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Abstract

The numerical simulation problem of tree-structured multibody systems,
such as robot manipulators, is usually treated as two separate problems: (i)
the forward dynamics problem for computing system accelerations, and (ii) the
numerical integration problem for advancing the state in time. The interac-
tion of these two problems can be important and has led to new conclusions
about the overall efficiency of multibody simulation algorithms (Cloutier et al.,
1995). In particular, the fastest forward dynamics methods are not necessar-
ily the most numerically stable, and in ill-conditioned cases may slow down
popular adaptive step-size integration methods. This phenomenon is called
“formulation stiffness.”

In this paper, we first unify the derivation of both the composite rigid body
method (Walker & Orin, 1982) and the articulated-body method (Featherstone,
1983; Featherstone, 1987) as two elimination methods to solve the same linear
system, with the articulated body method taking advantage of sparsity. Then
the numerical instability phenomenon for the composite rigid body method is
explained as a cancellation error that can be avoided, or at least minimized,
when using an appropriate version of the articulated body method. Specifically,
we show that a variant of the articulated-body method is better suited to deal
with certain types of ill-conditioning than the composite rigid body method.
The unified derivation also clarifies the underlying linear algebra of forward
dynamics algorithms and is therefore of interest in its own accord.
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1 Introduction

Simulation of robot dynamics has been used in off-line tasks such as robot design test-
ing, robot programming, and controller validation. Recently, the need for real-time
performance has become important for on-line applications such as virtual environ-
ments for operator training, predictive displays for time-delayed teleoperation, and
development of advanced robot control schemes. Hence it has become more important
to understand and compare the actual performance of simulation algorithms.

This paper focuses on algorithms for simulating the motion of robot manipulators
without closed loops (for example robots whose motion is not constrained by contacts
with the environment). For the simulation of such robots, the elimination method
leads to an ODE formulation of the equations of motion:

7= M(q)G+ c(q,9)

where:

7 is the N x 1 vector of torques (forces) applied by the joint actuators,

q is the N x 1 vector of joint variables (¢ and ¢ are the joint velocities and
accelerations),

e M isthe N x N joint-space inertia matrix (JSIM) or generalized inertia matrix,

e ¢ is the N x 1 bias vector representing the torques (forces) due to gravity,
centrifugal and Coriolis accelerations, and any external moments and forces
acting on the end effector of the manipulator.

Here, N is the number of degrees of freedom.

The simulation problem requires that the joint trajectory of a robot be determined
given prior knowledge of the torques and forces applied by the actuators and the initial
state of the robot. The simulation problem is usually divided into two subproblems.

o The forward dynamics problem: computing the joint accelerations given the
actuator forces and torques.

e The motion integration problem: computing the joint trajectory (joint positions
and velocities) given the joint accelerations and initial conditions.

In recent years, many different algorithms have been proposed for solving the for-
ward dynamics problem, ranging in computational complexity from O(N?) (e.g. the
composite rigid body method (CRBM) (Walker & Orin, 1982)) to O(N) (e.g. the
articulated-body method (ABM) (Featherstone, 1983; Featherstone, 1987)). Opera-
tion counts of forward dynamics algorithms have become one of the most commonly
used means of comparing the performance of different algorithms, i.e. the two parts of



the simulation problem are typically treated as completely separate problems having
no effect on one another.

However, the computational complexity of forward dynamics is only half the story,
which cannot always be considered separately from the following motion integration.
For one thing, some special motion integration algorithms (e.g. (Bock & von Schw-
erin, 1993; Ascher & Lin, 1995)) may affect the comparison between forward dynamics
algorithms. Moreover, different numerical stability characteristics of forward dynam-
ics algorithms may affect the performance of popular adaptive step-size integration
methods. The latter is the focal point of the present article.

