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Abstract: Partially-observable Markov decision processes provide a very general
model for decision-theoretic planning problems, allowing the trade-offs between various
courses of actions to be determined under conditions of uncertainty, and incorporating
partial observations made by an agent. Dynamic programming algorithms based on the
information or belief state of an agent can be used to construct optimal policies without
explicit consideration of past history, but at high computational cost. In this paper, we
discuss how structured representations of the system dynamics can be incorporated in
classic POMDP solution algorithms. We use Bayesian networks with structured condi-
tional probability matrices to represent POMDPs, and use this representation to structure
the belief space for POMDP algorithms. This allows irrelevant distinctions to be ignored.
Apart from speeding up optimal policy construction, we suggest that such representations
can be exploited to great extent in the development of useful approximation methods. We
also briefly discuss the difference in perspective adopted by influence diagram solution
methods vis à vis POMDP techniques.
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1 Introduction

One of the most crucial aspects of intelligent agenthood is planning, or construct-
ing a course of action appropriate for given circumstances. While planning models
in AI have attempted to deal with conditions of incomplete knowledge about the
true state of world, possible action failures and multiple goals, only recently has
work on planning begun to quantify such uncertainties and account for competing
objectives. This increased interest in decision-theoretic planning has lead to plan-
ning algorithms that essentially solve multistage decision problems of indefinite
or infinite horizon. As a result, representations commonly used in the uncertain
reasoning community, such as Bayes nets (BNs) influence diagrams (IDs), and
their equivalents, have been adopted for planning purposes [6, 7, 14, 2] (see [1]
for a brief survey).

A useful underlying semantic model for such DTP problems is that of par-
tially observable Markov decision processes (POMDPs). This model, used in
operations research [15, 10] and stochastic control [3], accounts for the tradeoffs
between competing objectives, action costs, uncertainty of action effects and ob-
servations that provide incomplete information about the world. However, while
very general, these problems are typically specified in terms of state transitions
and observations associated with individual states — even specifying a prob-
lem in these terms is problematic given that the state space of the system grows
exponentially with the number of variables needed to describe the problem.

Influence diagrams and Bayesian networks [8, 12] provide a much more nat-
ural way of specifying the dynamics of a system, including the effects of actions
and observation probabilities, by exploiting problem structure, via independencies
among random variables. As such, problems can be specified much more com-
pactly and naturally. In addition, algorithms for solving influence diagrams can
exploit such independencies for computational gain. Unfortunately, one of the
difficulties associated with ID solution methods is the association of a policy with
the observed history of the agent: at any stage, the best decision is conditioned
on all previous observations made and actions taken. Thus, while an exponential
blow-up in the state space is partially alleviated, the size of a single policy grows
exponentially with the horizon.

POMDP algorithms from the OR community adopt a very different perspec-
tive on the problem. The agent’s observable history is not explicitly recorded;
rather, a belief state or probability distribution over the state space is constructed
that summarizes this history. At any stage, the agent’s belief state is sufficient to
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determine the expected value of any subsequent action choice [15]. By converting
a partially observable process into a completely observable process over the belief
space, history independent dynamic programming algorithms can be used. While
this belief space is continuous, Sondik [15, 17] has shown that properties of this
space can be exploited that give rise to finite algorithms for solving POMDPs (by
partitioning the belief space appropriately). These algorithms are very compu-
tationally intensive, relying on representations of (parts of) value functions and
belief states that require entries for every state of the system. In addition, the
number of partitions needed may grow exponentially with the horizon. Because
of this, current algorithms are only feasible for problems with tens of states [5].

In this paper we propose a method for policy construction based on the usual
POMDP solution techniques, but that exploit representations to reduce the “effec-
tive” state space of a problem. We assume a structured state space (in contrast to
usual POMDP formulations) generated by a set of random variables, that actions
have relatively local effects on variables and observations and that rewards and
costs are also structured. This allows BNs and IDs to represent large problems
compactly. In addition, we use tree-structured conditional probability and utility
matrices — or equivalently rules — to represent additional structure in the inde-
pendence of variable assignments. We will use this representation to identify the
relevant distinctions in the state space at any point in our POMDP algorithm. As
a result, the values associated with a collection of states may be represented once.

For example, suppose that we have identified the fact that at a certain stage
of the process that only variable

�
has an effect on subsequent expected value.

