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Abstract
We design two performance measures for a planar locomotion robot, modeled closely
after the Platonic Beast. The first measure is proportional to the energy consumption
during locomotion of the robot, which we assume to be mainly due to viscous friction in
the actuator gears The second measure determines the maximal speed of locomotion,
for given maximal joint speeds. We compute optimal modes of locomotion on different
slopes for various designs. The results indicate that a variable link length can greatly

improve the ability of the robot to walk on steep slopes.

1 Introduction

What is the best way for a robot to walk on a given terrain? What is the best robot for
this terrain? What configuration of the legs is optimal? The answers to these questions are
critical to the design, selection, and programming of locomotion robots.

All these questions can be seen as redundancy resolution, the selection of the best way
to do something from a set of possibilities. This set of possibilities can range from picking a

design of a robot, to chosing a specific posture of a robot arm, for example.
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An essential tool in redundancy resolution is the use of performance measures. A per-
formance measure of a task assigns a numerical value, the “cost”, to a particular manner of
executing this task. Finding the “best” way to execute the task can then be translated into
an optimization problem. The nature of the performance measure depends of course on the
nature of the task, the nature of the cost we want to minimize, and on the nature of the
robot.

Performance measures are already widely used for design and posture optimization for
robot arms. Several local measures have been proposed in the past, [26, 3,9, 14, 19, 8, 11,
2,12, 13, 1, 18], which are reviewed in [25, 23]

In previous work [24, 22, 25] we have constructed a geometrical theory of performance,
which assigns a numerical value (“performance measure”) to an elementary task.

The measures derived in our formalism are invariant under general coordinate trans-
formations in configuration space, and therefore correspond to physical properties of the
manipulator, and are not just mathematical constructs.

The key idea of our performance measures is to assign a distinct metric structure to the
configuration space and to the work space of the robot. The metric on the configuration
space measures the “cost” to move from configuration to configuration, and the metric on
work space measures how much is “achieved” with a a motion. The nature of the “cost” and
“achievement” is dictated by the nature of the task, and may be kinematic or dynamic. We
showed how natural geometric functions derived from Riemannian metrics on configuration
and work space can be interpreted as performance measures.

Useful new measures suggest themselves naturally in our framework. Among these are
“redundancy” measures, which measure how easy it it for a redundant manipulator to recon-
figure itself without moving its end-effector, and “non-linearity” measures, which measure
the degree of non-linearity in the robot dynamics.

In [24, 22, 25] we computed various measures and optimized postures for the three link
redundant planar arm, the SARCOS arm [20, 21], and the Platonic Beast [15, 16].

Our previous work has focused on local measures, and in this paper we shall construct
global performance measures for locomotion robots. We shall focus on a planar version of
the Platonic Beasts [16, 17], and determine energy efficiency and maximum speed of gaits,
which we optimize.

The remainder of this paper is organized as follows. In section 2 we discuss the Platonic



Figure 1: Platonic Beast robot walking on an incline

Beast, and a planar version of this walking robot, called the planar 3-beast. In section 3
we discuss periodic gaits of the planar 3-beast. In section 4 we construct a measure for the
energy efficiency and a measure for the maximum attainable speed of the robot. In section 5
we determine optimal gaits for various designs for walking on different slopes. Conclusions

are presented in section 6.

2 Walking Machines

2.1 Platonic Beasts

We have designed a family of symmetric robots called Platonic Beasts [16, 17]. The first
prototype robot in this family, Mark I, has four 3DOF limbs arranged with spherical sym-
metry. It has been built and locomotion using a novel “rolling gait” has been demonstrated
(see figure 1). The Mark II robot has the same limb construction and differs mainly in the
computing and communication architecture.

The limbs of the Mark T and Mark IT are built using UBC-Zebra link modules that which
have a two-stage gear reduction consisting of an integral gearhead followed by a worm gear.
Hence the motion of joints is dominated by friction and the robot is only capable of statically

stable gaits. These robots are designed to be fault tolerant and are highly redundant for the



walking task. For instance the 4-beast prototype has 12 controlled degrees of freedom.