The difference between the stability characteristics of various algorithms becomes
important when they are applied to systems which have ill-conditioned joint space
inertia matrices. Most industrial robot arms do not have such an ill-conditioning,
and this perhaps explains why the problem has not been noticed before. However,
ill-conditioned systems do occur in several important situations. For example, the
Stanford Arm is known to exhibit condition numbers as high as 11934 (Angeles &
Ma, 1988). Noticeable ill-conditioning may arise when simulating long chains; when
simulating a biological system such as a walking person, where a small toe in contact
with the ground is attached to a much larger foot, followed by a large leg and an
even larger body; or when simulating a light weight, long reach manipulator in a
microgravity environment with a large payload at its end. We also note that if double
precision is used in the simulation, the instability phenomenon will be observed at
larger condition numbers (we make this more precise below); however this added
security is at the expense of longer computation time on most computers today.

Example 1 A simple 2DOF two-link serial manipulator with parallel revolute joints
is used to illustrate the effect of a poorly conditioned JSIM on individual computations
of the forward dynamics. Ill-conditioning is obtained by increasing the length (1,) and
mass (my) of the link closer to the tip while keeping the length and mass of the base-
connected link constant®.

To illustrate the effect of joint configuration on the condition number, we perform
a sweep of the possible configurations of each two link chain by varying the angle of the
tip end joint (q1) from 0 to 2m. For each configuration of the chain, we compute the
joint accelerations using the articulated-body method (ABM) and the composite rigid
body method (CRBM), using single precision floaling poinl artihmetic*. Cholesky
decomposition was used to solve the linear system in the CRBM?®. The compuled ac-
celerations of the first joint using the two forward dynamics algorithms is depicted in
Fig. 1.

Specifically, Fig. 1 depicts the forward dynamics computed under the following
conditions: zero initial joint angles and velocities, gravity 9.81m/s* acling orthogonal

Tt turns out to be convenient later on to number chain bodies from tip to base, as e.g., in (Jain,
1991), so we adopt this convention already in this example.

2In (Cloutier et al., 1995) we have considered the double precision case in more detail.

3Similar results were obtained using LU decomposition with pivoting.
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Figure 1: Comparison of calculated joint 2 (base joint) accelerations. Note the
smoothness of the ABM solution.



r ‘ NABM ‘ NCRBM ‘ O(/imflf) ‘

0.1000 | 3169 3041 10?
0.0500 | 4623 5109 10°
0.0100 | 8189 8082 10

0.0050 | 10534 | 10420 | 10°
0.0040 | 11170 | 11835 | 10°
0.0035 | 12375 | 13792 | 10°
0.0030 | 11990 | 18986 | 10°
0.0025 | 12170 | 35406 | 10°
0.0020 | 12779 | 44294 | 10°
0.0018 | 12418 | 86656 | 10°
0.0015 | 12860 | (fail) 10°

Table 1: Number of forward dynamics evaluations (napar and nerpam) required to
simulate 10 seconds of motion for various 2 link chains of increasing condition number.
The table displays the link length ratio (r = l3/(l1 4 [2)), the number of forward
dynamics function evaluations for each method (nagam, ncrem), and the order of
magnitude of the maximum condition number (K,,4,) of M. For these simulations,
a fourth order Runge-Kutta adaptive step size integrator was used, with step size
accuracy of le-4.

to the length of the arm, no friction, no applied actuator torques, uniform link widths
(= 0.02m), first (distal) link of length l; = 2.0m and mass my = 10.0kg, and second
(prozimal) link of length l; = 0.02m and mass my = 0.1kg. Note that the links are
numbered starting from the free end following (Jain, 1991) (see §2).

Observe that the AB method yields a much smoother acceleration than the CRB
method. When this is fed to an adaptive ODFE motion integrator the result is that much
smaller integration steps are needed with the CRBM to maintain a given accuracy,
because of the roughness of the calculated accelerations; hence the ABM yields an
overall faster algorithm, even though at each point t the CRBM is faster (note that
N =2 is very small).

Table 1 illustrates this with the results of 10 second simulations of various two link
chains. Fach system starts at rest from the configuration ¢ = g3 = 0.0. Accelerations
are computed under similar conditions to those described above, with the exception
that, in this case, the ratio of the link lengths and masses is varied while keeping the
same total mass and length (this ensures that each system has the same total energy).
The links are rectangular with link lengths Iy + 5 = 1.0m, widths hy = hy = 0.1m,
and masses my +mq = 1.0kg, with [y = my and l; = my. It is clear from Table 1 that
for ill-conditioned systems the ABM becomes an overall more effective method than

the CRBM, even for small N.
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More details on this example are given in (Cloutier et al., 1995). The validity of the
simulation results was confirmed by comparing our results to those of a commercially
available simulation package (SD/FAST*). Our purpose here is to explain the observed
results.

