A Discrete Algorithm for Fixed-path Trajectory Generation at
Kinematic Singularities!

John E. Lloyd
Computer Science Dept., University of British Columbia
Vancouver, B.C., Canada
[loyd@cs.ubc.ca

Abstract

An agorithm is presented for computing the necessary
time-scaling to alow a non-redundant manipulator to fol-
low a fixed Cartesian path containing kinematic singular-
ities. The resulting trajectory is close to minimum-time,
subject to boundsonjoint velocitiesand accelerations. The
algorithm assigns a series of knot points aong the path,
increasing the knot density in the vicinity of singularities.
Appropriatepath vel ocitiesare then computed for each knot
point. Two experiments involving the PUMA manipul ator
are shown.

1. Introduction

The problem of kinematic singularities is a serious one
for seria link manipulators assigned to execute prescribed
Cartesian space tasks. Singularities are usually defined in
terms of the manipulator Jacobian J, which maps joint ve-
locities 9 into workspace velocities v. At a singularity, J
loses rank, and the process of inverting J to execute a pre-
scribed v may result in extremely high joint velocities and
accelerations.

A conventional way of handling singularitiesisto mod-
ify the cal culation associated with the Jacobian inverse (or
pseudo-inverse, for redundant manipulators), such as by
adding a damping term [8, 13, 4, 5, 7]. Other techniques
include directly eliminating degenerate degrees of freedom
from J [1] or using the Jacobian transpose [3] in place of its
inverse. These approaches to the singularity problem usu-
ally result in some deviation from the prescribed reference
path. Also, it can be difficult to keep joint velocities, and
moretroublesome, accel erations, within boundswithoutin-
curring sluggish performance.

Asan alternative, some recent work has focused on han-
dling singularities exclusively by time-scaling the tragjec-
tory, without deviating from the desired path unless that
path actually goes outside the workspace. If the path we
wishto follow isgiven by X(s), where s isascalar param-
eter, then the problem can be stated as follows:

Problem 1. Suppose a non-redundant manipulator is to
follow a path X(s) for which the corresponding inverse

! Presented at the | EEE I nternational Conferenceon Roboticsand Au-
tomation, Minneapolis, Minnesota, April 22-28, 1996

Vincent Hayward
Center for Intelligent Machines, McGill University
Montréal, PQ., Canada
hayward@cim.mcgill.ca

kinematic solution 9(s) is known. Then find a path tim-
ing s(¢) such that, for each joint ¥;, the induced joint ve-
locities and accelerations are bounded by |#;] < V; and
[9;] < A;, regardless of thepresence of singularities. Such
atimingwill be termed admissible.

Additional boundson s and § can be added by treating s as
an extrajoint coordinate (such asjoint “0”, with ¥, = s).
v; and ¥; arerelated to ¥;(s) by thechain rule:

0;=9i(s)s and 0y =)(s) 5 + 0] (s) 5%

At singularities, one or more 79}(5) or 79"/(5) may become
infinite, with seriousimplicationsfor J; and ;. Neverthe-
less, thefeasibility of solving Problem 1 in certain casesin-
volving 2R and 3R manipulatorswas studied in [9, 2]. The
general solvability of Problem 1 for paths which are piece-
wiseanayticisdescribed [6]. Loosdly stated, theideaisto
make surethat $ and s approach zero asfast asthe elements
of 9% (s) or 9% (s) approach infinity.

We present in this paper a discrete algorithm for com-
puting an approximate solution to problem 1. Its novelty
lies in being able to handle general paths, produce solu-
tionswhich are nearly time-optimal (subject to |9;| < V;
and |7§j| < Aj;), and do the required computations rather
quickly. The agorithm is named DAO (for Discrete Ap-
proximate Optimal-admissibletiming).

Rather than explicitly computing the path timing s(t),
theal gorithminstead computes s asafunctionof s; s(t) can
then be obtained as the solution to the differentia equation
ds/dt = f(s). Thisapproach makes it easier to incorpo-
rate constraints on thejoint accelerations. To obtainan s(t)
which is monotonically increasing, we require that s > 0,
with $ = 0 only at single points.