Motivated by the analysis of the locomotion of the prototype, we analyze a simplified
version, namely a planar Platonic 3-Beast, which consists of a triangle with three limbs,
see figure 2. Such an exercise is useful because it may give us a feel for what can be
achieved with a theoretical analysis of locomotion, both from a design perspective and from
a control perspective. Because of the simplified nature of the two-dimensional case, results
can be obtained fast, and different approaches can be tested without investing a great deal
of resources in the analysis.

We shall call the planar version of the Platonic Beast the planar 3-beast. Its body is an
equilateral triangle, and at each vertex a two-jointed limb is attached.

We will consider locomotion of the planar 3-beast on an inclined line and will design
a performance measure to minimize energy consumption, and a performance measure to

maximize speed.

2.2 Description of the Planar 3-beast

The body of the planar 3-beast consists of an equilateral triangle. The length of a side is
denoted by D. The three vertices of the body are labeled 1,2,3 in the counterclockwise
direction.

A limb with two actuated joints is attached to each vertex of the triangle. The two joints
will be called the hip and knee joint. The length of the upper and lower links are denoted
by Il and [s.

The robot has nine degrees of freedom: two for each of the three limbs, and three for the
position and orientation of the body.

The configuration of a limb ¢ is denoted by the joint angle vector
ei = (0}17 02]&)7

where the upper index i labels the joint, and the lower index takes on the values H (hip)
and K (knee). See figure 2. We take —27 < #}; < 27 (so the limb does not penetrate the
body), and —7 < 0% < 7.

The configuration of the body is described by the position of the center B = (B, B,) of
the body in the ground-frame, and the angle ¥, with —7 < ¥ < 7, as defined in figure 2.



Figure 2: Conventions and notation for the planar 3-beast.

The ground is allowed to be tilted, with slope o, so that the direction of the gravity vector
in the ground-frame is given by (—sin o, cos o).

A posture of the robot is denoted by

B
)
P=16'
92
9’

3 Periodic Gait of the Planar 3-beast

The robot can walk on the ground in the manner depicted in figure 3. It is standing on two
legs, with its center of mass somewhere between the two legs. We call this position Py. The
distance between the legs is L. It will then move its body to the right until the center of
mass passes the rightmost support leg. At that moment the leftmost leg will move up and
the limb that was in the air will come down and become the rightmost leg. It will will then

move to a position P; which is identical to Py except for a rotation by —120°, a translation
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Figure 3: Walking planar 3-beast.

over L, and a cyclic interchange of the joint angles. The cycle then repeats.

The global manner of walking is thus determined completely by specifying a valid starting

posture Py. We call the move from Py to Py a stride, with associated stride function 8. See

also [5]. The stride function acts on a posture by

B
1\
S| 6!
02
03

B+ Le,

U — %7‘[‘
=1 g3

01

02

where L is the distance between the two feet (the stride length) and e, is a unit vector in

the positive z-direction. This describes walking to the right. Walking to the left is simply

described by the inverse of S.

Without loss of generality we shall assume limbs 1 and 2 to be on the ground in Py, and

we assume the center of mass to be exactly over the first foot, which we will position at

the origin. For right-walking this means we are considering a posture where limb 3 is just

moving into the air, and limb 2 has just touched down. The positions of feet 3 and 2 are

thus given by (—L,0)T and (L,0)T.



The initial posture Py can thus be parametrized by the triple w = (L,h, V), where L
is the distance between the feet, h = B, (i.e. the height of the body), and ¥ is the initial
orientation of the body. B, is determined by the condition that the center of mass, which
we assume to be located at the center of the body, is exactly above foot 1. It is given by
B, = By tan(o).

For a given initial posture, there may be infinitely many realizations of the stride, corre-
sponding to different paths from Py to P;.

There are also different modes of walking. For example, the robot may execute a sequence
of different strides. Such strides have a more complicated stride operator than the periodic

gaits described by equation 1. We shall not consider these here though.

4 Gait Measures for the Planar 3-beast

We shall now construct two performance measures for a stride.

The energy consumption of the actuators of the Platonic Beast [16] is dominated by
viscous friction, as was discussed in section 2. In this case, the energy consumption for a
given motion is proportional to the sum of the joint movements. The first measure we will
construct will measure the energy consumption of the beast. It is the sum of the total joint
movements over a stride, divided by the length of the stride.