Furthermore, assume that for a given action � only variables � and � influence
the probability of

�
under action � . In addition, suppose that if � is true, the effect

on � is independent of � . Then the expected value of action � at the previous
stage is the same at all states satisfying � , at all states satisfying ������� and
���	�
��� . In other words, the value of � depends only on the probability of these
three propositions. Thus, only three values need be computed.1 This structure
can be identified readily from a Bayesian network representation of action � (we
will use structured conditional probability matrices as well). Thus, by using the
structure of the problem, we can identify the relevant distinctions at any stage of a
problem, and perform computations once for the entire collection of states where
the distinctions are irrelevant to utility calculations. We note that the algorithm we
use exploits the partitioning ideas of the Structured Policy Iteration algorithm of

1We ignore possible observations in this motivating example.
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[2]. This paper essentially extends these ideas to account for partial observations
of the state, and applies them in a piecewise fashion to the components of a value
function (as we describe below).

Our algorithm solves the question of compactly representing belief states and
value functions, without specifying or computing separate values for each state
(the state space is exponential in the number of variables). It does not address the
question of a potentially exponentially growing (in the horizon) partitioning of the
state space. In general, this growth may be necessary to ensure optimality. That
is, an optimal policy may be very fine-grained. Our algorithm does not sacrifice
optimality, it merely exploits problem structure in optimal policy construction.
Avoiding the exponential blow-up in the partitioning of the belief space necessar-
ily involves approximation. While we do not address this question here, the use of
structured representations that identify and quantify relevant distinctions provides
tremendous leverage for approximation techniques. For instance, if certain dis-
tinctions are to be ignored, a structured value function representation allows one
to quickly identify which variables (conditionally) have the most or least impact
on value.

Section 2 briefly contrasts the perspectives adopted in the POMDP and ID
formulation of decision problems. In Section 3, we describe POMDPs and our
two-stage belief network representation of a POMDP. In Section 4, we describe a
particular POMDP algorithm due to Monahan [10], based on the work of Sondik
[15, 17]. We choose this algorithm because it is conceptually simple and easy to
present in the restricted space available. In Section 5, we describe how we can
incorporate the structure captured by our representations to reduce the effective
state space of the Monahan algorithm at any point in its computation. We provide
some concluding remarks in Section 6.

2 POMDPs and Influence Diagrams

In this section we clarify some distinctions underlying the POMDP and ID ap-
proaches to the representation of partially observable decision problems.

History vs. Belief State: In a fully observable Markov decision problem, the
decision maker or agent can accurately observe the state of the system being
controlled. Under the Markov assumption this observation is the only information
required to make an optimal action choice. In a partially observable setting, the the
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agent only gets noisy, incomplete observations about the true nature of the state.
An optimal action choice cannot be made on the basis of its current observations
— the agent’s past action and observations are relevant to its decision, for they
influence its current state estimate.

There are two distinct approaches to incorporating this past history in the
decision process.

1. The agent can condition its action choice explicitly on its past history.
Under this approach, a decision is conditioned on all previous actions and
the current and past observations. This model is adopted in the solution
of influence diagrams [8], where it is called the “no forgetting” principle.
Suppose we have a set of possible observations � that can be made at
each stage and a set of actions  . At stage � (after ��� 1 decisions have
been taken), a policy maps each possible history into an action choice;
i.e., ������������ 1 ���  . Using the dynamic programming principle, we can
optimize the action for each history (element of ������������ 1 � ) independently.
Since � and  are finite, at each stage � , � � � �! ��� 1 � is finite. Unfortunately,
this results in exponential growth in policy specification (and computation).

2. The agent might instead maintain a belief state, or distribution over possible
current system states, summarizing its history (as we elaborate below).
Under this approach, the action choice is conditioned on the agent’s current
belief state. Given " system states, the set of belief states is #%$ � 1 (assigning
a probability to "&� 1 of the states — the probability of the other state can
be derived from this); and a policy is a function from belief states to actions
(i.e., # $ � 1 �  ). Again, we can make an optimal decision for each belief
state independently. While the domain of the policy function does not grow
with the stage, it is an "'� 1-dimensional infinite space. This approach to
policy formulation is adopted by POMDP solution algorithms in the OR
community, but requires some method of dealing with this uncountable
belief space.

What is a state? Another distinction between POMDP and influence diagram
specifications of a partially observable problem lies in the notion of a state. In
the POMDP formulation, states are taken to be states of the core process, or
system being controlled. Actions taken and observations made are viewed as
external to the system and are not part of the system state. The system state
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is sufficient to render the effects of actions independent of past history. Action
choices and observations are modeled at a meta-level. Given some action choice
and observation, Bayes rule is used to update the belief state: observations just
change the probability distribution of the states.