The reader may note that solving Problem 1 is, in prin-
ciple, equivaent to solving the fixed-path minimum-time
trajectory problem [12, 10]. Solutionsto the latter usually
consider actuator force/torquelimitsand thefull manipula-
tor dynamics, but do not work at singularities. Essentially,
the DAO agorithm solves a simplified (i.e., unit dynam-
ics) version of the fixed-path minimum-time problem, but
does so robustly at singularities. Presumably the algorithm
could be extended to incorporate dynamics, at the cost of
increased computation. However, it meets our immediate
objective, which isto make Cartesian paths containing sin-
gularities as redlizable as trapezoidal-vel ocity trgjectories
for joint paths.

2. Algorithm Overview

The algorithm is assumed to work in conjunction with a
discrete-time trgjectory generator which producesjoint po-
sition setpoints every 7" seconds. Assume that the path is
defined over some s interva [sa4, sg]. The agorithm se-
lects K knot pointss; € [sa, sg] and then computes, for
each one, avalue of s, denoted by ‘v;. This output is then
interpolated by the trgjectory generator to determine s for
each trgjectory sample, from which 9(s) is computed by
applying inverse kinematics to X(s). Interpolationisdone
by assuming that s is constant between knot points; it is
easy to show that thisis equivalent to assuming that s (s)
is piecewise-linear.

Ateach knot point s;, thea gorithm computesboth 9(s;)
and 9’ (s;). The latter can be computed from

9 (s;) = I(si) tu(sy), (N

whereu(s;) isthetangent to X(s;). Near singularities, one
or more ¥} (s;) may approach infinity. If J(s;)"tisavail-
ablein symbolic form, thiswill correspond to adivision by
a small number in some of the expressions. Otherwise, ro-
bust matrix inversiontechniques(such asthe singular value
decomposition) can be used to identify which v’ (s) blow
up. At present, such cases are handled by simply clipping
v’ (s;) to some large value of appropriatesign. A possibly
superior aternative, not yet implemented, would be to dis-
place s; slightly so that the affected v’ (s;) valuesarelarge
but not infinite.
Thealgorithm’ seffectiveness comesfromincreasing the
knot point density near singularities, as described bel ow.
The agorithm calculates the knot velocities ‘v; to be
as large as possible (to approach a time-optimal solution)
whiletrying to approximately satisfy |;| < V; and |¥;] <
Aj;. Specifically, the'v; areca culated to try and ensurethat
195 (s0)| <V)
and
|aji| < Ay, €)
where a;; iSthe average acceleration between the knots s;
and s; 41, under the assumption of constant s between knot
points. Average accelerations are used because (a) it obvi-
ates the need to cal cul ate second-order solution derivatives
and (b) it has been experimentally observed to yield good

timing results.
The ‘v; are computed in severa stages:

1. Sedlect theknot pointss;.

2. Assign initia knot velocities, denoted by “;, to sat-
isfy (2) and approximately satisfy (3).

3. Forward pass. fori = 1to K, tryto satisfy (3) by re-
ducing the %;, producing a new set of velocities /;.

4. Backward pass. for i = K downto 1, complete the
enforcement of (3) by reducing the /v;. Thisyields
thefinal velocities®v;.

By properly chosing theinitial %;, it can be proven that
the subsequent forward and backward passes will then en-
sure satisfaction of (3).

3. Knot point selection

Knot selection is at the heart of the gorithm. The ideais
to start with some nominal set of knots, and then increase
theknot density appropriately in regionswhere the path so-
[utionis highly non-linear (e.g., near singularities).

What makes thiswork isthe fact that the trgjectory gen-
erator interpolating the algorithm output works in discrete
time, and so the difference between successive position set
points must always be finite (as noted in [11]).

Now observe that the average velocity J; of joint v;
during the travel from knot s; to s;41 iSgiven by

5. = Uilsivr) = U;(si)

i= N : (4)

Thisleadsto the velocity rulefor knot point selection: if the
knots are spaced closely enough that

[0 (si41) — J;(s:)| < V3T, (5

where 7" isthe trgjectory sampleinterval, then if thetransit
time between knotsislessthan or equal to 7", the associated
average velocity will be within bounds.

The acceleration ruleisabit more complicated but sim-
ilarly motivated; details of itsrational can be foundin[6].
Letting As; = s;41 — 4, enough knot pointsare added so
that for each ¢, either

AT?
|9 (si41) — 9 (si)] < Ajsi (6)
or
AT?
|9 (si41) = 05(si)] < =5 @)

issatisfied. Relation (7) keepsthe number of knotsbounded
in cases where 9% (s;4.1) or 9% (s;) become very large.