The second measure we consider determines the optimal speed the robot can attain. If
all joints are driven by actuators of the same type, they will have a maximum speed, say .

The time taken to execute a stride is determined by the joint that has to move most. If we

L
Afx*

denote the maximum joint movement by Af, the maximum speed attainable is Vi.x =
We then take 1/V as our measure to be minimized.

We shall follow the general approach of our previous work [24, 22, 25] by defining distance
on an extended configuration space, restricting it to the “real” configuration space, and
minimizing motions in the sense of this metric.

The nine dimensional extended configuration space C is the set of all configurations P.
It can be visualized as all postures of the beast, irrespective of limbs interpenetrating, and
irrespective of the ground. The restricted configuration space C is the space in which the

robot moves when performing a stride. It is the set of configurations P & C that satisfy the

following conditions.



1. All the limbs are non-intersecting with themselves and with the body.
2. No part of the robot is below the ground.

3. Foot 1 is at position (0,0)7 in the ground-frame.

4. Foot 2 is at position (L,0)T in the ground-frame, where L is a constant.

The space C is five dimensional. The space C is sometimes called a restricted configuration
space, as we do not allow bodies to penetrate each other. The four constraints on the feet on
the ground have eliminated four degrees of freedom. Three degrees of freedom correspond to
the position and orientation of the body and the remaining two degrees of freedom correspond
to limb three, which can move freely.

We now define a “distance” dsgp between two configurations with an infinitesimal sepa-

ration dP. A natural definition is

dop =Y 3 |d]. 2)

1=1j7=H,L

which, up to a multiplicative constant, is the energy dissipation due to viscous friction for
this change in the joint angles. We assume all joints to have identical friction. We have
ignored Coulomb friction. For a discussion of viscous friction in robots, see for example [4].

Note that this is not a Riemannian metric, which was considered in our previous work
[24, 22, 25]. A metric of the form given in equation 2 is sometimes called a Manhattan
metric.

The length of a path is obtained by integrating ds over the path. The distance between
finitely separated configurations is defined as the length of the shortest path connecting
them. A peculiar property of a metric of the form 2 is that the length of a path depends
only on the endpoints of the path, as long as the path is monotone, i.e. every coordinate (9;
either increases or decreases monotonely on the path. Let us denote the distance between
configurations as defined above by dg (P, P2).

The first walking measure for our planar 3-beast is now defined by
/,LE(L,h,\I},O') == dE(,Po,S,Po)/L, (3)

where the initial posture Py is parametrized by L, h, and ¥, as explained in section 3, and

o is the slope of the ground. The measure is not defined if there is no path in C between Py



and 8Py, or if the parameters L, h, W, and o are not realizable in C, i.e. without violating
the constraints. The measure given in equation 3 gives the energy consumption per unit
length for walking.

If there is a monotone stride-path, the measure 3 is given by

3 .
pe(L,h,V, o) = Z Z = 9;&1) mod(3)|7

1=1j7=H,L

as follows from the properties of the stride function 8 as given in equation 1.
The second measure for the maximum attainable speed with given bounds on the joint
velocities is constructed along similar lines. Instead of the Manhattan metric given in equa-

tion 2 we define the distance as
dsy = maxi7j|d(9;|. (4)

Unlike for the Manhattan metric, the length of a path between two points is not the sum of
the lengths of segments of the path. The length of a path between finitely separated points
P, and P, is defined as

dv(Py, Py) = mas; [ d6].

path

We define the second measure as
/,Lv(L,h,\I},O') = dv(Po,SPO)/L, (5)

which is proportional to the inverse maximum speed.
For monotone paths, this measure is also independent of the actual path. !
If there is a monotone stride-path, the measure 5 is given by
: i+1) mod(3
pv (L, h, W, o) = max;; |0 — 0; ) mod( )|.

The fact that these measures are independent of the path (as long as a monotone path
exists) allows us to find the optimal stride by searching in the space of initial stride postures.
If the measure also depended on the path of the stride, we would have to find an optimal
path to determine the value of the measure for a given initial stride posture, which would

greatly increase the processing time required to find optimal postures.