In the BN/ID tradition, the observation made is a random variable and makes
up part of the “state” in addition to the variables that define the core process (the
observation is often added as an “extra” variable [12]). Taking the state space
to be the joint probability space, in these models an observation simply makes
some states impossible; conditioning on the observations involves setting these
inconsistent “expanded” states to have probability zero, and renormalizing. The
same representation is adopted for actions: the action choice at any stage is a
variable that again constitutes part of the “expanded” state space. The value
of this variable, however, is chosen by the agent and is “independent” of other
variables.

3 POMDPs and Structured Representations

In this section we review the classic presentation of POMDPs adopted in much of
the operations research community. We refer to [15, 17, 9, 5] for further details
and [10, 4] for surveys. We then describe how structured representations adopted
by the AI community can be used to represent factored state spaces.

3.1 Explicit State Space Presentation

We assume the dynamics of the system to be controlled can be modeled as a
POMDP with a stationary (stage-independent) dynamics. We assume a finite set
of states ( that capture all relevant aspects of the system, and a set of actions 
available to the agent or controller. For simplicity we assume all actions can be
taken (i.e., attempted) at all states. While an action takes an agent from one state
to another, the effects of actions cannot be predicted with certainty; hence (slightly
abusing notation) we write Pr �)� 2 * � 1 + � � to denote the probability that � 2 is reached
given that action � is performed in state � 1. These transition probabilities can be
encoded in an * ( * � * ( * matrix for each action. This formulation assumes the
Markov property for the system in question.

Since the system is partially observable, the planning agent may not be able
to observe its exact state, introducing another source of uncertainty into action
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selection. However, we assume a set of possible observations � an agent can
make. These observations provide evidence for the true nature of various aspects
of the state. In general, the observation made at any stage will depend stochastically
on the state, the action performed and the outcome of the action at that stage. We
assume a family of distributions over observations for each �-, + �/. + �10 such that
Pr �)�/. * �2, + �30 �54 0. We let Pr ��687 * �-, + �30 + �/. � denote the probability of observing 697
when action �30 is executed at state �2, and results in state �/. . As a special case, a fully
observable system can be modeled by assuming �;:<( and Pr �)6 7 * � , + � 0 + � . � : 1
iff 6 7 :;� . . We assume for simplicity that the observation probability depends
only on the action taken and the starting state, not the resulting state; that is,
Pr �)6 7 * � , + � 0 + �9= � : Pr ��6 7 * � . + � 0 + �8= � for each � , + � . .

Finally, we assume a real-valued reward function � that associates rewards or
penalties with various states: ���)� � denotes the relative goodness of being in state � .
We also assume a cost function >���� + � � denoting the cost of taking action � in state
� . (For our purposes, it suffices to consider rewards and penalties separately from
action costs.) A plan or policy is a function that determines the choice of action at
any stage of the system’s evolution. A policy is optimal (for a specified horizon
or number of stages) if it maximizes the expected value of the system trajectory it
induces; that is, it maximizes the expected rewards accumulated (where “reward”
incorporates both action costs and state rewards and penalties).

The appropriate action choice requires that an agent predict the expected effects
of possible actions and the expected value of the states visited for a given (sequence
of) action choice(s). Although the utility and the possible actions depend only on
the current state, the whole history is relevant to our beliefs about the current state.
As mentioned above and adopted in ID algorithms, a policy can be represented
as a mapping from any given initial state estimate and sequence of actions and
observations over the previous " stages to the action for stage "@? 1. However, an
especially elegant way to treat this problem is to maintain a current belief state as
described above.

Intuitively, a belief state A is a tuple BCA 1 +2D2DED A $GF where AH, denotes the prob-
ability that the system is in state �2, . Because of the Markov assumption, this
belief state is sufficient to predict the expected effects of any action on the state
of the system. Thus, given some state of belief A 0 characterizing our estimate of
the system state at stage I of the decision process, we can update our belief state
based on the action � 0 taken and observation 6 0 made at stage I to form a new
belief state A 0KJ 1 characterizing the state of the system at stage I�? 1. Once we
have A 0KJ 1 in hand, the fact that � 0 , 6 0 and A 0 gave rise to it can be forgotten. We
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use LM��A + � + 6 � to denote the transformation of the belief state A given that action
� is performed and observation 6 is made: it is defined as

L@�)A + � + 6 � ,�:
N

�POKQSR Pr ��6 * � . + � + � , � Pr ��� , * � . + � � A .N
�POUT �WVUQ/R Pr ��6 * �E. + � + �80 � Pr ���80 * �/. + � � AX.

