
To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

Logic Programming for Robot Control

David Poole
�

Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C., Canada V6T 1Z4

email: poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole

Abstract

This paper proposes logic programs as a specifi-
cation for robot control. These provide a formal
specification of what an agent should do depending
on what it senses, and its previous sensory inputs
and actions. We show how to axiomatise reactive
agents, events as an interface between continuous
and discrete time, and persistence, as well as ax-
iomatising integration and differentiation over time
(in terms of the limit of sums and differences). This
specification need not be evaluated as a Prolog pro-
gram; we use can the fact that it will be evaluated in
time to get a more efficient agent. We give a detailed
example of a nonholonomic maze travelling robot,
where we use the same language to model both the
agent and the environment. One of the main moti-
vations for this work is that there is a clean interface
between the logic programs here and the model of
uncertainty embedded in probabilistic Horn abduc-
tion. This is one step towards building a decision-
theoretic planning system where the output of the
planner is a plan suitable for actually controlling a
robot.

1 Introduction
Since Shakey and STRIPS [Fikes and Nilsson, 1971], logic
and robotics have had a tumultuous history together. While
there is still much interest in the use of logic for high-level
robotics (e.g., [Lespérance et al., 1994; Caines and Wang,
1995]), there seems to be an assumption that low-level ‘reac-
tive’ control is inherently alogical. This paper challenges this
assumption.

This paper investigates the idea of using logic programs as
a representation for the control of autonomous robots. This
should be seen as logic programming in the sense of logic +
control [Kowalski, 1979]; we use a logic program to specify
what to do at each time, and use an execution mechanism
that exploits a derived notion of ‘state’ in order to make it
practical.

The main highlights of this approach are:

1. An agent can be seen as a transduction: a function from
inputs (sensor values) into outputs (action attempts or�

Scholar, Canadian Institute for Advanced Research

actuator settings). These are ‘causal’ in the sense that
the output canonly depend on current inputs and previous
inputs and outputs. This function will be represented as
a logic program specifying how the output at any time
is implied by current and previous inputs. The causality
ensures that we have acyclic rules.

2. The logic programs are axiomatised in phase space
[Dean and Wellman, 1991] (the product of space and
time, i.e., the predicates refer to times as part of the
axiomatisation) in a similar manner to the event cal-
culus [Kowalski and Sergot, 1986]. This allows us to
axiomatise persistence as well as accumulation (integra-
tion) over time and differentiation with respect to time.

3. The notion of ‘state’ is a derived concept; the state is
what needs to be remembered about the past in order for
the agent to operate in the present. The axiomatisation
is in terms of how the ‘current’ action depends on cur-
rent inputs and past inputs and other values; the state is
derived so that the output, instead of being a function of
the current inputs and all past history, is a function of the
current inputs and the state.

4. Although the specification of what to do looks like a
Prolog program, it is not evaluated as a Prolog program.
Instead we exploit the fact that the agent exists in time;
that inputs are received in sequence, and that all previous
inputs have already been received (and no subsequent
inputs have been received) when the agent makes a de-
cision. Instead of treating this as a logic program that
may need to do arbitrary computation reasoning about
the past, we actively maintain a state. The reasoning
about what to do at any time depends only on the current
inputs and the remembered state.

This perspective is useful for a number of reasons:

1. It provides for a representation for an agent’s behaviour
in a language with a well defined semantics (see [Apt
and Bezem, 1991]).

2. It lets us model both the robot and the environment within
the same language. The robot axioms can be evaluated in
two modes. In the ‘situated’ mode, the agent gets sensor
values directly from the environment, and acts in the
environment. In simulation mode, we also have a model
of the environment, and can run the models together as
a simulation of the integrated system.

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

3. There is a clean way to integrate this with models of
uncertainty (e.g., for noisy sensors and sloppy and un-
reliable actuators). The logic programs here are of the
form that can be used within a probabilistic Horn abduc-
tion system [Poole, 1993]. One of the aims of this work
is to produce a representation for robot behaviour that is
both suitable for controlling a real robot and also can be
the output of a decision-theoretic planning system.

4. The logic programs form an executable specification of
what an agent should do. Although they can be evalu-
ated reasonably quickly using current logic programming
technology, it may be possible to compile these speci-
fications into circuits for robots (in a manner similar to
[Gaboury, 1990]).

5. It shows how two traditions in AI (namely logic-based
AI and robot programming), seemingly at odds, can be
unified. Whether we are successful in this remains to be
seen. In particular, this paper should be seenas a proposal
and an initial feasibility study — there is still much work
that remains to be done before this is a competitor for
programming robots.

6. Inspired by constraint nets [Zhang and Mackworth,
1995], this work shows how to model hybrid continuous-
discrete systems. The axioms will all be true (in the limit)
for continuous time. We derive discrete events from con-
tinuous time.

2 Representation
The problem that we are trying to solve is to represent, simu-
late and build an agent that senses and acts in the world. The
agent receives a sequence (trace) of inputs (percepts or sensor
values) and outputs a sequence (trace) of outputs (actions or
actuator settings).

We assume a time structure
�

that is totally ordered and
has a metric over intervals.