For this purpose we must first give these methods a unified, algebraic description.
This is done in §2, following (Jain, 1991) and (Lubich et al., 1992). We show that,
using spatial representation, the different forward dynamics algorithms can in fact
be viewed as different Gaussian elimination methods to solve the same system of
algebraic (linear) equations. The ABM simply uses the sparsity structure of the
system more effectively when N is large, whereas it requires more overhead than
CRBM when N is small (say N < 7).

In related work, (Ellis et al., 1992; Ellis & Ricker, 1994) considered the numerical
stability of articulated body algorithms. They showed that the ABM can be consid-
ered as a modified Gaussian elimination performed on a dense “inertial supermatrix,”
and therefore stable as long as the positive definiteness is maintained. However, they
did not observe any numerical superiority of the ABM over other methods such as
CRBM and it is not obvious to us how to apply the analysis there to explain formu-
lation stiffness. Our derivation is not related to the inertial supermatrix but rather
is performed on a sparse “Kuhn-Tucker”-type matrix derived from the dynamics of
individual bodies and their constraints (e.g. (Lubich et al., 1992)). This corresponds
to formulating the problem as a system of differential-algebraic equations (DAEs)
rather than ODEs. In particular, once the matrix is formed, we formally derive both
the CRBM and ABM from linear algebra considerations only.

Armed with the algorithm descriptions of §2 we then explain the source of nu-
merical instability in the CRBM in §3. The superiority of the ABM in this respect
arises from a better order in which the pivotal elements in the elimination matrix
are formed, which allows for less cancellation error than for the CRBM. With the
ABM, too, attention must be paid to the order in which operations are performed.
The usual method (e.g. (Featherstone, 1987)) performs well in ill-conditioned cases
only if local coordinate systems are essentially aligned with the principal directions
of motion. For the general case a variant of ABM called modified ABM is developed
in §4.

4SD/FAST is a trademark of Symbolic Dynamics, Inc., 561 Bush Street, Mountain View, CA
94041 USA.
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2 Unified problem formulation and solution meth-

ods

We will use essentially the notation developed by Rodriguez, Jain, and Kreutz-
Delgado (Rodriguez et al., 1991; Jain, 1991), which in turn uses a variant of the
spatial vector notation introduced by (Featherstone, 1987). Consider, for the sake of
simplicity, a chain of n links numbered from tip to base. Concentrating on the kth
link and kth joint (see figure 2), we define

M, = (jk - mlngkZ mdek)

—mdy mil
e m; — mass of kth body
e 7. — moment of inertia about center of mass
e O} — reference location of kth joint on kth link

e d; is the displacement from Oy to the center of mass; dj, is the skew-symmetric
maftrix of the cross-product.

e M, — 6 x 6 spatial inertia of kth link about Oy.

e &3, , — composite body transformation operator which transforms spatial ve-
locities and other contravariant quantities from Oy to Og_;1 (a 6 x 6 matrix,
which depends on the displacement vector between these two points). The “*”
denotes adjoint. Therefore ®; ;_; transforms spatial forces from Oy_; to Oy.

e H; — joint matrix for kth joint (for a 1 DOF joint, H} is a 6-vector, otherwise
it’s a matrix; if all joints have 1 DOF then N = n.)
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e pi. —spatial velocity of kth link at Oy (py is a 6-vector). We note that the spatial
velocity pg should not be interpreted as the derivative of a globally defined set
of coordinates py due to well known properties of SE(3).