LM��A + � + 6 � , is the probability that the system is in state Y after action � is taken and
observation 6 made, given prior belief state A .

It is easy to see that LM��A + � + 6 � summarizes all necessary information for sub-
sequent decisions. This is the essential assumption behind classical POMDP
techniques: at any stage of the decision process, assuming A 0 accurately summa-
rizes past actions and observations, the optimal decision can be based solely on
A 0 . Intuitively, we can think of this as converting a partially observable MDP over
the original state space ( into a fully observable MDP over the belief space Z (the
set of belief states A ). We will review policy construction techniques in the next
section.

3.2 Two-Stage Belief Network

Although one can formulate a problem as an explicit POMDP, it is unreasonable
to expect a problem to be specified in such a manner, since state spaces grow
exponentially with the number of variables relevant to the problem at hand. The
explicit formulation requires on two specify a * ( * � * ( * probability matrix for
each action describing transition probabilities, a * ( * � * � * probability matrix for
each action � describing observation probabilities, and * ( * action cost and reward
vectors. Regularities in action effects and reward structure will usually permit
more natural and concise representations.

Consider the following simple example: we have a robot that can check
whether a user wants coffee and can get it by going to the shop across the street.
The robot is rewarded if the user wants coffee WC and has coffee HC, but is
penalized if HC is false when WC is true. The robot will also get wet [ if it is
raining � when it goes to get coffee, unless it has its umbrella \ . We can imagine
a number of other tasks here as well. Although the robot can check on the weather,
grab it umbrella, etc., we focus on two actions: getting coffee GetC and checking
whether the user wants coffee by means of a quick inspection TestC.

We represent the dynamics of a state using a “two-slice” temporal Bayes net
[6]: we have one set of nodes representing the state of the world at prior to the
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Figure 1: Action Networks for (a) GetC and (b) TestC

action (one node for each state variable
�

), another set representing the world after
the action has been performed, and directed arcs representing causal influences
between the these sets. In addition, we have a distinguished variable representing
the possible observations that can be made after performing the action. The
variables that influence the observation are indicated by directed arcs. We use
Obs �)� � to denote the set of observations possible given � .

Figure 1 illustrates this network representations for the actions GetC (a) and
TestC (b). Although, we only require that the graph be acyclic, for ease of
exposition we assume here that the only arcs are directed from pre-action variables
to post-action variables.2 The post-action nodes have the usual matrices describing
the probability of their values given the values of their parents, under action ] .
We assume that these conditional probability matrices are represented using a tree-
structure (or if-then rules) as done in [16, 13]. This representation is exploited
to great effect in [2] in the solution of completely observable MDPs. We will
adopt the same ideas below. The tree representation of the matrix for variable
[ is illustrated in Figure 1(a), illustrating how asymmetries are exploited. The
tree associated with proposition

�
in the network for an action ] is denoted

L_^a`8`a� � * ] � . The observation variable in this action has a single value – GetC
provides no information about the true state of the world. The TestC action has

2Causal influences between post-action variables should be viewed as ramifications and will
complicate our algorithm slightly, but only in minor detail, not in conceptual understanding.
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no effect on the core state variables, but does provide information about the user’s
coffee preference: an observation Yes indicates WC and No indicates WC (with
the specified errors).

It is easy to see how a set of action networks can be put together into a single
network with a decision node, corresponding to an influence diagram. We add a
decision node denoting the choice of action, with arcs to each post-action node.
The conditional probability tree for each such node

�
has the action choice as a

root, and Lb^a`8`c� � * ] � is attached to the branch at that root. The set of values for
the observation variable is the union of possible observations from the individual
action networks, and its tree also first branches on the action choice and then
contains the individual observation trees. See [1] for a brief survey of such
representations.

The state reward function can be represented in a similar structured fashion
using a single value node and tree-structured matrix (see Figure 2) that allows
features that do not influence reward to be ignored. The leaves of the tree denote
the reward associated with the states determined by the branch.3 A similar repre-
sentation for action cost can be used. We will assume here that action costs are
constant (we assume a cost of 1 d 0 for GetC and 0 d 5 for TestC).