�
can either be continuous or

discrete. A trace is a function from
�

into some domain � .
A transduction is a function from (input) traces into (out-

put) traces that is ‘causal’ in the sense that the output at time�
can only depend in inputs at times

���
where

�����	�
. An agent

will be a specification of a transduction.
Transductions form a general abstraction of dynamic sys-

tems [Zhang, 1994; Zhang and Mackworth, 1995; Rosen-
schein and Kaelbling, 1995]. The problem that we consider
is to use logic programs to specify transductions.

The language that we use is that of acyclic logic programs
[Apt and Bezem, 1991], with a limited repertoire of predicates
that explicitly refer to time. We assume that the acyclicity
corresponds to temporal ordering (if time

�
1 is before time

�
2

then predicates referring to time
�

1 will be lower in the acyclic
indexing that those referring to time

�
2). We will use negation

as failure — for those who do not like this, we mean the
completion of the program (which forms a sound and complete
semantics for acyclic programs [Apt and Bezem, 1991]). The
axioms below assume a limited form of arithmetic constraints.

A fluent [McCarthy and Hayes, 1969] is a function that
depends on time. Each fluent has an associated set called
the range of the fluent. A propositional fluent is a fluent
with range
 true � false � . Syntactically a fluent it a term in our
language.

Definition 2.1 An agent specification module is a tuple
�� ����������������� where�
is a set of fluents called the inputs. The inputs specify

what sensor values will be available at various times. The
range the the input trace is the cross product of the ranges
of the fluents in the inputs. Atom ��� �!���#"%$'&%�)(+*,&%��-/. is
true if input fluent $'& has value (�*,& at time - .� is a set of fluents called the outputs. An output is a propo-
sitional fluent that specifies actuator settings at various
times. These can also be seen as the actions of the agent
(in particular, action attempts). Theatom 0,12"3$4&%�5('*,&%��-/.
is true if the agent sets actuator $'& to value ('*6& at time- , or to ‘do’ action $'&879('*,& at time - .� is a set of fluents called the recallable fluents. These are
fluents whose previous value can be recalled. Recallable
fluents will be used to model persistence as well as inte-
gration and differentiation.� is a set of fluents called the local fluents. These are fluents
that are neither inputs, outputs nor recallable. The pred-
icate :;*,&�"%$'&%�)(�*,&%��-/. is true if local fluent $'& has value(<*6& at time - .� is an acyclic logic program. � specifies how the outputs
are implied by the inputs, and perhaps previous values
of the recallable fluents, using local fluents, arithmetic
constraints and other (non-temporal) relations as inter-
mediaries.

The interface of agent specification module

%� �����������������

is the pair

=� ���'� .

Each rule in the logic program has a ‘current’ time, to
which the predicates refer. There are a restricted facilities
for referring the past (i.e., to values of fluents in ‘previous’
times). In particular, an agent cannot recall what it hasn’t
remembered. There is one facility for specifying what needs
to be remembered, and two predicates for recalling a value
(these provide the predicates for use with recallable fluents):��� � "%$'&%�)(+*,&%��-/. is a user-defined predicate that specifies that

recallable fluent $'& has value (�*,& at time - . Only fluents
that are specified in this way can be referred to in the
future.> *6�?"3$4&%�5(<*6&@��- 1 ��-/. is a predicate that specifies that re-
callable fluent $'& was assigned value (�*,& at time - 1
and this was the latest time it was given a value before
time - (so $4& had value (�*,& immediately before time-). It is axiomatised in a manner similar to the event
calculus [Kowalski and Sergot, 1986] (see Section 4.5):> *,�#"%$'&%�)(/*6&@��- 1 ��-/.BA��C=D �#"�- 1 .!E- 1 F -GE� � � "3$4&%�5(<*6&@��- 1 .HEIKJ � ��� � L ��MN1 J �?"3$4&%��- 1 ��-/.)O
where J ��� � � L ��M81 J �#"%$'&%��- 1 ��-/. is true if fluent $'& was
assigned a value in the interval "=- 1 ��-/. :J � ��� � L � M81 J �#"%$'&%��- 1 ��-/.BA��C=D �#"�- 2 .- 1 F - 2 E- 2 F -GE� � � "3$4&%�5(2 ��- 2 .)O

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

The predicate
��C�D �?"=-/. is defined in Section 2.4, where

we consider the problem of representing dense time.�!1 > "3$'&@�5(/*,&%��-/. is a predicate that specifies that recallable
fluent $'& has value (<*6& at time - . It can be axiomatised
as follows:�!1 > "3$'&@�5(�*,&%��-/.BA� � � "3$'&@�5('*,&%��-/.)O�!1 > "3$'&@�5(�*,&%��-/.BAIQP (1 ��� � "%$'&%�)(1 ��-/.!E> *,�#"%$'&%�)(�*,&%��- 1 ��-/.)O

In user programs, the following restrictions apply:R ��� � cannot appear in the body of any (user) clause. It
only appears in the body of the rules given above. It
does however appear in the head of user clauses.R �!1 > or > *,� (or J � ��� � or J ��� � � L � M81 J �) do not appear
in the head of any user clause. They are defined by the
clauses above.R All times referred to in clauses must be to the same time
(the ‘current time’ of the clause), with the exception of
the third parameter of > *,� , and the predicate �!1 > can
refer to times before the current time of the clause1 , and
arithmetic comparisons can be used on times.