Knot point creation is currently implemented using a
simple bisection strategy where new knots are inserted be-
tween existing ones until boththeve ocity rule (5), and one
of the acceleration rules ((6) or (7)), are satisfied. Aslong
asthe path solution#(s) is continuous, the process isguar-
anteed to converge. Performance of the algorithm is also
enhanced by placing a specific knot point very closeto any
path singularity which is encountered.

Theseknot selectionrulesare heuristicly based and have
been experimentally confirmed to yield good results, with-
out creating an unmanageable number of knots. An error
analysisis presently being studied.

4. Constraintson v;

In this section, we describe what constraints on individual
knot velocities v; are necessary to satisfy (2) and (3).

First, it is necessary that v; < b;, where

bi = min(@Qji), ®)
and
% if ¥ (s;) isnot closeto 0,
o i Gthewise
2|07 (s4)] '

From the chain rule J; = ¥/ (s)3, it can be seen that the
upper definitionof);; enforces (2). At zerosof ¥ (s;), the
chain rule expression for ¥; reduces to 20 (s)s?, and o
enforcement of (3) requiresthelower definition of @) ;; (for
which an estimate of 9%/ (s;) can be obtained by applying
finite differences to nearby ¥’ (s;) values).

At singularitieswhere one or more ¥’;(s;) approach in-
finity, b; will approach zero. In such cases, setting b; to
zero does not by itself guarantee that J; will be bounded
(since s no longer specifies J; uniquely [6]), but the action
of therest of thealgorithmwill in fact ensurethat al ; are
brought to zero (although see Section 9 in thisregard).

Next, consider the constraint (3). If At isthetravel time
between knots s; and s; 11, then the associated average ac-
celeration a;; is given by

Uj(sit1) = 9y(si)

3 = 9
a] At ()
Becauseitisassumed that s isconstant between knot points,
2As;
Al = 2% (20)
Vi + Vg1

For notational convenience, let f; = ¥’(s;) for some spe-
cific coordinate ¥;, and let Af; = fi+1 — f;. Then sub-
stituting (10) into (9) and applying the chain rule J; =
V% (s)$, we obtain

Jig1vip, + Afivigivi — fiv] — 2As;a5; = 0.
(11)

For any givenvalueof a;;, thisrepresentsahyperbolainthe
vi-v;4+1 plane. We define an admissible sub-region W; ; to
be the set of (v;, viy1) for which |@;;| < A;. Thisregion
is bounded by the two hyperbolas corresponding to a;; =
+A4; in(11), ssillustrated in Figure 1.

Theregion inthe v;-v; 11 planefor which constraint (3)
issatisfied for all jointsis called the admissible region W;
and is defined by

WZ' = ﬂ Wj,i~
J
Finally, acompleteadmissibleregion W; can be defined
which also satisfies the constraint (2), a ong with the addi-
tional requirement that each v; be non-negative, by inter-
secting W; with the square defined by 0 < v; < b; and

Ui

Gy

.

-4 0 4 8

//

FIGURE 1. A sub-region W;; (shown in grey) corre-
spondingto f; = 2, fiy1 =1, A; = 6,and As; = 2.

0 < vip1 < biy1 (seeFigure 2). Any (v, vip1) € WF
therefore satisfies both constraints (2) and (3).

Vi41
8

2 4 6 8

Ui

FIGURE2. A completeadmissibleregion W! givenby the
intersection of several W; ; and the square defined by 0 <
Uy S b; and 0 S Vi41 S b,‘+1, for b;=5 andb,'_H =4,

The objective of the DAO agorithm can now be re-
stated: try to make the output knot velocities ‘v; as large
as possible subject to (*v;, “v;11) € Wf. To do this, the
following computations on the W; and W) are necessary:

1. Intersect W; with afixed v;;

2. Intersect W; with afixed v;41;

3. Computethe vertices of Wy .

Details on these cal culations are given in Appendix A.
5. Determining initial velocities

After the knots have been selected, each oneisassigned an
initial velocity %;. Thisisdone by first computing a point
(w; 1, w; o) ineach W that maximizes v; + v;41 (to help
minimize the implied travel time between s; and s;41). It
can be shown [6] that such a point must lie on a vertex of

W, the computation of which isdescribed in section A.3.
The %; are then calculated as follows:
bUl = Wi,
for:from2to K —1:
f; := min(wi 1, wi—12);
bUK = WK -1,2;

Notethat resulting pairs (%v;, ;1) may not necessarily
be contained in W;. However, since the seed (w; 1, w; 2)
iscontained in Wy, it can be proven [6] that the subsequent
forward and backward passes of the agorithmwill yield fi-
nal velocities 'v; whose pairs are a'so contained in W .