4 Monahan’s POMDP Algorithm

Using a belief vector to summarize the current state estimate without explicitly
incorporating history allows policies to be expressed independent of history — our

3Note that in all of these network representations, the network is not strictly necessary — the
conditional probability trees themselves allow determination of parents [13].
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decisions are contingent only on the current state of belief. However, we have in
fact potentially made the specification of a policy much more difficult. The space
of possible belief states Z is uncountably infinite. Computing, or even associating,
an action choice with each belief state is impossible on this explicit formulation.
However, as observed by Sondik [15, 17], optimal policies may be computed and
specified finitely by performing computations and associating actions with various
regions of the belief space. The crucial component of any POMDP algorithm is
the discovery of an appropriate set of regions for an optimal policy.

Most POMDP algorithms do not, in fact, explicitly compute the regions of Z
for which the optimal decision may vary. Rather, most keep track of a finite set ofe -vectors for each stage of the decision process.4 An e -vector is a vector of size
* ( * that specifies a value for each state. Each e -vector has an associated action;
intuitively, this vector defines the value of performing that action in each state
given some fixed future value function. Given any Agf<Z , the expected value
of A given a vector e is the dot product A D e . Again, a crucial observation of
Sondik is the fact that the I -stage value function h for any policy is piecewise
linear and convex, and that each linear component of h can be represented as ane -vector. Since the true value function h is piecewise linear and convex, we can
represent the linear components as a set of e -vectors i e ,)j , and the true value of
A is the maximum of the products A D e , . As we see below, each vector has an
action associated with it: the optimal action choice at any stage given A will be
the action associated with the maximizing vector.

The computation of an optimal policy requires that we generate a set of vectors
for stage I , given the set of vectors for stage I�? 1. In other words, a dynamic
programming style computation can be used to determine the representation of the
stage I value function (hence, policy) given the stage I�? 1 value function. This is
the method adopted by all POMDP algorithms (although the precise technique for
enumerating the set of required vectors varies). Let kl0mJ 1 be the set of e -vectors
associated with stage In? 1. Following Monahan [10], the set of vectors necessary
at stage I is generated as follows: for each action � , associate some e 7 fokl0mJ 1 with
each observation 687 in Obs �)� � . We generate a new e -vector as follows (wheree , denotes its Y th component). Judicious application of Bayes rule allows the
following expression to be used, whose quantities can be read directly from the

4Or a single set of such vectors, used for every stage, if a stationary policy is sufficient.
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problem specification:

e ,p:g>���� + �2, � ?q���)�-, � ?qr 7 r
�POUQ/R

Pr ��687 * �2, + �3�/. � Pr �)�E. * �-, + � � e 7.

Intuitively, we can think of this new vector as specifying the value of any belief
state A at stage I assuming that action � will be chosen and that if 687 is observed,
the value for stage Is? 1 is determined by the stage I�? 1 vector e 7 . For each
action, we generate a set of new vectors of size * Obs ��� � *ut v V�w 1 t ; and the set k 0 is
the union of the sets generated by each action. The action associated with each
vector is the action � used to generate it. The optimal action choice at stage I
for any A is determined by the computing the e fxk 0 that maximizes A D e and
adopting the the action associated with e . We emphasize that the policy is not
explicitly represented: the algorithm constructs a set of vectors for each stage of
a finite horizon problem from which the optimal action choice for any belief state
can be easily determined (for infinite horizon problems, a single set of vectors can
be obtained).

Of course, it may be that many of these generated vectors are irrelevant in the
sense that they are dominated by other vectors at that stage. By eliminating such
dominated vectors before proceeding to compute vectors for earlier stages, the
number of subsequent vectors generated (and computation time) can be drastically
reduced. Dominated vectors are “easily” identified using a set of linear programs
(with variables for each state), one for program for each vector [10].

We note that for a finite horizon " -stage problem, we begin this process
by setting k $ to contain the immediate (state) reward vector. For an infinite
horizon discounted problem, under certain assumptions, we run the process until
convergence is reached; thus the initial vector choice is less crucial (see [17]). We
will focus on finite stage problems in the sequel, though infinite horizon problems
offer no special difficulties.

5 Exploiting Structure in Solving a POMDP

The crucial step in Monahan’s algorithm is the generation of the set kl0 of e -vectors
for stage I given the set of vectors kl0KJ 1. We note that each e -vector has size * ( * ,
and that the new vectors are generated pointwise. Thus, even the representation
and construction of a single vector can be computationally prohibitive: as the
number of variables grows, this approach quickly becomes infeasible. However,
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given that a problem can be represented compactly using a network representation,
one should expect that the set of e -vectors can also be compactly represented. If the
values associated with various states in such a vector are the same, we can exploit
this fact by clustering states together that have the same value. A very simple
example is the initial e -vector (for stage " ) which is simply the immediate state
reward function. For a given problem, this vector may be compactly expressed in
tree form as in Figure 2, using 6 values instead of 32.