So, the relative spatial velocity across the kth joint is H} g, and

pr = Phyi P+ + Higr
P = P pPrar + HiGr + ax (1)
for k = n,n —1,...,1, (Ppug1 = Pur1 = 0), where a; is Coriolis and centrifugal

acceleration.
The equations of motion of the kth link about Oy are

fe = @ri—1fr—1 + Mipr + by
T = Hify (2)

for k=1,2,...,n (fo =0), where
e 7, — joint force at kth joint (scalar for a 1 DOF joint)

e b, — gyroscopic force

Defining
0 0 0 0 0
Q0 0 0
eg=| 0 @39 0 0
0 0o ... ®&,,1 O

we can put the recursion relations (1), (2) in matrix form,
O=(I—cy) ' =14es+... 4"
M = diag{M,,...,M,}
H = diag{H,,..., H,}
This results in the equations
b= 0" H

p=0(H" G+ a)

f=®(Mj+b)

8



r=Hf = [HOM® H*]j + HO(M® a + b)
(the various vectors ¢, p, f, a, b, 7 have an obvious componentwise notation in (1), (2)),
or

Mij=1—-c (3)
The CRBM solves this latter linear system of equations for . This takes O(N?)
operations using a direct Gaussian elimination method. On the other hand, O(N)
methods like ABM consist in propagating the recursions with p, ¢, rather than forming
equations for ¢ first. This idea has been rediscovered a few times in the literature,
see, e.g. (Armstrong, 1979; Bae & Haug, 1987; Brandl et al., 1986; Featherstone,
1983; Rodriguez, 1987; Vereshchagin, 1974).
To understand this better, we write the equations involving ¢,p and [ as one
algebraic system, following (Lubich et al., 1992),

M 0 o'\ [—j b
0 0 H il=1|r (4)
(@1 H* 0 f —a

and consider various strategies of Gaussian elimination for this system. ®

1. Straightforward block-row elimination of the second block-row in (4) using the
first and then the third block-rows gives

M 0 ¢! —p b
0 M 0 g |=|7-c¢
(=YY H* 0 f —a

where M = HOM®*H* and ¢ = H®(M®*a+b). The second block-row is now
decoupled from the rest, and yields the system (3). This essentially gives the
CRB method 6.

2. Instead, we can attempt to take advantage of the sparsity of (4). We write the
system in block form

M, 0 I —Pr by
0 0 Hy Gk = Tk (5)
I H; 0 Jr —dy,

®Note that (4) corresponds to an embedding of the ODE system (3) in a larger DAE system.
This, however, is just a convenient representation of the same model, and we do not advocate use of
DAE methods as such for simple multibody chains. In both algorithms described here, the solution
process does not include finding the algebraic variables.

6We note that the CRBM actually involves one more feature that is essential for the efficiency of
the method: joint space inertia matrix M is computed as M = H(R + PR+ R&)*)H* where R is a
block diagonal matrix of composite rigid body inertias and ® = & — I. However, our experimental
results (Cloutier et al., 1995) suggest that the instability is primarily a consequence of forming the
poorly conditioned joint space inertia matrix M.



where
. . .
ap = ag + Ppiq pPr+1

by = by, + D i1 fr1

and perform the elimination process as much as possible within each block (5).
For this purpose, the blocks & must be decoupled (using fo = 0, foe1 = 0 ).
This elimination strategy yields the ABM.

Specifically, for the block-oriented approach (ABM) we obtain a permutation of
the system (4). For instance, n = 3 gives the system Ma = b, where

M, 0 I
0 H,
I Hy 0 -3,
—q)gl M2 0 i
M = 0 0 H, (6)
I H; 0 -3,
—q)gg M3 0 I
0 0 H;
1 H; 0
—P1 b
¢ !
S -
—P2 by
T = 2 |, b= T2
I2 —daz
—P3 bs
qs 73
I3 —as
The elimination therefore proceeds as follows: for & = 1,2,...,n, eliminate the

middle rows in the k™ block precisely as in the CRBM case (4), and also (for k < n)
use the k" block block-rows to eliminate —® 41 % in order to decouple the next block.
The elimination of —®41;; using block & in the form corresponding to (4) produces
a decoupled block k + 1 where only My, needs to be updated to

Mgy = Miyy + (I)k+1,kMk(I)k+1,k* — (I)k+1,kMkH;(HkMkH;)_lHkqu)kH,k* (7)
(Ml = M), and a corresponding update is applied to the right hand side:

Tk — Cp = T — Hkbk — HkMkak
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replaces 7, and
bg1 = bpp1 + (I)k-i—l,k(i)k + Myag) + ®ppr x My Hy(H M HP) ™ (75 — 1)
replaces bi1;. We note that Mk is the articulated body inertia at link & (denoted

P(k) in (Jain, 1991)); the bias force z(k) in (Jain, 1991) is our by, + Myay.