2.1 Pure Reaction
We can model pure reaction, that is memoryless systems built
from combinational networks (as in,e.g., [Agre and Chapman,
1987]), where the output is a function of the immediately
available inputs. A logic program (with all fluents referring to
the same time) can represent arbitrary combinatorial circuits.

2.2 Persistence
The use of ��� � , �!1 > and > *,� allows recallable fluents to
persist. Once a value of a fluent is set that value persists
until a new value is set. At any time it is always the last
value set that we look at (it is this property that allows us to
build efficient implementations) — where ‘last’ means means
‘before now’ for > *,� and ‘at or before now’ for �!1 > .

When setting the value of fluent fl at time - , we cannot
use �!1 > for that fluent and time in the proof for ��� � , as this
violates the acyclicity assumption. We can however, use the> *,� predicate for that fluent and time.

Persistent values are true in left closed, right open intervals.
If fluent MN& was set to value : at time

�
1 and was set to a

different value at time
�

2 (and no other settings for value :
occurred in between), then the fluent MN& has value : in the
interval S � 1 � � 2 . . This is the opposite convention to the event
calculus [Shanahan, 1990]. We want this convention as robots
have internal state so that it can affect what they will do; if
a robot realises at time

�
2 that it should be doing something

different, then it should change what it is doing immediately,
and not wait.

This notion of persistence is close to that of the event calcu-
lus [Kowalski and Sergot, 1986; Shanahan, 1990] (see Section
4.5).

1This is to allow us to model ‘transport delays’ (see Section 4.2),
that are essential for the modelling of analogue systems. In general
using this facility means that we have to maintain a history of T5UWV
values and not just a state of T5UWV values.

2.3 Integration and Differentiation
One of the reasons for axiomatising in phase space and making
time explicit is that we can integrate over time. We will
assumethat anything we try to integrate is Riemann integrable.

If we want to produce the value of some accumulative
predicate, we can use$X" � 1 .Y7 $�" � 0 .[Z \]

1]
0

M�" � .�0 �
7 lim^�_

0 `a $�" � 0 .[Z	b] 1 c] 0 dfe ^g h�i
1

M�" � 0 Z	jlk#.�mnk�op
where M�" � .q7sr�t b] dr] . For any fixed k we can compute the sum
recursively. The integral is the limit as k approaches zero.
We can write the sum that approaches the integral using the
following schema (with a rule for each integrable fluent u):��� � "vu��5(1 Zxw�Mymz"=-|{y- 1 .)��-/.BA> *,�#"}u~�)(1 ��- 1 ��-/.!E:;*,&�"30,� J C :�"vu'.)��w�M8��-/.5O

Similarly we can axiomatise the derivative of a fluent with
respect to time using the schema for each differentiable fluentu :2 :2*,&�"30,� J C :�"vu'.5��w�M8��-/.�A�!1 > "vu4�5(���-/.!E(�{|(1 7Kw�Mzmy"=-x{G- 1 .!E> *,�#"}u~�)(1 ��- 1 ��-/.)O
Solving these may involve some constraint solving.

Before we define ‘true in the limit’, we discuss some issues
relevant to the acyclicity restriction. Suppose, the derivative
of integrable fluent u is a function of the value of u at - (e.g.,
the force of a spring is a function of the position of the object).
To define the clause for the derivative, we need to determine
the value of u at time - , but cannot have �!1 > "vu��5(���-/. in
the body of a rule to prove :;*,&�"%06� J C :,"vu'.)��w�M8��-/. , as this
violates the acyclicity constraint. There are two solutions to
this problem: the forward Euler and the backward Euler.

Assume the relation :;*,&�"30,� J C :�"vu��)(�.5��w�$���-/. is defined
which means that w�$ is the derivative of u at time - , with(being u ’s value.

The ‘forward Euler’ uses the ‘previous’ value of ((i.e, the
value (1 in the integration clause above). This is correct as
‘in the limit’ (�7�(1.��� � "vu��5(1 Zxw�Mymz"=-|{y- 1 .)��-/.BA> *,�#"}u~�)(1 ��- 1 ��-/.!E:;*,&�"30,� J C :�"vu��)(1 .5��w�M8��-/.)O

This solution turns out to have problems with the stability
of discretisations. The ‘backward Euler’, which works better
in practice, uses the ‘future’ value for the derivative:��� � "vu��5(���-/.BA> *,�#"}u~�)(1 ��- 1 ��-/.!E

2These rules are schemata as we have to choose whether a fluent
is integrable or derivable (or neither). A fluent cannot be both: we
cannot use the differences in values to compute derivatives as well
as using derivatives to compute differences in values. This violates
the acyclicity restriction, and leads to infinite regress.

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

(�{	(1 7�w�Mym�"=-|{y- 1 .[E:2*,&�"30,� J C :�"vu��)(/.5��w�M8��-/.)O
Solving this may involve some constraint solving.

2.4 Truth in the limit
The axioms given for > *6� and �!1 > are incomplete — they
do not specify the structure of time.

If time is discrete3, then there are no interpretation problems
with the axioms above. In particular, we make the predicate��C�D �?" ��� . true for each ‘time’

���
. The predicate > *,� always

refers to the previous time point (or to the last time point when
the value was set), and there is always some finite duration of
each time interval.