We propose a method for optimal policy construction that, in general, elim-
inates the need to represent e -vectors pointwise, and the need to construct new
vectors in the standard pointwise fashion. Our method is based on Monahan’s
algorithm, but exploits the fact that: a) at any stage of the process, the e -vectors
representing the value function for that stage may be structured, making only rel-
evant distinctions in the state space; and b) the problem representation allows us
to preserve this structure in the generation of new e -vectors.

Each linear component of the piecewise-linear value functions used in the
classic POMDP representations is represented as an e -vector consisting of the
values associated (in that linear segment) with each state. We represent these
segments using e -trees. These are trees whose interior nodes are state variables –
the edges descending from each variable correspond to possible assignments to that
variable – and whose leaves are real values. This is precisely the representation
we used for the immediate reward function above. An e -tree partitions the state
space in the obvious way: each branch denotes the set of states satisfying the
variable assignment determined by that branch. This represents the (unique) e -
vector where the value of a state � is simply the value associated with the partition
containing that state.

5.1 Generation of a Single y -tree

The algorithm we present below allows one to construct the set of e -trees required
at stage I given the set kl0KJ 1 of trees associated with stage Iz? 1. Before presenting
that algorithm in detail, we first describe the main intuitions underlying our method
by considering the construction of a single tree. We consider first the subproblem
of generating the value tree corresponding to performing a single action at stage
I assuming that future expected value is given by a fixed e f{kl0KJ 1. We then
consider how to combine such trees to form the stage I e -vector corresponding to
a particular strategy that associates one element of k 0mJ 1 with each 6�f Obs �)� � .

Suppose we wish to determine the value of performing action � at stage I ,

13



and that the expected future value (from stage I&? 1 on) is determined by a
fixed tree e 0mJ 1 fgkl0KJ 1. Our method for generating the new e -tree e 0 exploits
the abductive repartitioning algorithm described in [2], and is closely related to
Poole’s probabilistic Horn abduction [13] (we refer to [2] for further details).
Roughly, given a structured value function e 0KJ 1, the conditions under which two
states can have different expected future value at stage I (under action � ) can
be easily determined by appeal to the action representation for � . In particular,
although an action may have different effects at two states, if the differences in
those effects are only related to variables (or variable assignments) that are not
relevant to the value function e 0KJ 1, then those states have identical expected future
value and need not be distinguished in the function e 0 . We construct the tree e 0
in a such a way that only these relevant distinctions are made.

Construction of e 0 proceeds abductively: given the tree e 0KJ 1, we want to
generate the conditions that, prior to the performance of action � , could cause the
outcome probabilities (with respect to the partitions induced by e 0mJ 1) to vary. We
proceed in a stepwise fashion, “explaining” each of the interior nodes of e 0mJ 1 in
turn, beginning with the root node and proceeding recursively with its children.

The e 0 tree is initially empty. We explain the root node (say
�

) of e 0mJ 1 by
generating the conditions under which the values of this variable can have different
probabilities under action � (the “explanation” of

�
). Note that this explanation

is essentially lifted from the problem description, since it is nothing more than
the probability tree Lb^a`8`c� � * � � in the action network for � . This tree is the initial
partial e 0 tree. Every partial tree has leaves that are labeled with the probabilities
of all variables explained so far. Such explanations continue for each variable in
the tree e 0mJ 1, and each explanation is added to the leaf nodes of the current partial
tree. We note that explanation for a variable | is not added to every branch of
the current partial tree, however. The tree e 0KJ 1 describes the conditions under
which | is relevant to future value. The explanation for | is thus only relevant
in circumstances that allow these conditions to be met with positive probability,
and Lb^a`8`c�W| * � � need only be added to those branches where these conditions
are possible. Since the explanation for any ancestor of | in e 0mJ 1 is generated
before | , the relevant probabilities already label the leaves of the current partial
tree. Finally, once all variables are explained, the expected future reward for
each branch of e 0 can be easily computed: the probability labels at each branch
determine the probability of ending up in any partition of the tree e 0mJ 1 under � .