Tn fact, in this case monotonicity is sufficient, but not necessary.
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5 Optimal Gaits for the Planar 3-beast

We have written a set of MATLAB routines to compute the optimal initial stride posture of
a given planar 3-beast on a given slope, and its measure.

The beast is defined by specifying the dimension D of its body and the limb lengths [,
and ;. We call these the design parameters. These parameters, and the slope are considered
given. We assume the center of mass is located at the center of the body, which is a valid
approximation if the mass of the limbs is much smaller than the mass of the body.

We implemented a routine to compute a measure [ for given (L,h, V), which is an
extension of the measures 3 or 5. If (L,h, V) lies in C, i = ug (or py), otherwise it returns
a penalty function which is a measure of the constraint violation, i.e. a measure of how much
interbody penetration the configuration has. The penalty function is constructed to have
large values compared to the measure. If no configuration corresponding to (L, h, ¥) exists,
even allowing constraint violation, i = cc.

Note that there may be up to four solutions for the posture of the beast for a given
(L,h,¥). This is because the inverse kinematics of a two-link arm can yield up to two
solutions. We have restricted our selves here to configurations with positive knee-joint angles.
Configurations with negative knee-joint angles are equivalent (we just have to reverse left and
right), and configurations with mixed solutions for the front and back leg are not efficient, as
the front leg will have to change from one type of solution to the other, requiring additional
joint motion. So we can safely exclude these.

We start by finding a rough estimate of the posture by doing a linear search in a discretized
(L,h,¥) space, i.e. we compute the measure for all points on a grid and find the posture
with minimal fi. We then perform a local minimization of i starting from this configuration.
If the minimum thus found is larger than 107 (corresponding to maximum joint motions) it
is considered to be violating the constraints, and we conclude there is no walking posture.
This happens if the slope is too steep, or if the design parameters are poorly chosen.

The value thus found is a lower bound on the true measure, which may be larger if no
monotone stride path exists from the given configuration.

We do an explicit search for a monotone stride path as follows. The third joint-angles can
move unrestricted to their target values, as this limb is not in contact with the ground. Thus
the problem is reduced to a closed loop linkage consisting of limb 1, the body, and limb 2.

The system has three degrees of freedom, which we chose to be the position and orientation
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of the body. The corresponding configuration space is denoted by C5. The problem is to find
a path in C3 such that the four joint angles are monotone. An explicit search of a discretized
Cs, as was done for instance in [10] for planar motion planning, will run into problems in this
case, because of the requirement of monotonicity. A given cell in C3 may have no monotone
path to any of its neighbors. For example, if one of the four joint-angles moves very little
(which happens often in practice for optimal postures), an effective constraint is imposed
on Cs, reducing its dimension. We have overcome this problem by allowing transitions from
a cell in C3 to any cell in some bounded region around the initial cell, so that a monotone
stride can be found. By increasing this region, more directions can be explored. The search
is performed with an A* search algorithm [7, 6].

We have checked the optimal postures generated, and have not found any posture that
does not allow a monotone path. We conjecture that such a path always exist, but have
not been able to prove this. In the presence of more restrictive joint limits than we have
considered here, monotone paths may not exist.

We have computed the optimal postures and their measures for various designs and for
various walking slopes. To compare various designs, we normalize the overall dimension of
the beast. We have taken our “standard” beast to have a body dimension of D = 0.25, and
the limb lengths are both 1.0. The maximum distance of a foot from the center of the body
is 2 4 ﬁ? which we will keep fixed when changing design parameters.

We have computed optimal posture for slopes ranging for —40° to 65° for body dimensions
D =0.25 and D = 0.5, for five combinations of [y /Il = 1/3,3/5,1,5/3,3. For angles outside
this range, no stride postures exist for the planar 3-beast.

The results for the energy measure are presented in tables 1 and 2 where we show the
values for the measure of the optimal postures found. A dash means that for this slope no
stride posture exists. Some of the optimal postures are drawn in figs 4 and 6.

The results for the velocity measure are presented in tables 3 and 4, and some of the
optimal postures are drawn in figs 5 and 7.