If time is continuous, there are semantic difficulties in in-
terpreting these sentences (in particular the integration and
differentiation formulae that allow for the setting of values at
each time point). We cannot interpret the integration and dif-
ferentiation axioms ‘in the limit’, as in the limit, (�79(1 and-97�- 1; the integration axioms become cyclic (and tautolo-
gies), and the differentiation axioms provide no constraints
on the value of w�M .

In order to be able to interpret the above sentences we have
to consider the limit as finite discretisations become finer and
finer (in the same way that integration is defined). The axioms
will talk about what is true for each discretisation. The values
that ‘ > *6� ’ refers to will be well defined for each of these
discretisations. The meaning for the continuous case will be
what is true in the limit.

To define the limit, consider a uniform discretisation with
time interval 0 ���

0. For each 0 � we consider the discretisa-
tion that consists of the time points jzmQ0 � for some integerj .

Definition 2.2 Axioms � entails fluent M has value : under
discretisation 0 �<�

0 at time
�
, written ��� 7 r] �!1 > "3M8��:l� � .

if ����
 ��C�D �?"3��mn0 � .BA C � � �)�6� J "3�z.W�X� 7��!1 > "3M8��:�� � .
where � 7 denotes truth under Clark’s completion, or in the
(unique) stable model, or one of the other equivalent semantics
for acyclic logic programs [Apt and Bezem, 1991], of the
axioms together with axioms defining arithmetic.

Definition 2.3 Axioms � entails fluent M has value : in the
limit at time

�
, written ���7<���!1 > "%M8��:l� � . , if for every� �

0 there exists k �
0 such that if 0 F 0 � F k , then��� 7 r] �!1 > "%M8��: � � � . where � :<{	: � � F � .

One subtlety should be noted here. We can ask about�!1 > "%M8��:l� � . for any
�

even if
��C�D �?" � . is not true — if this

were not the case these definitions would not work, as most
values of 0 � ‘miss’ any particular time (i.e., for most times

�
and increments 0 � there does not exist and integer j such that� 7�jymy0 �). Being an official ‘time’ only constrains what
past values can be referred to.

Note that we never consider the theory with the infinite
partition.

3By discrete I mean that there are no sequences of different values
which get closer and closer (Cauchy sequences — see e.g., [Zhang
and Mackworth, 1995]). Informally this means that there are only
finitely many time points between any two time points.

compass

frontsensor

rightsensor

Robot

goal_direction

steer

steer

Environment

compass

robotpos

frontsensor

rightsensor

Figure 1: Coupled Robot and Environment

3 An Example in Detail
We demonstrate the representation using an example of mod-
elling a robot and an environment. These two axiomatisations
will highlight different features; the robot model will highlight
reactive systems with remembered events; the environment
model will highlight integration over time.

The example is of a maze travelling robot that is continu-
ously trying to go East (i.e., at 0 � orientation), but may have
to avoid obstacles. The robot can sense obstacles and its di-
rection of travel, but only has control over its direction of
steering.

3.1 Robot Model
We assume that the robot can sense which direction it is trav-
elling in, has a sensor on the front of the robot and a sensor
on the right that can detect obstacles. The only control that
the agent has is to change the steering angle — we assume
that the agent can instantaneously change from steering left,
right or straight (but steering takes time to achieve the desired
effect). This example is adapted from [Zhang, 1994].

For the robot specification, we axiomatise what the steering
should be depending on current, and perhaps previous sensor
values.

We use the following predicates defining the inputs at dif-
ferent times:��� �!���?"3�51 D4� *,� �2���'��-/. means that the robot is sensing that

it is heading in direction � at time - . All directions
are in degrees anticlockwise from East (i.e., the standard
directions in an x-y graph).��� �!���?"3M J 1#� � � L &�1#�5j���0N��-/. means that the front sensor is de-
tecting an obstacle at time - .��� �!���?" J C �6� � � L &�1#�5j���0N��-/. means that the right sensor is on
at time - .

and the output:0,12"3� � ��� J ��w���-/. means the robot should steer w -wards at
time - where w¡ Q
 left � right � straight � .

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

The following clauses axiomatise a ‘bang-bang’ controller
that specifies which direction to steer based on the compass
reading¢ and the current desired direction of the robot. In these
clauses, �!1 > "=�,1#*,& 0 C J � � ��C 1#����£���-/. is true if the robot wants
to go in direction £ at time - :0,12"3� � ��� J ��&f��M � ��-/.¤A�!1 > "=�,1#*6& 0 C J ��� ��C 1#����£¥��-/.8E�����!� �?"3�51 D4� *,���;���'��-/.�E"%£�{¦�xZ 540 . D 1#0 360 { 180

�
5 O0,12"3� � ��� J ��� � J * C �6� � ��-/.¤A�!1 > "=�,1#*6& 0 C J ��� ��C 1#����£¥��-/.8E�����!� �?"3�51 D4� *,���;���'��-/.�E�§"%£�{G�|Z 540 . D 1#0 360 { 180 � � 5 O0,12"3� � ��� J � J C �6� � ��-/.¤A�!1 > "=�,1#*6& 0 C J ��� ��C 1#����£¥��-/.8E�����!� �?"3�51 D4� *,���;���'��-/.�E"%£�{¦�xZ 540 . D 1#0 360 { 180 F { 5 O