We note that redundant and inconsistent branches in the explanations added
to the partial tree are also deleted. For example, if the variable labeling a node
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Figure 3: Generating Explanation of Future Value

of L_^}`8`c�W| * � � occurs earlier in the partial tree for h ,~J 1, that node in L_^a`9`c�C| * � �
can be deleted (since the assignments to that node in Lb^a`8`c�W| * � � must be either
redundant or inconsistent). Thus, much shrinkage is possible.5

To illustrate this process, consider the following example, illustrated in Fig-
ure 3. We take the immediate reward function to be a tree e 0mJ 1 (the initial value
tree), and we wish to generate the expected future value tree for stage I assuming
action GetC is taken and assuming that e 0mJ 1 determines value at stage I@? 1. We
begin by explaining the conditions that influence the probability of WC under GetC
(Step 1). This causes Lb^a`8`c� WC * GetC � to be inserted into the new tree. We then
explain HC (Step 2). Since the initial value tree asserts that HC is only relevant
when WC is true, this new tree is added only to the left branch of the existing tree,
since WC has probability zero on the right. Note that these probabilities describe
the probability of the variable in question after the action, while the branches
relate conditions that affect these probabilities before the action. This becomes
clear in Step 3, where we consider the conditions (prior to GetC) that affect the
occurrence of [ (wet) after GetC. Note that this final tree has all the information
needed to compute expected future value at each leaf — the probabilities at each
leaf uniquely determine the probability of landing in any partition of initial value
tree under GetC.

Finally, we note that to get the true expected value (not just future value), we
must add to each of these trees both the current state value ���)� � and the action
cost >���� + � � . While in general this may cause the explanation trees to grow (e.g.,

5It is this fact that keeps trees as compact as possible and tends to make the set of trees stabilize
rather quickly. We refer to [2] for details (see also Figure 5).
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to make further distinctions that influence action cost), the operation will actually
be trivial under some common assumptions. For example, if the tree for ���)� � is
used as the initial e -tree for stage " (as is expected), these distinctions should be
preserved in all subsequent value trees. Furthermore, if action cost is constant,
this requires a simple addition of this constant to all leaves. Figure 4 shows the
expected (total) value tree for the action GetC obtained by adding ����� � and >���� + � �
to the future value tree obtained from Figure 3. Figure 4 also shows the expected
value tree for the action TestC under the same assumptions.

These value trees are not generally e -vectors suitable for stage I , for they do
not correspond to a fixed observational strategy (unless the strategy assigns the
same vector to each observation). To account for observations, we note that every
element of kl0 corresponds to a given action choice � and an observation strategy
that assigns a vector in kl0KJ 1 to each 6�f Obs ��� � . We now consider the problem of
generating the actual e -tree corresponding to action � and the strategy assigninge ._fokl0mJ 1 to the observation 6/. .

Since the conditions that influence the probability of a given observation affect
expected future value (since they affect the subsequent choice of e -vector at stage
I�? 1), the new tree e must contain these distinctions. Thus e is partially specified
by Lb^a`8`c���M�U� * � � , the observation tree corresponding to action � . Note that the
branches of this tree correspond to the conditions relevant to observation probabil-
ity, and the leaves are labeled with the probability of making any observation 6/. .
To the leaves of L_^a`8`a� �M�U� * � � we add the weighted sum of the explanation trees.
More specifically, at each leaf of L_^a`8`a� �M�U� * � � we have a set of possible (nonzero
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probability) observations; for exposition, assume for some leaf these are 62, and
6/. . Under the conditions corresponding to that leaf, we expect to observe 62, and
6/. with the given probabilities Pr �)62, � and Pr ��6/. � , respectively. We thus expect
to receive the value associated with the explanation tree for e , with probability
Pr �)62, � , and that for e . with probability Pr ��6/. � . We thus take the weighted sum
of these trees and add the resulting merged tree to the appropriate leaf node in
L_^a`8`a� �M�U� * � � .6

To make this concrete, consider the following example illustrated in Figure 5.
We assume that trees e

1 and e
2, the trees for GetC and TestC in Figure 4, are

elements of kl0 .7 We consider generating the new tree e to be placed in kl0 � 1

that corresponds to the action TestC and invokes the strategy that associates e
1

with the observation Yes and e
2 with the observation No. We begin by using the

observation tree for TestC: the observation probability depends only on WC (see
Step 1 of Figure 5). We then consider the weighted combination of the trees e

1

and e
2 at each leaf: to the leaf WC we add the tree 0 d 8 e

1 ? 0 d 2 e
2 and to WC we

add 0 d 1 e
1 ? 0 d 9 e

2. This gives the “redundant” tree in the middle of Figure 5. Of
course, we can prune away the inconsistent branches and collapse the redundant
nodes to obtain the final tree e , shown at the right of the figure.

