
Model-based Telerobotics with Vision

John E. Lloyd, Jeffrey S. Beis, Dinesh K. Pai, David G. Lowe
Dept. of Computer Science, University of British Columbia

Vancouver, B.C., Canada
flloyd,beis,pai,loweg@cs.ubc.ca

Abstract
We describe an implemented model-based telerobotic

system designed to investigate assembly and other tasks in-
volving contact and manipulation of known objects. Key
features of our system include ease of maintaining a world
model at the operator site and a task-centric operator inter-
face. Our system incorporates gray-scale model-based vi-
sion to assist in building and maintaining the local model.
The local model is used to provide a task-centric operator
interface, emphasizing the natural and direct manipulation
of objects, with the robot’s presence indicated in a more ab-
stract fashion. The operator interface is designed to work
with widely available and inexpensive desktop computers
with low DOF input devices (such as a mouse). We also de-
scribe experimental results to date which include perform-
ing assembly-like tasks over the internet.

1 Introduction

Model-based telerobotics, sometimes also referred to as
teleprogramming [7], has recently been proposed as a means
of overcoming the problems of time-delay and/or limited
bandwidthbetween a teleoperated manipulatorand an oper-
ator control station. Under this framework, an operator in-
teracts with a model of the remote site, rather than with the
remote site directly. This interaction is in turn used by the
system to generate motion and task commands which are
transmitted to the remote site. Besides overcoming time-
delay, model-based teleprogramming systems permit other
advantages, such as operator control of the viewpoint, the
ability to test and preview actions, and the introduction of
artificial graphical and kinesthetic aids for task specifica-
tion. More generally, they provide the opportunity to raise
the semantic level of the interaction between the operator
and the manipulator system.

However, there are several problems that must be re-
solved before telerobotic systems can become more widely
used. This paper describes a model-based telerobotic sys-
tem developed at the University of British Columbia to ad-
dress some of these problems. We focus on two of the most
critical: ease of maintaining a useful world model, and de-
velopment of natural, task-oriented interfaces on widely
available platforms.

Model acquisition and update. A central problem in
model-based telerobotic technology is obtaining and main-
taining accurate models of the remote site. Our system fa-

cilitates this using a fast gray-scale vision system at the re-
mote site which can recognize objects of known type and
return their spatial positions to the operator.

Task-oriented interfaces. Existing teleroboticsystems
have a tendency to be somewhat “robot-centric”, in requir-
ing the operator to specify tasks by controlling a virtual
robot within the local model. We believe that the existence
of a local model provides the opportunity to specify tasks
more directly and in ways that may be more intuitive for
the operator. Correspondingly, the “presence” of the re-
mote manipulator in the task specification process can be
reduced, as long as the constraints it places on task execu-
tion are still clearly conveyed.

A deliberate decision was made to base the operator in-
terface on inputs from a simple 2D mouse, because such
devices are both inexpensive and ubiquitous. Relatively
expensive, specialized equipment will always have to be
located at the remote site, but avoiding the need for spe-
cialized equipment at the operator site reduces costs and
greatly increases operator site “portability”. Similar con-
siderations are expressed in [20].

The system described below has been used successfully
in a series of demonstrations in which the operator site was
located in Montreal, Canada, the remote site was located
in Vancouver, and communication between the two was ef-
fected through the Internet. The operator interface was a
low-end Indy workstation with no special hardware. Nev-
ertheless, users were able to successfully perform manip-
ulation tasks involving physical contact at the remote site
with only a couple of minutes of training.

The remainder of this paper is organized as follows:
Section 2 gives an overview of previous work. A general
description of the system and its hardware is given in Sec-
tion 3. Section 4 presents the vision system and its model-
based recognition algorithm. The task specification inter-
face and related topics are covered in Section 5. Finally,
Section 6 discusses the system’s performance in the above-
mentioned Montreal-Vancouver demonstration.