5 � is an arbitrarily chosen threshold.
The goal direction depends on current and previous sensor

values. The robot changes the goal direction when it is trav-
elling in the previous desired direction4 and it finds its way
blocked, in which case it now wants to travel at 90 � to the left
of where it was travelling:��� � "��61#*,& 0 C J ��� ��C 1#����w9Z 90 ��-/.¨A�����!� �?"3�51 D4� *,���;���'��-/.�E> *,�#"��61#*,& 0 C J � � ��C 1#����w�� ��-/.!E��* D �?"3�4��w�.HE�����!� �?"3M J 1#� � � L &f1#�5j���08��-/.)O
Alternatively the robot changes its desired direction by 90 �
to the right if it is travelling in the previous desired direction,
it is not blocked on the right and is not going in its ultimate
desired direction (which is 0 �). Note that sometimes the
desired direction is 360 � — in this case it still wants to turn
right to follow the right wall — this will enable the robot to
get out of maze traps (such as the maze in Figure 2).��� � "��61#*,& 0 C J ��� ��C 1#����w©{ 90 ��-/.¨A�����!� �?"3�51 D4� *,���;���'��-/.�E> *,�#"��61#*,& 0 C J � � ��C 1#����w�� ��-/.!E��* D �?"3�4��w�.HEw«ª7 0 EI �����!� �?"3M J 1#� � � L &f1#�5j���08��-/.�EI �����!� �?" J C �6� � � L &f1#�5j���08��-/.)O

In order to allow for noise and sampling error the robot
needs only the desired direction to be within some margin of
error to the current direction. The predicate ��* D �?"3w 1 ��w 2 . is
true if directions w 1 and w 2 are the same up to this error.��* D �?"=� 1 ��� 2 .¤A� � 1 {Q� 2 � D 1#0 360

�
10 O

With this model, we can derive what to do at any time based
on what sensor values it has received.

4This means that the robot designer (and modeller) does not need
to consider how the sensors work in the middle of a turn. This was
chosen to show how ‘events’ can be derived from continuous change.

Such a logic program could be run as a situated robot that
gets sensor values from the environment and acts in the envi-
ronment (see Section 3.3). In this paper, in order to (a) show
the generality of the model, and (b) to show how integration
over time can work, we will use the same language to model
the environment. The environment model together with the
agent model can be used to simulate the system.

3.2 Environment Model
We assume that the environment is another agent like the
robot. It has inputs (from the output of the robot) and has out-
puts which can be sensed by the robot. The two models can be
joined together to form a feedback control system. The main
constraint is that the conjoined logic programs are acyclic
[Apt and Bezem, 1991] with the indexing due to acyclicity
constrained to be temporal.

Whether the front sensor is on depends on the position
of the robot, the direction of the robot and whether there
is a wall close to the robot in front of the robot. HereJ 1 L 1 �=� 1#�#"�¬z��­¤��-/. means that the robot is at position "�¬z��­�.
at time - . ��� � L &f1#�5j®"=¬z��­¯��w�. is true if the robot can detect
a wall in direction w from position "�¬z��­~. — this does not
depend on the time, but only on the position and direction of
the robot.�����!� �?"3M J 1#� � � L &f1#�5j���08��-/.¤A�!1 > "3�)1 D'� *,���;��w���-/.[E�!1 > " J 1 L 1 �=� 1#�2�5"�¬z��­~.)��-/.!E� ��� L &f1#�5j8"�¬z��­¤��w�.)O
Similarly we can axiomatise ��� �!���#" J C �,� � � L &f1#�)j�� 08��-/. , and��� �!���?"3�51 D4� *,� �2��w���-/. and can axiomatise the maze using��� � L &f1#�)j .

The position of the robot is the integral of the velocities
over time:��� � "3�51 D4� *,� �2�)"3��Z|�'w¡my"=-x{Q- 1 .HZ 360 .D 1#0 360 ��-/.BA> *,�#"%�51 D'� *,� �2���4��- 1 ��-/.8E:;*,&�"30,� J C :�"3�51 D4� *,��� .)���'w���- 1 .)O

The derivatives are axiomatised as follows: If robot is
steering left, w��<°;w�-�7 10 (i.e., 10 degrees per time unit).
If robot is steering straight, w��<°;w�-�7 0. If robot is steering
right, w��<°;w�-�7K{ 10.:2*,&�"30,� J C :�"3�51 D4� *,� ��.5� 10 ��-/.±A0612"%� � ��� J ��&�� M � ��-/.)O:2*,&�"30,� J C :�"3�51 D4� *,� ��.5� 0 ��-/.±A0612"%� � ��� J ��� � J * C �,� � ��-/.5O:2*,&�"30,� J C :�"3�51 D4� *,� ��.5�){ 10 ��-/.±A0612"%� � ��� J � J C �6� � ��-/.5O

The position of the robot is the integral of velocities:��� � " J 1 L 1 �=� 1#�;�)"=¬ 1 Z	w�¬²m�"=-x{³- 1 .5�­ 1 Z	w�­¡mQ"�-	{G- 1 .�.5��-/.BA> *,�#" J 1 L 1 �=� 1#�2�)"=¬ 1 ��­ 1 .5��- 1 ��-/.8E:;*,&�"30,� J C :�" J 1 L 1 �=� 1#� .)�5"%w�¬z��w�­�.5��-/.5O
The following axioms define the ´ derivatives and the µ

derivatives of the position with respect to time. We are as-
suming that the speed is 1 and that cos and sin use degrees (as