We give two examples of a monotone stride path in figures 8 and 9, where we also plot
the six joint-angles over the stride.

This raw data can be used in many ways to aid the design and control of the walking

robot. We draw the following conclusions.

e In many cases the optimal postures are the same for both measures, but not always.
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The optimal design for the link lengths for walking on a given slope, appears to be the

same for both measures that we considered.

Comparing the slope and design ranges where postures were found of table 1 and
table 2, or table 3 and table 4 indicates that the smaller body gives more mobility.
Note that this vconclusion is independent of the measure used, as it is determined

solely by the kinematics of the design.

The symmetric design with equal limb lengths is the most flexible, in that its slope

range is centered around 0°.

For steep slopes, one should choose unequal link lengths, a long upper limb being
favoured for walking downhill (or, equivalently, uphill with negative knee joint-angles),
and a long lower limb is better for walking uphill (or downhill with negative joint-

angles). However, the precise ratio should be carefully chosen.

There may be gaps in the slope range of a given design. This happens when the
geometry of the design is such that the limbs get in each others way.

For walking on flat terrain, the best design is a small body with equal limbs. the energy

consumption increases only a little for moderate slopes (up to 20° for D = 0.25, up to

15° for D = 0.5.

Surprisingly, the optimal locomotion we found is on a 45° slope with D = 0.5 and
[1/l; = 1/3. This particular configuration uses the body in the manner of a “wheel”,
which can be visualized by inspecting figure 9, where we show the intermediate postures

of the stride.
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(0.5,1.5) | (0.75,1.25) | (1,1) | (1.25,0.75) | (1.5,0.5)

-40 - - - - 21.27
-35 - - - - 9.65
-30 - - 9.24 - -
-25 - - 7.62 10.21 15.33
-20 - - 5.94 8.06 13.10
15 - 8.58 4.80 458 11.44
10 - - 4.44 4.44 9.33
5| 8.20 5.71 4.23 4.89 7.72
0 | 7.19 5.15 4.07 5.45 9.13
5 | 6.60 4.89 3.98 5.95 -
10 | 6.11 4.55 4.02 5.93 12.00
15| 5.75 4.22 4.31 6.37 -
20 | 5.54 4.00 4.43 7.48 -
25 | 5.53 3.90 4.69 9.94 -
30 | 5.74 3.82 - - -
35 | 6.58 3.75 - - -
40 | 9.06 3.83 - - -
45 - 3.93 - - -
50 - 4.02 - - -
55 - 3.95 - - -
60 - 4.33 - - -
65 - 3.89 - - -

Table 1: Values of energy measure for optimal postures for D = 0.25 for different slopes (top
to bottom) and different link lengths (/1,l2) (left to right).



(0.46,1.39) | (0.70,1.16) | (0.93,0.93) | (1.16,0.70)

25 - - - 4.48
-20 - - 6.46 4.52
15 - - 5.94 4.66
-10 - 8.45 5.35 4.90
5 - 7.34 5.07 6.18
0 - 6.74 4.50 8.31
5 12.97 6.30 457 12.43
10 | 10.03 5.68 473 -
15 8.33 5.05 41.91 -
20 6.69 4.56 9.20 -
25 5.51 4.43 - -
30 4.79 4.50 - -
35 4.27 4.76 - -
40 3.95 5.17 - -
45 3.68 5.75 - -
50 3.80 - - -
55 4.09 6.24 - ]
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Table 2: Values of energy measure for optimal postures for D = 0.5 for different slopes (top
to bottom) and different link lengths (/1,ls) (left to right). No postures exist for l;/ly = 3.