2 Related Work

Teleoperation has a long history that predates robotics it-
self; a good overview is given in [21]. Inserting envi-
ronmental models into the control loop to insulate against
time delay is a more recent concept. Predictive graphical
displays have been used, particularly in space-based teler-

recognized
 objectsvideo/

vision

 task
controller

 task
specification

 model
 manager

joint servo
 controller operator

 inputs

force
 data

video

error/
status

 task
commands

feedback
 model

working
 model

remote site operator site

camera image
 window

working model
 window

feedback model
 window

Figure 1: System architecture.

obotic applications [11, 4]. Extending the use of local mod-
els to include kinesthetic as well as visual feedback is de-
scribed in [7]. A behavior-based teleprogramming system
is described in [22]. Various researchers have also consid-
ered introducing synthetic aids for task specification into
the operator’s display [19, 15].

Commands sent to a remote site in teleprogramming sys-
tems tend to be at the level of “guarded moves”. The abil-
ity to send higher level commands asking the remote ma-
nipulator to achieve a particular contact state (recovering if
necessary from any intervening contact states which can be
anticipated) is investigated in [5], using a Petri-Net-based
contact state model.

Less attention seems to have been paid to the problem of
initializing and maintaining the local model. A traditional
technique, also included in our system as a backup, is to
have the operator manually indicate known object features
in a video image of the remote site, and use the 2D image
coordinates of these features to solve for the 3D positions
of the associated objects [16, 12].

Finally, in the last couple of years there have been a
number of projects making teleoperated robotic systems of
various kinds available to casual users on the World Wide
Web [17, 8, 23].

3 System Overview

The system (Figure 1) consists of an operator site and
a remote site, connected by communication links imple-
mented as TCP/IP sockets. This allows communication to
be routed through the Internet to create various time delays
and bandwidth limitations.

3.1 Remote site architecture

At the remote site there is a video/vision module which con-
tinuously collects camera images and processes them us-
ing a model-based vision algorithm to locate objects in the
scene. A list of the objects found, along with their spa-
tial positions, is then transmitted back to the operator site.
The camera image itself is also compressed and transmitted
back to the operator site, where it is displayed in a separate
window. If bandwidth is limited, the full image will likely
arrive more slowly than the recognition data, allowing the
latter to be thought of as a sophisticated form of compres-
sion. The video/vision module runs asynchronously with
respect to the rest of the system.

A task controller takes motion and manipulation com-
mands from the operator site, executes them, and returns
status and error information. It is implemented using the
Robot Control C Library (RCCL) [13], and is divided into
an asynchronous supervisor program and a 100 Hz tra-
jectory generator. The former resolves operator site com-
mands into individual motions and analyses their perfor-
mance, while the latter performs the inverse kinematics,
motion interpolation, and smoothing required for each mo-
tion, implements a position-based impedance control sim-
ilar to that described in [18], and monitors motion termi-
nation conditions. Output from the trajectory generator
consists of a stream of joint position setpoints which are
tracked by a 1 Khz joint servo controller.

3.2 Operator site architecture

At the operator site, there is a working model of the re-
mote site environment, with which the operator interacts

Figure 2: Remote site, showing the robot, camera, and work area.

(via a task specification module) in order to specify remote
tasks. The model consists of a polyhedral representation of
the work space objects, plus kinematic and geometric in-
formation about the remote manipulator (dynamical infor-
mation is not necessary for the low-speed contact operation
presently being investigated). Other information about the
remote objects, such as friction and stiffness models, may
be added later if required. Internally, the objects are stored
using structures provided by the SGI 3D modeling package
Open Inventor [25]. Geometrical relationshipsbetween ob-
jects are described using an Inventor scene graph. Inventor
was chosen because of its extensive capabilities for graph-
ical rendering and viewing, its widespread availability, and
the possibilities for migration to VRML.