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

walls
robot (1 time unit sampling)

Figure 2: Simulation of the robot in a maze.

opposed to, say, radians).:2*6&3"30,� J C :," J 1 L 1 �=� 1#��.5�)"3�)1#�#"%w�.5��� C �H"�w�.�.5��-/.¶A�!1 > "3�51 D4� *,���;��w���-/.)O
3.3 Computation
If we were to run the above axiomatisation as a Prolog pro-
gram, the code is hopelessly inefficient. The problem is that
we have to consider all previous times to check whether an
event occurred (at least all previous times where inputs ar-
rived). Moreover to check whether an event occurred, we
have to check all previous times to check whether a previous
event occurred. As you can imagine, such computation is
hopelessly slow.

In order to make this efficient, we take advantage of the
fact that we are evaluating in time: at each time all previous
observations have arrived and no subsequent observations
have arrived. We exploit the fact that all of the references to
the past are in terms of of > *,� . Instead of using the axioms
defining > *6� explicitly, we actively maintain a state, always
remembering the latest values that were � � � . The predicate> *,� can be implemented by looking up the lastest ��� � values.
In other words, the ��� � values are remembered forming the
state of the agent. The logic program is evaluated by proving
the output from the current inputs and the current state.

Figure 2 shows a simulation of the robot in the maze. It
is simulated by discretising time with one time unit intervals.
Other discretisations, as long as they are not too coarse give
similar results.

The above simulation (of both the robot and the environ-
ment), ran faster than 20 steps per second, on a 68040 running
Sicstus Prolog. Partial evaluation should be able to speed
this up, and it seems that it should be possible to compile the
logic program specification into hardware (as does [Gaboury,
1990]). Thus it seems as though the logical specification of
robot action is not impractical from an efficiency point of
view.

4 Discussion and Comparison
This paper is not intended to just define yet another robot
programming language. Let us take the very general view of
an agent as a ‘causal’ function from input history to outputs

[Zhang and Mackworth, 1995; Rosenschein and Kaelbling,
1995]. Suppose we want to use logic as a formal specification
for the actions of the robot, for example in order to prove
theorems about the robot behaviour. If we are to treat values
of the inputs at various times and values of the outputs at
various times as propositions, then the constraint imposed by
the robot function is that it can’t be the case that the inputs have
certain values and the output is not the appropriate function
of the inputs; but this is exactly the definition of a definite
clause: inputs imply the outputs.

It might be argued that the logic here is too weak to represent
what we want to, for example it cannot represent disjunction.
We have to be careful here; if a robot is to do something, it
cannot be unsure about its own actions. It must commit to
one action in order to carry it out. A robot cannot ‘do’ action* 1 · * 2 without doing one of them. This does not mean that
the agent cannot be ignorant (or unsure) of what other agents
will do, or be unsure about what values it will receive from
the environment. For a general discussion of these issues,
and a way to handle them within the logic presented here (by
allowing independent ‘choices’ made by different agents and
nature) see [Poole, 1995].

4.1 Noisy sensors and actuators
The above axiomatisation showed how to model partial in-
formation about the environment (the agent had very lim-
ited sensing ability). In this section we sketch a way
to model noisy sensors and actuators using a continu-
ous version of probabilistic Horn abduction [Poole, 1993;
1995].

The general idea of probabilistic Horn abduction is that
there is a probability distribution over possible world gen-
erated by unconditionally independent random variables. A
logic program gives the consequences of the random choices
for each world. Formally, a possible world selects one value
from each alternative (disjoint set); what is true in the possible
world is defined by the unique stable model of the selection
and the acyclic logic program [Poole, 1995]. The probability
of the world is the product of the probabilities of the values
selected by the world. In this framework, the logic programs
can still be interpreted logically, and the resulting framework,
although based on independent random variables, can repre-
sent any probability distribution [Poole, 1993].

To model noisy sensors, we add an extra ‘noise’ term to the
rules. For example, to represent additive Gaussian noise for
the compass sensor, with standard deviation 3, we can use the
rule: �����!� �?"3�51 D4� *,���;����Z 3 mz¸���-/.BA�!1 > "3�)1 D'� *,���;���'��-/.8E:;*,&�"3� �!1 C ���;��¸���-/.5O
Where for all - ,
#:;*,&�"3� �!1 C � �2��¸���-/. : ¸« z¹¶� is an alterna-
tive set. :;*,&�"%� �!1 C ���;��¸���-/. is true in world > if the compass
noise is ¸ standard deviations from the mean at time - in
world > (each world has a unique ¸ that is true for each
time). ¸ is normally distributed with mean 0 and standard
deviation 1 (this is usually called the º -score):» - » ¸½¼�"%:;*,&�"3� �!1 C � �2��¸���-/.�.B7 1¾!¿ 2 À � c 1

2 Á 2

With such a noisy sensor the agent could do dead reckoning;
maintaining its own record of its position. However if the

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

actuator is also unreliable, then the errors explode. Unreliable
actuators can be modelled similarly to the noisy sensors, for
example,��� � "%�51 D'� *,� �2�5"%��ZÂ"3�'w9ZxÃ'.�m�"=-|{y- 1 .!Z 360 .D 1#0 360 ��-/.�A> *,�#"%�51 D'� *6���2���4��- 1 ��-/.!E:2*,&�"30,� J C :�"3�51 D4� *,� ��.5���'w���- 1 .�E:2*,&�"3* � J#J 1 J ��Ã���-/.5O
Where * � J#J 1 J is treated analogously to � �!1 C � � .