6. Forward and Backward Passes

The forward pass computes a new set of velocities /v; :

fU1 = bvl;
for:from1to K — 1:

y = max{vit1 : 0 < vit1 < ig1, (Foi,vip1) € Wil

if (y # 0) then
fUi-I-l =y,
else
fUi-I-l = bUi-I-l;

In other words, for each 4, counting up from 1, fv; ;4 is
nominally set to ;1. Thenif (fv;, fv;11) ¢ Wi, and this
can be corrected by lowering /v; ;1 , we do so. The compu-
tation involves determining the admissible v; +; valuesfor
agiven fv;, as described in Section A.1.

The backward pass repeats thisin the reverse direction:

fog 1= fUK;
for z from K’ — 1 downto 1:
fo; := max{v; : 0 < v; < To;, (vi, Toip1) € Wil

In other words, for each i descending from K, tv; is nomi-
naly setto /v;. Thenif (‘v;, ';41) € Wi, thisis corrected
by lowering *v;. That such acorrection is aways possible
follows from the above-mentioned proof in [6]. The com-
putation involves determining the admissible v; values for
agiventv;, 1, asdescribed in Section A.2.
Note that since these passes only reduce velocities,

(tvi, th_l) e W; |mp|IES(th, th_l) € Wz*

7. Algorithm Summary

Input: Continuous path solutiond(s) defined on [s 4, sp].

Output: A set of path velocities ‘v; defined for K knot
pointss; € [sa,sg], implicitly specifying an ap-
proximately optimal admissible path timing s(¢).

Sep D1. (Knot point selection). Create K knots s;, with
s1 = s and sg = sp, S0 asto saisfy the veloc-
ity and acceleration rules described in Section 3. If
possible, insert a knot point close to each path singu-
larity.

Sep D2. (Initialization). Compute the initial knot veloci-
ties; as described in Section 5.

Sep D3. (Forward pass). Starting at ¢ = 1, compute the
knot velocities fv; as described in Section 6.

Sep D4. (Backward pass). Working backward from i =
K, compute the ‘v; as described in Section 6.

7.1. Complexity. If K isthe number of knotsand M the
number of joint coordinates, then step D2 has the worst
complexity, O(K M?), due to the O(M?) complexity of
computing the vertices of each WW; (Section A.3). A more
efficient calculation may be possible, but has not yet been
investigated.

8. Experimental Results

Numerous experiments are described in [6] involving pla-
nar 2R and PUMA robots; only a couple involving the
PUMA will be shown here. Both involve paths where s
isthetrandationa arc length, and were undertaken with a
trgjectory sample period of 7' = 50 msec, and V; = 60
deg/sec and A; = 150 deg/sec? for al robot joints. Con-
straints|s| < 1 and |$| < Ay were also imposed by treat-
ing s as an additiona joint coordinate ¢, with V4, = 200
mm/sec and A, = 700 mm/sec’. Computationswere done
in 64-bit double precision, and large values of V' (s;) were
clipped to 108. Each experiment isillustrated by a PUMA
stick figure animation, and plots of selected velocities as
functions of time, before and after application of the DAO
algorithm. To make it easier to judge agorithm perfor-
mance, velocity profiles are scaled as shown in Figure 3.

maximum

791 velocities \
t/ maximum joint
M acceleration
S
maximum path t

accelerations

FIGURE 3. Velocity plots are scaled so that velocity and
acceleration constraints appear as shown here. Accelera-
tion limits correspondto a slope of £1 for robot joints and
+2 for s.

The example of Figure4 involvesthe PUMA elbow sin-
gularity. Computationswere done for A/ = 4 (¥; through
U3, and ¥g = s), required 206 knots, and took 181 msec
on a Silicon Graphics “Indy” workstation with an R4600
CPU rated at 11 Mflops. The example of Figure5involves
the PUMA shoulder singularity. Computationswere again
donefor M = 4, required 217 knots, and took 149 msec.

These results, typica of a larger body of tests, indi-
cate that the algorithm doesin fact produce atiming which
meets the ideal constraints |;| < V; and |[J;| < A; very
tightly, while being quite close to optimal. Thelatter state-
ment can be verified by noting that in the resulting trg ecto-
ries, one or more coordinatesis always close to saturation
with respect to either itsvel ocity or accel eration constraint.