At present, object dimensions are assumed to be fixed,
and so the model information that needs to be determined
on-line is limited to object existence and spatial positions.
This can be obtained in three ways:

A. automatic reporting by the vision system;

B. manual reporting, using operator indicated object
features in the video image to solve for object posi-
tion [12];

C. contact inference, using manipulator position and
contact state to constrain object positions.

A model manager administers these information sources
and reconciles differences between them. It also uses known
constraints (such as the fact that objects close to the work

space table surface must be resting on the surface) to reduce
positioning errors.

Information from source A is first deposited into a sep-
arate feedback model, which has its own Inventor-based
graphic window and can be viewed at any angle by the oper-
ator. Wireframe renderings of the objects can also be over-
laid on the camera image returned from the remote site.
At the request of the operator, the contents of the feedback
model are added to the working model. In the event of spu-
rious results by the vision system, the operator can graphi-
cally edit the objects (by “clicking on them”) and select par-
ticular ones to be added. Correspondence between the two
models is not presently maintained. Instead, the operator
can also graphically edit the contents of the working model,
deleting some or all objects to make room for the updates.

Information from source B, provided as a backup to
source A, is under operator control and so is deposited di-
rectly into the working model. Source B is also used (for
now) to initially determine the position of the robot and the
remote site table top.

Source C has only been implemented in a very rudimen-
tary fashion. For instance, the z coordinate of the remote
site table top can be determined by a manipulator guarded
move.

3.3 Hardware details

The video/vision module executes on an SGI Indy rated
at about 20 Mflops. The task controller runs on a SUN
SparcStation V under Solaris 2.X with 48 Mbytes of mem-
ory (Solaris has sufficient real-time capabilities to run the
RCCL trajectory generator at 100 Hz.). We use the 1 Khz
PID joint servo controller supplied by the robot manufac-
turer, connected to the Sparc V via a direct link.

The robot itself is a CRS A460, which has a PUMA-like
geometry without the shoulder offset. Force information
is obtained (at 100 Hz) using a wrist-mounted Zebra force
torque sensor, with a connection into the Sparc V system.
Part grasping is accomplished using a parallel jaw electri-
cally actuated gripper. Figure 2 shows a photoof the remote
site work area.

Another SGI Indy serves as the operator station. Four
windows are used: two for displaying the working model
and feedback model, one for showing the camera image,
and another for textual interaction (Figure 3). As men-
tioned in the introduction, operator inputs for manipulating
objects are obtained using a standard 2D mouse.

4 Vision System

The vision system, which is itself model based, must be
able to provide accurate identification and location of ob-
jects in the work space. Model-based vision has only re-
cently developed to the point where these capabilities can

Figure 3: Screen image on the operator site workstation. Clockwise from bottom-right: working model window (with tall block being
manipulated by a dragger box), feedback model window, camera image window, and textual interface window. Note the partial occlusion
of several of the recognized blocks.

be achieved with reasonable speed and reliability. This
project employs the model-based recognition system of
Beis and Lowe [3], which uses a novel form of rapid in-
dexing to recognize 3-D objects from any point of view in
single 2-D images.

The vision system is currently restricted to using straight
edges of the objects in the recognition process. A model
must be provided for each object type which specifies sur-
face visibility and the 3-D location of all prominent lines
and edges. For the demonstrations described in this paper,
these models were generated by hand. However, a separate
tool has also been developed that allows models to be au-
tomatically generated from a number of images of an ob-
ject, with human input limited to pointing out correspond-
ing edges in the different images [2].

4.1 Recognition and matching

The recognition process begins by finding all linear edges
in an image and identifying groups of edges that are con-
nected to one another or are nearby and parallel. Groups of
4 or more line segments (see Figure 4) are used to gener-
ate a vector of measurements giving the relative lengths or
angles between the lines. This “index” vector is invariant
to 2-D translation, rotation and scaling, but will vary with
the projection of different 3-D rotations of the object. In
contrast, most other current methods require fully invariant
feature groupings, which severely limits the type of object
that can be used. A precomputed index covering a sample

of all 3-D object rotations is used to estimate the probability
that a particular vector was produced by a particular object.
Full details of this indexing approach are given in the paper
by Beis and Lowe [3].