For instance, in the n = 3 case we obtain the 0-structure

x 0 x
0 x 0 x
x x 0 x
x 0 x
0 x 0 x
x x 0 x
x 0 X
0 x 0
x x 0

Here, x stands for a possibly nonzero block. This is precisely the update in
(Featherstone, 1983; Featherstone, 1987; Jain, 1991). Following the forward elimina-
tion process we obtain a system for both g and p; coupled together via a permuted
block upper triangular matrix but decoupled from f. A backward elimination step
then completes the ABM algorithm, yielding the relative joint accelerations ¢ (and
also p, but the latter is not really necessary anymore). The pivotal blocks used in
this backward elimination step are, in this order, (3k — 1,3k — 1), (3k,3k — 2) for
k=mn,n—1,...,1. For the n = 3 instance, they are circled below. Recall that
the pivotal blocks are of full rank: the (3k,3k — 2) blocks are identities and the
(3k — 1,3k — 1) blocks are the joint inertias Dy = HkMkH,j which are invertible.

x 0 x
0 ® 0 x
® x 0 x
x 0 X
0 ® 0 x
® x 0 x
x 0 x
0 ® 0
® x 0

The advantage of the block algorithm ABM is that all operations are done block-
wise and therefore the operation count is clearly O(NN). This algorithm is therefore
superior to CRBM when N is large enough. The disadvantage here is that more
work needs to be done when N is small, e.g. N < 7, because not only the relative
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coordinates but also the absolute ones are calculated. This gives the edge for small
systems to the CRBM, so long as the two algorithms produce essentially the same
numerical results, which is the case in well-conditioned multibody systems. But
Example 1 shows that a different situation arises for ill-conditioned systems.

It is simple to extend this algorithm description to tree structured systems and
even to systems with closed loops (Lubich et al., 1992), even though the latter lead
to differential-algebraic equations which cannot be simply reduced to ODEs as in (3)
and the O(N) complexity is achieved only for a fixed number of closed loops. Here,
however, we proceed to explain the stability of these algorithms, which may already
be observed for simple multibody chains.

3 Explaining formulation stiffness

Since we have shown that the CRBM and ABM solve precisely the same linear system
of algebraic equations at each time instance, one may suspect that the difference in
roundoff error effects is due either to insufficient pivoting in the Gaussian elimination
process of the CRBM or to an excessive mixing of contributions from different blocks
which results in an unfortunate cancellation error when using floating point arith-
metic. We now consider a two-link chain with the link connected to the base being
much lighter (and shorter) than the other link, as in Example 1, and show that poor
cancellation is the source of the observed roundoff error effects.

Consider the ABM first. Using the first and third block-rows to eliminate the
second results in the equations

(HiM1H{ )Gy + (HiM 1 9%5,)py = 71 — (Hiby + HiMyay) =11 — &

Using the same block-rows plus the above equation to decouple the second block from
the first results in the equations for the second block

My, 0 I — o b
0 0 H2 dz = T2 (8>
[ H} 0 f —ay

where Mg = M2—|—q)21M1q)§1 — q)glMle(HlMle)_lHlMlq)gl, and Z;Q = bg—|—q)§lbl +
O35 Myay + 3, M Hy (H M H})™' (11 — ¢1). Next using the first and third block-rows

in (8) to eliminate the second results in the equations
(HQMQH;)ijQ =Ty — (HQBQ + H2M2G2) =!Ty — C

This completes the forward pass. Now we solve backwards for ¢y, then py = ag+ H;¢a,
and finally we solve for ¢;.

