T)})
= {{sense(Agent, Pos Who_List, Pos What_List,T)}
: Pos_Who_List, Pos_-W hat_List are appropriate lists}.

The other two choices have similar information sets, but include the previous de-
cisions (i.e., the agent knowswhich X it chose when choosingaY’).

For those who don'’t like to read declarative logical formulae, the best way to
understand these rules is to think about building a game tree by forward chaining
ontherules. a startsand so must make a choice of the X position, the Y position,
and what mark they are making. Thisformsan 18-way splitin thegametree (there
are18 different choicesavailableto «). Thenthe state evolvesby b makingamove.
There are 9 different information states for 4, and they have to choose one of 18
choices (or 16 if the alternative axiomatisation is made). And so on building the
gametree.

It'senvisioned that such arepresentation could be used to build the same game
tree asfor Gala[26], and can use the same efficient algorithms. The representation

16\We have neither presented asyntax for , nor asyntax for the choices. Thisisbecausewe only
wanted to present object level rules, in order to not haveto present two different logical formalisms.
It'shoped that this set notation gets the general idea across.
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proposed in this paper is more declarative (in that we can give adeclarative possi-
ble worlds semantics for the whole framework, and all of the logical rules can be
interpreted as statements about the domain), and more general in that it’s not tuned
specifically to 2-person alternating games. In fact the ICL isn’t tuned for any par-
ticular application; there are no built in predicates, and no syntax beyond that of
the logic. This may mean that Galais more natural for those gamesit’s designed
for, but we believe that the more general language will be more useful for general
specification of decision problems under uncertainty.

7 Conclusion

This paper has presented alogic that allows for what's arguably a natural specifi-
cation of multi-agent decision problems. Thereisasimple semantic framework in
terms of possible worlds semantics. It lets us use logic to specify the dynamics of
the world, while retaining the elegance and generality of game theory.

What we are adding to game theory is an object-level representation of the do-
main. We can axiomatise how actions (moves) affect the world, how the utility
is derived from ssimpler components, and how sensors work. All of these axioms
can be interpreted within the smplelogic. It allows usto represent the probabilis-
tic dependenciesin adomain, in much the same way that influence diagrams pro-
vide a more intuitive representation for many problems than decision trees [23;
22]. We also allow for aform of parametrized rules by the use of logical variables
that allow usto construct large game trees from smaller components.

We are adding to influence diagrams, the ability to represent multiple agents,
the ability to represent!’ structured probability and decision tables, and a way to
have a dynamic construction of influence diagrams (with a similar motivation to
Breese [9], but having logic programs as object-level statements about the world
rather than at the meta-level as does Breese). We also allow for the designer to ax-
iomatise the dynamics of the system, instead of having to summarizeitinasingle
step as a probability distribution.

We are adding to logic a new way to handle and think about non-determinism
and uncertainty. Rather than just using digjunction which doesn’t seem to be subtle
enough for the range of forms of uncertainty that we need to handle, we provide a
mechanism in terms of independent choices to handle uncertainty. We argue that
considering different agents making choicesis the right way to think about uncer-

In other papers we show how the structure can be exploited for computational gain [38; 41].
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tainty in alogical formalism. The ICL is weaker than other mixes of logic and
decision theory for modelling agents[3; 24; 20; 19] which have added probability
and decisionsto arich logic. They don’'t have general independence assumptions
(although they can state independence assumptions), and have to cope with many
different forms of uncertainty (e.g., digunction aswell as choices by agents). The
goals of this paper are different: we are investigating a different way of viewing
uncertainty for modelling agents. We arelooking for waysto make representations
of the world simpler. Whether we have succeeded in thisis an open question.

Conspicuous by its absence in this paper is a discussion on computation. In
this context, computation can mean three things: (1) building asituated agent that
embodies a strategy; (2) simulating a policy and environment; or (3) finding an
optimal strategy. A Prolog implementation of the second that finds expected utili-
ties of strategiesis available from the author’sweb page.*® It should be noted that
the computational complexity of finding Nash equilibria, even the propositional,
single-agent without perfect recall case is exponentially harder to solve than an
influence diagram [25]. Intuitively thisis because dynamic programming doesn’t
work when we have a forgetful agent; we can’t solve the last decision indepen-
dently of the earlier decisions [54]. Thisisn't a problem with the representation;
it'sthe problems that are difficult. It isn't clear whether the representation in this
formalism makes the problems more difficult to solve. There is some, however,
evidence that the representation presented here makes solving a decision problem
easier than in an influence diagram, as we can exploit the rules structure. [5; 38;
41] Thereis much morework to be done on exact and approximate algorithms for
the problems represented in the ICL.
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