Once a tentative interpretation has been made for some
image features, it is possible to estimate the object location
and orientation in 3-D [14]. This is used to predict the lo-
cations of other object edges in the image and obtain fur-
ther correspondences. At each stage, the solution for object
location and orientation in 3-D is performed with a least-
squares fit minimizing residuals in predicted versus actual
image locations. So, while the current system uses only
straight edges, models might easily contain other feature
types with location information, to aid in verification and
pose determination. The solution for object pose is sub-
stantially over-determined, which means there is little like-
lihood that an incorrect correspondence will be found to fit
more than a few image features. If a good fit is not found
for a number of image edges, then the match is rejected
and a new indexing hypothesis is used. Therefore, the final
recognition has good robustness and accuracy, even though
the initial indexing is probabilistic.

4.2 Speed, accuracy, and calibration

The full recognition process currently requires about 5 sec-
onds runningon the SGI Indy described in Section 3.3. This
will be much improved in the future once a number of op-
timizations have been made for speed. Much of the time

Figure 4: Left frame shows cropped image of work space over-
laid with wire-frame models at positions determined by the recog-
nition algorithm. Right frame shows edge-detected image with
examples of correct and incorrect feature groupings used in the
indexing process.

is currently spent on the low-level edge detection process,
which could greatly accelerated by using some image pro-
cessing hardware.

Image lines are determined through a least-squares fit to
each pixel along an edge, and model location is based on a
least-squares fit to these lines. Therefore, accuracy is usu-
ally precise down to the pixel level of the image, although
its mapping to the 3-D world depends on the camera loca-
tion and optics. With a single camera, the location of the
object parallel to the camera image plane is more precise
than location towards and away from the camera. If this is a
problem, then it would be possible to use a similar approach
to recognition with 2 or more cameras to achieve full accu-
racy in all dimensions. For this project, accuracy was im-
proved using other constraints, such as the fact that objects
close to the worktable surface must in fact be resting on the
surface.

A standard pin-hole camera model is assumed. Intrin-
sic parameters (focal-length and radial distortion)were cal-
ibrated off-line using the algorithm in [24]. The camera
position relative to the work space was calibrated manu-
ally by having the operator identify, in the camera image,
workspace features of known position.

5 Task Specification

Our aim has been to create a task specification interface that
is both intuitive and “task-centric.” To the extent possible,
we would like to support the operator’s mental model of di-
rectly manipulating objects relevant to the task, with mini-
mal emphasis on the remote manipulator.

The principal tasks to be performed are part placement
and part mating. These may be specified by having the op-
erator graphically “select” and move a desired part within

the display of the working model. Based on the operator’s
actions, appropriate grasping and repositioning commands
are generated and sent to the remote site. Generally this
occurs at the request of the operator. For example, after a
part has been satisfactorily repositioned within the work-
ing model, the operator can confirm (with a single mouse
click) that the system should generate the appropriate re-
mote commands for grasping and repositioning.

Direct manipulationof objects in the model does not pre-
clude the need to restrict the operator to tasks which the re-
mote manipulator system can actually perform. In partic-
ular, selected parts must be graspable, and goal positions
(plus the intervening path) should not penetrate obstacles
in the workspace and must be physically realizable by the
manipulator.

Graspability is ensured when the operator selects a part:
the face on which the operator clicks in order to do the se-
lection is used to indicate the grasp; if this leads to an in-
feasible grasp or a collision between the robot and the en-
vironment, the selection is disallowed.

After the part is selected, a rendering of the gripper as-
sembly appears around the object, along with a dragger box
(see Figure 5). As the part/gripper combination is dragged
around the working model, any motions which result in
penetrating collisions with the environment are disallowed.
Keeping the robot away from joint limits and singularities
(or collisions involving more proximal parts of the arm)
could be achieved similarly, though at present these restric-
tions are handled by confining actions to a well-behaved re-
gion of the manipulator’s workspace.