When the dynamics are linear and the noise is Gaussian,
the posterior distributions can be solved analytically, as in the
Kalman filter (see [Dean and Wellman, 1991]).

4.2 Constraint Nets
Constraint nets [Zhang and Mackworth, 1995] form a mod-
elling language for hybrid systems that combines discrete and
continuous time, and discrete and continuous domains into a
coherent framework. This is done by abstracting the notion of
time so that it covers both discrete and continuous models of
time, and using ‘events’ as the interface between continuous
and discrete time.

Constraint nets are built from three basic transductions.
Transliterations, which do not depend on the past, are axioma-
tised here by allowing (acyclic) logic programs to specify how
current outputs depend on current inputs. Our > *,� predicate
corresponds to unit delays. Transport delays of time Ä can
be modelled as the atom �!1 > "%$'&%�)(Å��-Q{GÄ�. — to implement
these we have to maintain a history of at least Ä long, and not
just a state.

4.3 Logic Control
COCOLOG [Caines and Wang, 1995] is a logic for discrete
control that shares many features of the discrete form of the
logic here. The main difference is that in COCOLOG, the state
of the system is an explicit term of the language. The language
is also more complicated than the simple Horn clauses used
here and the main control loop is extra-logical.

The declarative control of Nerode and Kohn [1994] uses
Prolog for control. Their main aim is for a Prolog program to
prove that some action is optimal. Their Prolog rules are at a
much different level than the simple rules used here, which are
impractical when using Prolog’s back-chaining search strat-
egy.

4.4 GOLOG
GOLOG [Lespérance et al., 1994] is a programming language
for robots based on the situation calculus. Unlike the proposal
in this paper, GOLOG programs are not sentences in a logic.
Rather the logic is at the meta-level providing a semantics for
the Algol-like GOLOG language.

One intriguing idea is to use the logic programming ap-
proach here to write a low-level controller that interprets
GOLOG programs. This could be done by having two state
variables, one that is the current action the agent is ‘doing’
and one is a list of actions ‘to do’. The rules could be used
to reduce expressions in time, for example to interpret action
sequences we can use:��� � "%0,1 C �8�8������-/.�E��� � " � 1#0,1,� SÇÆ�� �¶È���-/.�A

> *,�#"%0,1 C �8�8�5"�� ; Æ'.5��-/.!E> *,�#" � 1#0,1,���4��-/.)O
Similarly, we can interpret more complicated constructs such
as while loops as well as monitoring ‘primitive’ actions (e.g.,
we can see setting the goal direction in the above example as
a high level action that decomposes into continuous action,
and is monitored as to when it is complete). A full discussion
of this is beyond the scope of this paper.

4.5 Event Calculus
The event calculus [Kowalski and Sergot, 1986; Shanahan,
1990] provides a mechanism to represent persistent proper-
ties over intervals from events that make the properties true
and false. What is new in this paper is deriving events from
changes in continuous properties, having cumulative proper-
ties, and exploiting evaluation in time to gain efficiency.

There is quite a simple translation to map the event calculus
into the framework of this paper. The event calculus uses the
predicates: �N* �;� � �!�?"3Ã¥��-/. is true if event Ã happens at
time - ;

C � CÉ��C * � ���#"%Ã���¼'. is true if event Ã makes ¼ true;� � J D�C �!* � � �?"3Ã���¼'. is true if event Ã makes ¼ no longer true.
These can be mapped into the fluent representation used here:��� � "3¼�� � J#Ê �2��-/.qAC � CÉ��C * � ���#"%Ã���¼'.!E�N* �;� � �!�?"3Ã¥��-/.)O��� � "3¼���MN*,&f���2��-/.±A� � J DËC �!* � ���#"%Ã���¼4.[E�N* �;� � �!�?"3Ã¥��-/.)O
If we want the convention used in this paper that predicates
are true in left closed intervals, we can represent �81#&f0,�#"%¼���-/. ,
(meaning predicate ¼ holds at time -) by:�81#&f0,�?"3¼���-/.BA�!1 > "3¼±� � J#Ê �;��-/.5O

One main advantage of our representation is that, when we
act in time, and all of the ��� � ’s are done in temporal ordering,
and we maintain a state, then we can implement �81#&f0,� very
fast, by looking up the last value that was assigned to the
variable.

Shanahan’s notion of ‘autotermination’ is similar to our
deriving events from continuous change.

4.6 Other Mixes of Logic and Continuous Time
There have been other proposed mixes of logic and continu-
ous time (e.g., [Sandewall, 1989; Shanahan, 1990; Dean and
Siegle, 1990; Trudel, 1991; Pinto and Reiter, 1995]), but in all
of these either “during the time span of a situation no fluents
change truth values” [Pinto and Reiter, 1995] or the axioma-
tiser needs to know a priori how properties accumulate (they
effectively do integration off-line). For robot control, we do
not know how the sensor values will change; the best we can
do is to derive (estimate) integrals online. None of these other
proposals let us do this.