Next consider the CRBM. We have

H My HY H{ M, 95, H; )

Hy®o My HE  Hy( My + oy My 03, H (9)
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To solve using the 2 x 2 matrix M, we eliminate the lower left element by a block-row
operation. This gives in the lower right (diagonal) position precisely Hy MQH;

Therefore, there is no poor pivoting strateqy involved here, even when my > m..
Rather, the only difference is in the order in which M, is being formed! In the CRBM
we must, while forming M, add the small M; to the large ®3 M;®3,. Then the
other large, rank deficient term CI)glMlHl*(HlMlHl*)_lHlMlq)gl is subtracted during
the solution process. This may cause cancellation error which appears as a random
function of time t, even though all the quantities in (3) are smooth functions of ¢.
When such noise becomes relatively large a nonsmooth solution profile results which
would slow down an unsuspecting adaptive ODE dynamics solver.

The ABM can be easily formulated to perform as badly as the CRBM! But with
the ABM we can also do better, by first forming the projected inertia matrix M; =
My — My H; (Hy My H;)~YH; M;. Then forming ®,; M; ®3, gives a rank deficient matrix
with possibly large terms, and only then M is added to form M,.

Example 2 In order to illustrate this last point, consider the case where Hy =
(0,0,0,0,0,1), @33 = [ and Hy = Hy. This choice corresponds to collinear pris-
matic joints; the choice of ®41 is a good approrimation to the actual transformation
when the base link is short; and the choice of parallel Hy gives a worst case scenario.
Further, to simplify notation assume that the difference between the masses my and
my is so large that in floating point arithmetic fl(my + mq) = fl(my). Then, when
using CRBM one forms My + ®51 M@}, the contribulion of mq is entirely lost, and
the system (3) becomes singular (see (9), where all entries become equal, and Table 2).
In particular, one obtains HQMQH; = 0. On the other hand, it is easy to see that
M, = My(I — H; Hy), so the (6,6)—entry of M, is zero while the rest are like in M.
Forming My + CI)glMlq);l now gives mq in the lower right corner, so HQMQHQ* = my
correctly.

We remark that such bad cases can occur in practice; for instance, if there are three
intersecting revolute joints at the shoulder, two of these joints can become collinear
at a shoulder singularity.

O

The importance of M, is therefore in its contribution to the nullspace of M, =
®y M, ®3,, particularly what effect remains after the quadratic form with H, is
taken. More generally, we cannot assume that ®y; = [ or that Hy, = H;. Let
Sy = range{(®;')*H;} and project H; into this subspace,

H; = E; + Fy
where Fy € §; and £} L S;. Since

MIHY - 0,

13



we have that
HyMyH; = HyMyH + Ey My E (10)

so the term involving M3 does not get swallowed (in finite precision arithmetic) if the
other term on the right hand side of (10) is not much larger, and this in turn occurs
when F, is sufficiently small in norm, which is the only case when the contribution
of HyM,H; matters. *

In (10) we consider the effect of adding H, M, Hj to HQMQH;. However, the order
of operations using the ABM with the standard implementation is to form M, + M,
first, and only then calculate the quadratic form with H,. This procedure can be
ruined by a poor choice of coordinates: Mg = <I)21M1<I) 51 1s rank deficient, but could
have all large entries in general. (For an example, repeat Example 2 with everythmg
the same except Hy, = Hy = %(O, 0,0,0,1,1).) In this case the ABM could perform
as badly as the CRBM. We observe this phenomenon with the SD/FAST package as
well. For instance, in Example 1, if the coordinates used for defining the moments
of inertia are rotated by 45 degrees, the integrator using the ABM option breaks
down at roughly the same condition number as the CRBM. While such difficulties
can sometimes be addressed by a careful choice of coordinates, this is not always
convenient or possible due to the constraints placed by modeling software. In §4
below, we describe a modified ABM that addresses this problem.

It can be verified in general (i.e. also for n > 2) that when using the CRBM the
block pivot elements obtained by the Gaussian elimination process® are HkMkH;, le.
they are the same as in the ABM described in (Featherstone, 1983; Jain, 1991). Thus,
observations and explanations made here regarding ill-conditioned robotics systems
extend to the more general case. In fact, adding more links at the tip end of the
ill-conditioned two-body system makes the conditioning worse. This has also been
verified by experimentation with the SD/FAST package.