Figure 5 shows a typical example of this interaction.

5.1 Dynamics for User Interaction

Our means of task specification entails having the operator
directly manipulate the positions of solid models. In gen-
eral, this is not an easy problem, particularly when contact
is involved. The problem is further complicated by our de-
liberate decision to use an ordinary 2D mouse as an input
device.

Fortunately, object positioning can be made much eas-
ier be endowing any part being manipulated with simple
dynamics that allow it to “slide-around” obstacles in the
workspace. For instance, to place a part exactly in a corner
by positioning alone is tedious (particularly when trying to
get the orientation correct). On the other hand, with our dy-
namics model, one can simply slide the part into the corner
and it will automatically align and seat itself. Being able to
exploit the natural constraints of the workspace in this way
is important. Some authors have implemented “virtual fix-
tures” within teleprogramming systems for achieving simi-
lar ends [19]. Here, our aim is to use the environment itself
as a fixture, which has a natural advantage in terms of being
intuitive for the operator to use.

Figure 5: Example of user interaction. A part can be selected by “clicking” on it with a mouse. A rendering of the gripper assembly is
then placed around it, along with a graphical Inventor object known as a “box dragger” (second frame from left). The operator can then
“click” on different faces or edges of the dragger and “drag” the object to other parts of the scene, using 2D mouse movements which
are mapped into suitable planar or rotational motions within the scene depending on which face or edge of the dragger box was picked.
A “ghost image” marks the original object position (third frame from left), until the operator confirms the repositioning action, at which
point the ghost, gripper, and dragger are removed.

We found that a first order dynamics model (as opposed
to a second order dynamics involvinginertia), with friction-
less rigid body contacts, results in motions that are stable
and easily understood by the operator. They are also eas-
ier to compute; for instance, there is no need to emulate
Coulomb friction to bring objects suddenly to rest. We em-
phasize that the purpose of this dynamic model is only to
assist in the interaction and not to simulate the dynamics at
the remote site. Recall that in the teleprogramming frame-
work, the actions performed by the operator are not sent di-
rectly to the remote site, but are translated into remote site
commands which achieve the same goal state.

Computing the required interaction dynamics require
that we be able to detect penetrating collisions between ob-
jects, as well as determine the distances (and closest fea-
tures) between objects which are not colliding. This is
achieved by modeling all objects as the union of a set of
convex objects and then using the package I-COLLIDE [6].

The interaction dynamics are determined as follows:
motion is initiated by clicking on a particular point of the
dragger box containing the gripper and object. Let the
three-dimensional point so selected be called the grab point
xg. Subsequent mouse positions are mapped into another
three-dimensional point xp, called the pull point. Points xp
and xg are then assumed to be connected by a virtual spring,
creating an applied force

fa = k(xp � xg): (1)

This force acts on the body at xg. As for obstacles, if the
gripper/object is located sufficiently close to another object,
it is assumed to be in contact with that object. Information
returned by I-COLLIDE can be used to determine a suit-
able finite set of contact points pi and normals ni model-

ing all the contacts1. Forces fi acting along the contact nor-
mals in reaction to the applied force fa are determined using
Baraff’s algorithm [1]. The net force and moment acting at
xg is given by

f =
X

i

fi + fa; m =
X

i

(pi � xg) � fi:

Object motion is then induced using a first-order dynamic
model, so that if (vT!T)T is the spatial velocity at xg, then

v = dtf and ! = drm (2)

where dt and dr are suitable constants. All these calcula-
tions can be comfortably performed in real time.

Within the graphical display system, motions are calcu-
lated incrementally using a fixed time step (generally 50
msec). Equation (2) is used to compute a desired linear dis-
placement for the object/gripper at the beginning of each
time step. If this displacement is found to result in a pen-
etrating collision with an object, then the displacement is
truncated at a point where collisionfirst occurs (such a point
can be found, to within sufficient precision, using a binary
search along the proposed path). At the end of each time
step, the set of contact points is updated.