'/ actual path
followed

R
Vs
s [
it
R
Vs

FIGURE 4. Parabolic reference path, in the plane z = 0,
which leaves and then reenters the robot workspace. The
actual path follows the boundary when the reference path
goes outside of the workspace. Upper plots show 92, 95
corresponding to a constant path velocity $; spikes corre-
spond to the elbow singularity where the reference path
leavesor entersthe workspace. Lower plots show the mod-
ified velocities produced by the DAO agorithm.

9. Conclusion

The DAO dgorithm demonstrates the practical feasibility
of handling singularitiesin fixed-path trgectories by time
scaling alone. The present implementation appearsto give
excellent results in terms of achieving near-optima solu-
tionswhich honor the vel ocity and accel eration constraints.

There is one aspect in which the algorithm is not opti-
mal: a asingularity where one or more ¥/’ (s) approaches
infinity, all jointsare brought to rest, whereasin some (less
common) cases, the optimal solutioncallsfor the*most sin-
gular” joints to have non-zero velocities. This problem,
discussed in [6], should be corrected.

Other work on the method can be done along the fol low-
ing lines: (8) improving the knot selection process, bothin
terms of theoretical understanding and trying to reduce the
number of knots (since we have no reason to believe that
the number of knots selected isoptimal), and (b) smplify-
ing the computati onsand making them morerobust, includ-
ing possibly replacing all derivative cal cul ations with ones
involving only finite differences of ¥(s).

Iy
Iy
s/ / \
[
Iy
Iy
s
[

FIGURES. A straight linereference path, intheplanez =
150, which cutsthroughthe cylindrical void in the center of
the workspace. When the reference path is inside the void,
theactual pathis projected onto the boundary cylinder. Up-
per plots show 91, 9> corresponding to a constant path ve-
locity; spikes correspond to the shoulder singularity where
the path intersectsthe cylinder. Lower plots show the mod-
ified velocities produced by the DAO agorithm.

Generdlizations of the DAO agorithm to include the
full mani pul ator dynamics, and hence actuator force/torque
congtraints, may also prove useful.

Acknowledgement

Thiswork was supported by the Institute for Roboticsand Intelligent Sys-
tems(IRIS) of Canada’sCentersof ExcellenceProgram (NCE), and by the
Natural Sciencesand Engineering Research Council of Canada (NSERC).

References

[1] E. W. Aboaf and R. P. Paul, “Living with the Singularity of Robot
Wrists.” Proceedingsof the 1987 |EEE International Conferenceon
Robotics and Automation, pp. 1713 - 1717.

[2] C. Chevallereau and B. Daya, “A New Method for Robot Control

in Singular Configurationswith Motionin any Cartesian Direction.”

Proceedingsof the 1994 | EEE | nter national Conferenceon Robotics

and Automation, pp. 2692 - 2697 (Vol. 4).

Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciavicco, Bruno

Siciliano, “Closed-Loop Inverse Kinematics Schemes for Con-

strained Redundant Manipulators with Task Space Augmentation

and Task Priority Strategy”. International Journal of Robotics Re-

search, August 1991, pp. 410 - 425 (Vol. 10, No. 4).

S. Chiaverini, O. Egeland, and R. K. Kanestrom, “Achieving User-

defined Accuracy with Damped L east-squares Inverse Kinematics.”

[3

=

[4]

=

Fifth International Conference on Advanced Robotics (91 ICAR),
Pisa, 1991, pp. 672 - 677.

[5] A.S. Deoandl. D. Walker, “ Adaptive Non-linear Least Squaresfor
Inverse Kinematics.” Proceedings of the 1993 |EEE International
Conference on Robotics and Automation, pp. 186 - 193 (Vol. 1).

[6] J. E. Lloyd, Robot Trajectory Generation for Paths with Kinematic
Singularities. Ph. D. dissertation, Department of Electrical Engineer-
ing, McGill University, January 1995.

[7] A. A. Maciglewski and C. A. Klein, “Numerical Filtering for the
Operation of Robotic Manipulatorsthrough Kinematically Singular
Configurations.” Journal of Robotic Systems, December 1988, pp.
527-552 (Val. 5, No. 6).