4 Modified ABM

The above deliberations highlight the particular importance of calculating Dy =
HkMka as accurately as possible. In fact, using ABM the calculation of M, may
be significantly more polluted by floating point cancellation error effects than that of
Dy, if local coordinate systems are not aligned with the principal directions of motion.
This then suggests to reorder the calculations in the ABM so as not to use M, for
calculating Dy: Starting with Dy, = H, M, HT,

M, = My — MyH; Dy H,M,

“We note that in finite precision arithmetic, the relationship (10) also holds only approximately;
but this does not alter the essence of the argument.
8using no row permutations and our system of link enumeration.
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| CRBM |  ABM | Modified ABM |

my | case | Dy G Dy ¢ Dy qQ

l.e+7 1 1.0 | 971.19| 1.0 | 971.19 | 1.0 971.19
1l.e+8 1 0 - 1.0 | 971.19 | 1.0 971.19
1l.e+9 1 0 - 1.0 | 971.19 | 1.0 971.19
l.et+6| 2 1.03) 941.76 | 1.03 | 941.76 | 1.0 | 971.19
le+7| 2 1.5 | 64746 | 1.5 | 647.46 | 1.0 971.19
le+8| 2 0 - 0 - 1.0 971.19
1.e+9 2 0 - 0 - 1.0 971.19

Table 2: Comparison of modified ABM with CRBM and ABM.

Mk+1 = (I)k+1,kMk(I)};+1,k
Dk+1 = Hk+1Mk+1Hl:+1 + Hk+1Mk+1H;+1 (11)
Mk—H = Mk+1 ‘|‘ M}H—l

In words, we compute and maintain Dj, separately from Mk, k=1,2,...,n. This has
the small extra expense of computing the quadratic form with Hyp,y twice at each step
instead of once, but it has the added stability in case of a general local coordinate
system. As before, note that in fact,

Hk+1 Mk+1 H;;+1 == Ek+1 Mk+1E;+1

where F},, is the distance matrix (vector for a 1 DOF joint) from H} , to the sub-
space Sgy1 = range{(®;l, ;)" Hy} which is the nullspace of Myy1. The contribution

of HypyMyy1Hy to Dyyy is important, even when | M1 < HMk-I—lHa precisely
when || Exy1]| is small.

Example 3 In Table 2 we list computational results obtained in single precision for
the extended Frample 2. We take my = 1 and list my. The lengths of the links are
proportional to their masses. We choose ap = by, = 0,71 = 981, 5 = 9.81, and list
results for the two cases: (1) H = (0,0,0,0,0,1)T and (2) H = %(0,0,0,0,1,1). It
is easy to see that in exact arithmetic Dy = 1 regardless of my. We list it and the
acceleration of the tip joint. Note thal the modified ABM given in (11) gives better
resulls than the CRBM. In case (2), where the local coordinate systems are not aligned
with the principal directions of motion, the results are also better than the usual ABM.
The usual ABM does not improve over the CRBM in the latter case.
O
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5 Conclusions

While there has been considerable work in reducing the computational complexity
of algorithms for computing the forward dynamics of robot manipulators, it is only
recently that the numerical properties of these algorithms have been considered care-
fully. This is important since forward dynamics algorithms are typically used with
adaptive step-size numerical integrators which could interpret the poor numerical
performance of the forward dynamics as requiring much smaller step sizes. We have
shown how some of these numerical properties, in particular formulation stiffness, can
be analyzed.

We presented a unified formulation of two important methods for computing for-
ward dynamics, viz., the composite rigid body method and the articulated body
method, as elimination methods for solving a large, sparse, linear system. The ar-
ticulated body method is shown to obtain its linear time complexity by exploiting
the sparsity of the system. We analyzed the formulation stiffness of these algorithms
and showed that the poor behavior of the composite rigid body method in certain
ill-conditioned systems is due to certain cancellation errors, and this problem can be
avoided in the articulated body method. Our analysis also reveals pitfalls for imple-
mentors of the articulated body method and other forward dynamics algorithms.

A modified articulated body method with superior stability properties for general,
ill-conditioned multibody problems was proposed and demonstrated.

Acknowledgement: We wish to thank Prof. J. Varah for fruitful discussions.
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