6Computing the weighted sum of these trees is relatively straightforward. We first multiply the
value of each leaf node in a given tree by its corresponding probability. To add these weighted
trees together involves constructing a smallest single tree that forms a partition of the state space
that subsumes each of the explanation trees. This can be implemented using a simple tree merging
operation (for example, see [2] where similar tree merging is used for a different purpose). We are
exploring heuristic strategies for determining good variable orderings in the merged trees.

7In fact, for our particular problem, assuming � stages, these are elements of �a�8� 1. Thus, this
example shows the generation of an element in �a�8� 2.
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5.2 Generation of �_�
The process described above involves some overhead in the construction of ex-
planation trees and piecing them together with observation probabilities (we do
note however that putting together these trees really involves patching together
partial trees that exist in the action networks, and is thus not as computationally
intensive as it may appear). More substantially, if we were to follow Monahan’s
algorithm directly, we would have to repeat this process for each action-strategy
combination. However, we note that generating the explanation trees for a fixed
action and e -tree is independent of the actual strategy adopted; the strategy only
tells us how to piece together these explanation trees. This leads to the following
informal algorithm for generating kl0 from kl0KJ 1:

(a) For each BW� + e F f���'kl0KJ 1, construct the value tree for � , e .

(b) For each action � and strategy � associating elements of Obs ��� � with
elements of kl0mJ 1, construct the new e -tree for � . This proceeds by
adding the weighted sum (determined by � ) of expected value trees
(determined in the previous step) to the leaf nodes of the observation
tree for � , and deleting redundant nodes and inconsistent branches.
Add each such e -tree to kl0 .

(c) Prune the set kl0 by eliminating unnecessary e -trees.

For a fixed action, the explanation tree for a given element of kl0KJ 1 is thus only
computed once. Further savings are possible in piecing together certain strategies
(e.g., if � associates the same vector with each observation, the value tree in part
(a) can be used directly).

The final stage of the algorithm involves pruning the set of possible e -trees
to eliminate those that are dominated (or more accurately, do not dominate some
other vector). In other words, if there is no belief state A such that A D e is
greater than A D ep� for each ep� fgkl0 , then this vector need never be chosen and
has no bearing on the policy. Elimination of such vectors can greatly reduce the
number of vectors generated for earlier stages. Monahan suggests a simple set of
linear programs for eliminating useless vectors. The tree representation of these
vectors allows this elimination phase to become more tractable as well. The LPs
used to eliminate vectors have variables corresponding to each state. With our
representation, we can reduce the number of variables required to formulate these
LPs: we need only make distinctions in the state space that are made by some tree
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in the collection kl0 . This corresponds to finding the smallest subsuming tree for
the set kl0 and constructing an LP with one variable for each leaf in this tree (see
the full paper).

Finally we note that most POMDP algorithms are much more clever about
generating the set of possible e -vectors. For example, Sondik’s algorithm (and
subsequent approaches) do not attempt to enumerate all possible combinations
of observational strategies and then eliminate useless vectors. We focus here on
Monahan’s approach because it is conceptually simple and allows us to illustrate
the exact nature of structured vector representations and how they can be exploited
computationally. We are currently investigating how algorithms that use more
direct vector generation can be adapted to our representation.

6 Concluding Remarks

We have sketched an algorithm for constructing optimal policies for POMDPs that
exploits problem structure (as exhibited by rules of decision trees) to reduce the
effective state space at various points in the computation. The crucial aspect of this
approach is the ability to construct the conditions relevant at a certain stage of the
process given the relevant distinctions at the following stage. This coalescence of
of AI planning and OR optimization techniques (and related approaches) should
provide significant improvements in policy construction algorithms. Space limi-
tations preclude a more complete presentation of the algorithm and the example;
we refer to the full paper for details.

Directions of current and future research include: applying our ideas to algo-
rithms that enumerate vectors more directly (rather than by exhaustive enumeration
and elimination); and empirical evaluation of problem characteristics that dictate
whether history-based or belief-state-based policy construction is most effective.
We believe than our ideas offers tremendous leverage for approximation meth-
ods. The structured representation will allow branches to be collapsed in a way
that minimizes lost value, allows vectors to be compared easily, allowing elim-
ination of “similar” vectors, and so on. This should alleviate to a great extent
the combinatorial explosion of required vectors as the horizon increases (see also
[11]).
Acknowledgements: Thanks to Richard Dearden, Moisés Goldszmidt, and dEd2d for
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