[8] Y. Nakamura and H. Hanafusa “Inverse Kinematic Solutions with
Singularity Robustnessfor Robot Manipulator Control.” Journal of
Dynamic Systems, Measurement, and Control, September 1986 pp.
163-171 (Vol. 108, No. 3)

[9] L. Nielsen, C. Canudas de Wit, and P. Hagander, “Controllability
Issues of Robots near Singular Configurations.” Advancesin Robot
Kinematics, 2nd International Workshop, Linz, 1990, pp. 283 - 290.

[10] F. Pfeiffer and R. Johanni, “A Concept for Manipulator Trajectory
Planning.” IEEE Journal of Robotics and Automation, April 1987,
pp. 115 - 123 (Vol. RA-3, No. 2).

[11] E. D. Pohl and H. Lipkin, “A New Method of Robotic Motion Con-
trol near Singularities.” Fifth International Conferenceon Advanced
Robotics (91 ICAR), Pisa, 1991, pp. 405 - 410.

[12] K. G. Shin and N. D. McKay, “Minimum-time Control of Robotic
Manipulatorswith Geometric Path Constraints.” |EEE Transactions
on Automatic Control, June 1985, pp. 531-541 (Vol. AC-30, No. 6).

[13] C. W. Wampler Il and L. J. Leifer, “Applications of Damped L east-
squares Methods to Resolved-rate and Resolved-acceleration Con-
trol of Manipulators.” Journal of Dynamic Systems, Measurement,
and Control, March 1988, pp. 31-38 (Vol. 110, No. 1).

Appendix A.

A.l. Intersecting W; with a fixed v;. This amounts to
finding al the v;y; that are admissible for afixed v;. One
can compute the answer for each sub-region W; ; and then
intersect theresults. In[6] it is shown that, for a particular
W; i, the admissible v;4, are contained within two inter-
vas[A— B* A— B]and[A+ B~, A+ B*], where

Bt — \/(fz + fit1)?02 + C;

2| fis]
_ i H fia)P =G
BT =
2| fisnl
A= ZBIY ad = 8] AsiA,
2fit1

If (fi + fiq1)?v? —C; <0, thisreducestoasingleinterval
[A— BT A+ BY]. If fiy1 = 0, theinterval becomes
QASZ'A]' QASZ'A]'
|filvi |filvi |

A.2. Intersecting W; with afixed v; 1. Thisamountsto
finding al the v; that are admissible for afixed v; 1. The
computations are the same as those described in the previ-
ous section, except with v; and v; 4 interchanged, f; re-
placed by — fi+1, and f;+1 replaced by — f;.

—v; — v +

A.3. Computing the vertices of Wy . These are points
on the boundary of W; corresponding to the intersections
of the hyperbolic curves and straight lines comprising the

boundary. At present, the vertices are computed in a brute
force way, by finding al such intersections and then dis-
carding those not on the boundary. First, thelinesv; = 0,
v; = by, Vil = 0, and Vil = bi+1 have 4 intersection
points. Intersecting these with the hyperbolic boundaries
of the W; ;, using the equations of sections A.1 and A.2,
yields an additional 10 points, where M is the number
of joint coordinates. Now for the intersections of the hy-
perbolas themselves: Suppose there exist two regions W ;
and W, ;, corresponding to coordinates ¢/; and ¢, whose
boundaries are described by the two pairs of hyperbolas
represented by

fir1vi1 + Afivigrvi — fiv] = £2As8;A;,

Git1Vip1 + Agivig1vi — giv; = £2As; Ay,

where f; = V' (s;) and g; = ¥}, (s;). It can then be verified
that al the intersection points (v;, v;+1) between the two
boundaries are given by

vip1 = a'(f,‘Hk —gl‘HJ)\/ZAS,‘

VIfirrgi — figinall(gi + giv1)Hy — (fi + fig1) Hi

o(gip1 Hy — fiy1 Hi)V/2As;

VIfirrgi — figinall(gi + giv1)Hy — (fi + fig1) Hi
wherec = +1, and Hj = :I:Aj and H, = +A;. This
gives eight solutions, only two of which (it can be shown)
may correspond to vertices of W;. Among al M sub-
regions W; ; we then have at most A/ (M — 1) such points,
and the total number of intersections among al bounding
lines and curves is therefore bounded by M? + 9M + 4.

Checkingif apointison the boundary isdone by bound-
ing box tests, interval merging, and (lastly) checking to see
if it is contained within &l the sub-regions W, ; by seeing
if it satisfies the associated equations

|fi+1012+1 + Afivigivi — fle2| < 2As;A;5.
Since there are M such equations, the overall complexity
of computing the verticesis O (M?).

v; =