5.2 Robot Programs from Operator Actions

The system is primarily designed for assembly-like tasks
in which objects are repositioned and mated with other ob-
jects in the workspace. Certainly the positioning aspect of
the task is easy to specify: the part should be placed where

1Face-face or edge-face contacts can be reasonably simulated using a
finite set of point contacts; see [9].

the operator drags it. The problem, of course, is that a sim-
ple repositioning command may fail at the remote site due
to modeling uncertainties. Instead, the remote site needs
to execute a short robot program: a guarded grasp of the
object; motion to a “free zone” away from obstacles; ap-
proach to a position near the goal; and object placement
with a guarded move. We note that in general this is a com-
plex motion planning problem, but is considerably simpler
if the specific task domain allows simplifications (see, for
example, [10]).

In addition to a standard set of free-space motion and
gripper control commands, two basic repositioning pro-
gram primitives have been implemented:

} guarded grasp, in which the geometry of the object
is used to prepare a schedule of guarded moves that
allow an object to be approached and grasped. This
includes a simple search strategy to be triggered in
the event of premature contact.

} guarded place, in which guarded moves and impedance
control are used to place an object in a specified lo-
cation.

At present, the guarded move schedules produced for
these primitives do not allow for recovery from intervening
contacts. In other words, the motions should succeed pro-
vided that the anticipated final contact state is the first one
arrived at. We are currently experimenting with more elab-
orate planning techniques to handle intervening contacts;
this problem is also considered in [5].

Upon completion of each remote command, an acknowl-
edgement is returned to the operator site containing the
command completion status and the current robot state. An
error is assumed to have occurred when a command does
not meet the anticipated termination predicates. Further op-
erations are then discarded until a reset command is sent by
the operator. When the operator receives error notification,
she may use video imagery and remote object recognition
data to determine the nature of the error and edit (if neces-
sary) the working model. A more elaborate error recovery
procedure, involving the automatic unwinding of actions
within the working model to the point where the error oc-
curred, is described in [20]. We have not (yet) found this to
be necessary because the operator can easily use the feed-
back model to correct the working model.

6 Operational Results and Discussion

This system was successfully demonstrated at the 1996
PRECARN meeting in Montreal, with the operator site lo-
cated there, and the remote site in Vancouver. Communi-
cation was effected through the Internet.

Meeting attendees were invited to use the system to
reposition a set of blocks located at the remote site. Typ-
ically about four or five blocks of the type shown in Figure

4 were present at any given session. Between operator ses-
sions, the blocks were rearranged randomly by an attendant
at the remote site. Rectangular blocks were used to simplify
grasping and contact operations, not to provide simplicity
for the vision system. In fact, the vision system tends to
perform better on more complex objects which have larger
numbers of straight-line features.

Novice operators found the task interface quite easy and
intuitive to use. There were occasional questions concern-
ing the contents of the feedback model window compared
with the camera image window, largely because the infor-
mation in these two windows arrives at different rates. Op-
erators also had an interesting habit of moving blocks to a
part of the workspace out of view of the camera and then
relying solely on the model to retrieve them.

Some mention should be made of calibration. A signif-
icant amount of the time spent developing the system was
spent addressing calibration issues, including the determi-
nation of camera intrinsic parameters and the development
of procedures for calibrating the remote site camera and
robot positions (procedures which are manual but could be
automated using the vision system itself). The robot kine-
matics also had to be calibrated, since the nominal kine-
matic model resulted in positioning errors of up to 1.5 cm
over a workspace about 60 cm in length (not unusual for se-
rial manipulators). However, this error could be reduced to
about 1 mm using a local linear correction.