5 Conclusion
This paper has argued the logic programs can be used effec-
tively as a programming language for robot control. The logic
program forms an executable specification of what the robot

To appear, Proc. 14th International Joint Conference on AI (IJCAI-95),
Montreal, August, 1995

should do. The same language can be used for modelling the
robot and the environment (and also multiple robots). This
axiomatisation can be combined with probabilistic Horn ab-
duction [Poole, 1993] to allow for modelling uncertainty in
the environment (e.g., exogenous events, noisy sensors and
unreliable actuators).

This paper has not described some ideas about improving
efficiency by adaptive sampling: by partially evaluating the
logic program, we can determine what inputs we must look
for in order for an event to occur. When running the robot,
we can build into our sensors detectors for these conditions;
when detected, we can run the program in a forward direction
to derive events. In the simulation, we can query the envi-
ronment to determine when these events would occur. Such
ideas are currently being pursued.

Acknowledgements
Thanks to Alan Mackworth and Ying Zhang for interesting
discussions on hybrid systems. Thanks to Mike Horsch for
comments on a previous draft. This work was supported by
Institute for Robotics and Intelligent Systems, Project IC-7
and Natural Sciences and Engineering Research Council of
Canada Operating Grant OGPOO44121.

References
[Agre and Chapman, 1987] P. E. Agre and D. Chapman.

Pengi: An implementation of a theory of activity. In Proc.
6th National Conference on Artificial Intelligence, pages
268–272, Seattle, Washington, 1987.

[Apt and Bezem, 1991] K. R. Apt and M. Bezem. Acyclic
programs. New Generation Computing, 9(3-4):335–363,
1991.

[Caines and Wang, 1995] P. E. Caines and S. Wang. CO-
COLOG: A conditional observer and controller logic for
finite machines. SIAM Journal of Control, to appear,
November 1995.

[Dean and Siegle, 1990] T. Dean and G. Siegle. An approach
to reasoning about continuous change for applications in
planning. In Proc. 8th National Conference on Artificial
Intelligence, pages 132–137, Boston, MA, 1990.

[Dean and Wellman, 1991] T. L. Dean and M. P. Wellman.
Planning and Control. Morgan Kaufmann, San Mateo,
California, 1991.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson.
STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-
4):189–208, 1971.

[Gaboury, 1990] P. Gaboury. VLSI architecture design using
predicate logic. PhD thesis, Department of Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, Canada,
September 1990.

[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot. A
logic-based calculus of events. New Generation Comput-
ing, 4(1):67–95, 1986.

[Kowalski, 1979] R. Kowalski. Algorithm = logic + control.
Communications of the ACM, 22:424–431, 1979.

[Lespérance et al., 1994] Y. Lespérance, H. Levesque, F. Lin,
D. Marcu, R. Reiter, and R. B. Scherl. A logical approach
to high-level robot programming – a progress report. In B.
Kuipers, editor, Control of the Physical World by Intelli-
gent Systems, Papers from the 1994 AAAI Fall Symposium,
pages 79–85, New Orleans, November 1994.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of arti-
ficial intelligence. In M. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463–502. Edinburgh Uni-
versity Press, 1969.

[Nerode and Kohn, 1994] A. Nerode and W. Kohn. Multiple
agent hybrid control architecture. In R. L. Grossman, et. al.,
editor, Hybrid Systems, pages 297–316. Springer Verlag,
Lecture Notes in Computer Science 736, 1994.

[Pinto and Reiter, 1995] J. Pinto and R. Reiter. Reasoning
about time in the situation calculus. Annals of Mathemat-
ics and Artificial Intelligence, special festschrift issue in
honour of Jack Minker, to appear, 1995.

[Poole, 1993] D. Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1):81–129,
1993.

[Poole, 1995] D. Poole. Sensing and acting in the indepen-
dent choice logic. In Working Notes AAAI Spring Sym-
posium 1995 — Extending Theories of Actions: Formal
Theory and Practical Applications, pages ??–??, ftp://
ftp.cs.ubc.ca/ftp/local/poole/papers/actions.ps.gz, 1995.

[Rosenschein and Kaelbling, 1995] S. J. Rosenschein and
L. P. Kaelbling. A situated view of representation and
control. Artificial Intelligence, 73:149–173, 1995.

[Sandewall, 1989] E. Sandewall. Combining logic and dif-
ferential equations for describing real-world systems. In
Proc. First International Conf. on Principles of Knowledge
Representation and Reasoning, pages 412–420, Toronto,
1989.

[Shanahan, 1990] M. Shanahan. Representing continuous
change in the event calculus. In Proc. ECAI-90, pages
598–603, 1990.

[Trudel, 1991] A. Trudel. The interval representation
problem. International Journal of Intelligent Systems,
6(5):509–547, 1991.

[Zhang and Mackworth, 1995] Y. Zhang and A. K. Mack-
worth. Constraint nets: a semantic model for hybrid dy-
namic systems. Theoretical Computer Science, 138:211–
239, 1995.

[Zhang, 1994] Y. Zhang. A Foundation for the Design and
Analysis of Robotic Systems and Behavious. PhD thesis,
Department of Computer Science, University of British
Columbia, September 1994.