(0.5,1.5) | (0.75,1.25) | (1,1) | (1.25,0.75) | (1.5,0.5)

-40 - - - - 6.95
-35 - - - - 6.42
-30 - - 3.21 - -
25 - - 2.41 3.20 4.97
-20 - - 1.75 2.43 4.14
15 - 2.94 1.36 1.16 3.62
10 - - 1.24 1.11 2.89
5| 258 1.78 1.12 1.21 2.30
0 | 225 1.51 1.02 1.31 3.00
5| 2.06 1.42 1.03 1.63 -
10 | 1.86 1.23 1.10 1.93 5.20
15| 161 1.11 1.13 2.54 -
20 | 1.42 1.01 1.35 3.84 -
25 | 1.39 1.00 1.44 3.74 -
30 | 1.56 0.99 - - -
35 | 1.96 1.00 - - -
40 | 2.51 1.15 - - -
45 - 1.31 - - -
50 - 1.42 - - -
55 - 1.54 - - -
60 - 1.56 - - -
65 - 1.72 - - -

15

Table 3: Values of velocity measure for optimal postures for D = 0.25 for different slopes

(top to bottom) and different link lengths (/1,/2) (left to right).



16

(0.46,1.39) | (0.70,1.16) | (0.93,0.93) | (1.16,0.70)

25 - - - 1.16
-20 - - 1.86 1.14
15 - - 1.69 1.21
-10 - 2.63 1.48 1.32
5 - 2.30 1.26 1.51
0 - 2.00 1.12 2.22
5 3.96 1.82 1.17 3.95
10 3.00 1.54 1.23 -
15 2.43 1.32 1.30 -
20 1.90 1.14 2.85 -
25 1.51 1.13 - -
30 1.23 1.17 - -
35 1.10 1.27 - -
40 1.02 1.44 - -
45 0.96 1.88 - -
50 1.28 - - ]
55 1.62 2.17 - -

Table 4: Values of velocity measure for optimal postures for D = 0.5 for different slopes (top
to bottom) and different link lengths (/1,ls) (left to right). No postures exist for l;/ly = 3.



Figure 4:
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5:12.97 10:10.03 15:8.33 20:6.69
25:551 30:4.79 35:4.27 40:3.95
45:3.68 50:3.80 55:4.09 60:
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Optimal postures for energy measure. D = 0.5, [; = 0.46, [ = 1.4, slopes 5 to 60.



Figure 5:
60.
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5:3.96 10:3.00 15:2.43 20:1.90
25:151 30:1.23 35:1.10 40:1.02
45:0.96 50:1.28 55:1.62 60:

Optimal postures for velocity measure. D = 0.5, [; = 0.46, [, = 1.4, slopes 5 to
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-10:4.44 -5:4.23 0:4.07 5:3.98
10:4.02 15:4.31 20:4.43 25:4.69

Figure 6:
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Optimal postures for energy measure. D = 0.25, [; = [, = 1.0, slopes —30 to 25.



Figure 7:
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10:1.10 15:1.13 20:135 25:1.44
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Optimal postures for velocity measure. D = 0.25, [; = [, = 1.0, slopes —30 to 25.
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Figure 8: Optimal monotone stride path for D = 0.25, [y = [ = 1, on flat ground. We
show the six joint-angles, labeled according to leg number and knee or hip. They are plotted
against time ¢ over the stride. The time-scale is chosen for convenience. This posture is the

same for both measures.
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Figure 9: Optimal monotone stride path for D = 0.5, [; = 0.46, [, = 1.40, on a slope of
45% We show the six joint-angles, labeled according to leg number and knee or hip. They
are plotted against time ¢ over the stride. The time-scale is chosen for convenience. This

posture is the absolute best of all postures found, for both measures.



23

6 Conclusions

After reviewing the general framework for constructing performance measures, we have ana-
lyzed the performance of a two-dimensional walking machine, a lower dimensional version of
the Platonic Beast currently under development. We have devised a measure of the energy
efficiency of the locomotion of this “planar 3-beast”, assuming the main energy consumption
is due to internal gear friction, independent of the load. We have also devised a measure for
the maximum speed attainable by the robot.

We have computed optimal modes of locomotion for various designs on various slopes
and have shown that many things can be learned from an analysis of this type.

Our measure depends only on the global shape of the stride, and not on the detailed
path taken during the stride, with some restrictions (monotonicity). This means we can still
optimize a secondary criterion to chose among the many paths corresponding to the same
type of stride.

The analysis suggested that it may be advantageous to have adjustable link lengths, as
different slopes have different requirements.

We believe that this result generalizes to the three-dimensional case, and thus provides

a useful design criterion.
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