Some comments should also be made about the per-
formance of the vision system. In general, it exhibited a
significant degree of robustness, as there were no special
lighting arrangements and the recognition algorithm tol-
erated a moderate degree of occlusion. Indexing did oc-
casionally fail due to occlusion and/or noise, if no appro-
priate feature grouping were detected for a particular ob-
ject. Full robustness in this area can be achieved by in-
dexing with several types of grouping in parallel. Mod-
ules using smaller, more local groupings can then succeed
in the difficult cases of major occlusions, at a penalty of
slightly increased processing time, with the larger group-
ings providing better efficiency in the typical cases. During
an early instantiationof the demonstration, it was noted that
sometimes objects were falsely detected, due to the sim-
plicity of the verification criterion (50% of visible feature
lengths matched). More sophisticated criteria should in-
deed be used, although this is rarely a problem when the
objects have greater complexity. For the PRECARN demon-
stration, false positives were eliminated using constraints
on the range of the robotic arm, by pruning objects far from
the manipulator’s workspace.

7 Conclusion

We have successfully demonstrated the practical ability of
using gray-scale vision techniques to provide world model

construction and maintenance for model-based telerobotic
applications. While improvements in the generality, speed,
and accuracy of the vision system would certainly be use-
ful, the system has already shown its utility in the mod-
erately simple applications described above. It provides
an enormous saving in time over the alternative method of
model updating, which is to have the operator manually
indicate features in the camera image. Robustness of the
method can be guaranteed by allowing the operator control
over the model update process (by editing the contents of
the feedback model into the working model), and by pro-
viding a manual system as a backup.

We have also successfully demonstrated the ability to
easily specify part positioning tasks, in cluttered environ-
ments, using operator inputs from low degree of freedom
devices such as a 2D mouse. This was done using various
graphic aids (e.g., dragger boxes) combined with appropri-
ate 2D to 3D mappings, acting in combination with a first-
order dynamic behavior which allowed the part being ma-
nipulated to slide along and be re-oriented by contacts made
with other workspace objects.

Our intention in designing this system is to experiment
with more “task-centric” ways of specifying telerobotic
tasks. We believe that the environmental model inherent
in the teleprogramming paradigm offers significant oppor-
tunity to simplify the programming of robotic tasks in gen-
eral, and that the utilityof model-based telerobotics extends
well beyond teleoperation situations involving time delay
or limited bandwidth.

Acknowledgement
The authors would like to thank Jane Mulligan, Rod Barman, Stewart
Kingdon, and Brian Gilgan. This work was supported in part by the In-
stitute for Robotics and Intelligent Systems (IRIS projects IS-6, HMI-6,
and IC-1), the BC Advanced Systems Institute, and the National Sciences
and Engineering Research Council (NSERC).

References
[1] D. Baraff, “Fast Contact Force Computation for Nonpentrating

Rigid Bodies”, SIGGRAPH 94 Conference Proceedings, July 1994,
pp. 23–34.

[2] J. S. Beis, “Building models with planar faces using a structure-
from-motion algorithm plus a small amount of post-processing”.
Technical Report number TR-96-14, Computer Science Depart-
ment, University of British Columbia, June 1996.

[3] J. S. Beis and D. G. Lowe, ”Learning indexing functions for 3-D
model-based object recognition,” IEEE Conferenceon Computer Vi-
sion and Pattern Recognition, Seattle (June 1994), pp. 275-280.

[4] A. K. Bejczy, W. S. Kim, and S. C. Venema, “The Phantom Robot:
Predictive Displays for Teleoperation with Time Delay”. Proceed-
ings of the 1990 IEEE InternationalConference on Robotics and Au-
tomation, Cincinnati, Ohio, May 1990, pp. 546–551.

[5] Y. J. Cho, T. Kotoku, and K. Tanie, “Discrete-Event-Based Planning
and Control of Telerobotic Part-Mating Process with Communica-
tion Delay and Geometric Uncertainty”. Proceedings of the 1995
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Pittsburgh, Pennsylvania, August 1995, pp. 1–6 (Vol.
2).

[6] J. Cohen, M. Lin, D. Manocha and K. Ponamgi, “I-COLLIDE: An
Interactive and Exact Collision Detection System for Large-Scaled
Environments”. Proceedings of ACM Int. 3D Graphics Conference,
1995, pp. 189–196.

[7] J. Funda, T. S. Lindsay, and R. P. Paul, “Teleprogramming: Toward
delay-invariant remote manipulation”. Presence, Winter 1992, pp.
29–44 (Vol. 1, No. 1).

[8] http://cwis.usc.edu/dept/garden/.

[9] S. Goyal, E. N. Pinson, and F. W. Sinden, “Simulation of Dynamics
of Interacting Rigid Bodies Including Friction I: General Problems
and Contact Model”. Engineering with Computers, Springer-Verlag,
London, 1994, pp. 162–174 (Vol. 10).

[10] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell, W. E. L. Grim-
son, and A. Lanusse, “Handey: A Robot System That Recognizes,
Plans and Manipulates”. Proceedings of the 1987 IEEE Interna-
tional Conference on Robotics and Automation, Raleigh, North Car-
olina, April 1987, pp. 1713–1717.

[11] G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl, “Sensor-Based
Space Robotics – ROTEX and Its Telerobotic Features”. IEEE
Transactions on Robotics and Automation, October 1993, pp. 649–
663 (Vol. RA-9, No. 5).

[12] W. S. Kim and L. W. Stark, “Cooperative Control of Visual Displays
for Telemanipulation”. Proceedings of the 1989 IEEE International
Conference on Robotics and Automation, Scottsdale, Arizona, May
14-19, 1989, pp. 1327 – 1332.

[13] J. E. Lloyd and V. Hayward, Multi-RCCL User’s Guide. Technical
Report, Center for Intelligent Machines, McGill University, April
1992.

[14] D. G. Lowe, ”Fitting parameterized three-dimensionalmodels to im-
ages,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13, 5 (May 1991), pp. 441-450.

[15] National Research Council (U.S.A.), Virtual Reality. Scientific and
Technological Challenges. National Academy Press, Washington,
D.C. 1995.

[16] E. Oyama, N. Tsunemoto, S. Tachi, and Y. Inoue, “Experimental
Study on Remote Manipulation Using Virtual Reality”. Presence,
Spring 1993, pp. 112–124 (Vol. 2, No. 2).

[17] E. Paulos and J. Canny, “Delivering Real Reality to the World Wide
Web via Telerobotics”. Proceedings of the 1996 IEEE International
Conference on Robotics and Automation, Minneapolis, Minnesota,
April 1996, pp. 1694–1699.

[18] M. Pelletier and M. Doyon, “On the Implementation and Perfor-
mance of Impedance Control on Position Controlled Robots”. Pro-
ceedings of the 1994 IEEE International Conference on Robotics
and Automation, San Diego, California May 8-13, 1994, pp. 1228–
1233 (Vol. 2).

[19] C. R. Sayers and R. P. Paul, “An Operator Interface for Teleprogram-
ming Employing Synthetic Fixtures”. Presence, Fall 1994, pp. 309–
320, (Vol. 3, No. 4).

[20] C. R. Sayers, “Operator Control of Telerobotic Systems for Real
World Intervention”. Ph. D. thesis, Department of Computer and
Information Science, University of Pennsylvania, Philadelphia, PA
19104 USA, 1995.

[21] T. Sheridan, “Telerobotics, Automation, and Human Supervisory
Control”. MIT Press, Cambridge, Massachusetts, 1992.

[22] M. R. Stein and R. P. Paul, “Operator Interaction, for Time-Delayed
Teleoperation, with a Behaviour-Based Controller”. Proceedings of
the 1994 IEEE International Conference on Robotics and Automa-
tion, San Diego, California, May 1994, pp. 231–236.

[23] http://telerobot.mech.uwa.edu.au/.

[24] R. Tsai, “A Versatile Camera Calibration Technique for High-
Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses”. IEEE Transactions on Robotics and Automa-
tion, August 1987, pp. 323–344 (Vol. RA-3, No. 4).

[25] J. Wernecke, The Inventor Mentor. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

