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Abstract

Most shape-from-shading techniques require that
the reflectance function, the mapping from surface
orientation to image brightness, be known or be in
some particular form. In this paper we show that
the reflectance function of a rotating object illu-
minated under a collinear light source can be es-
timated from the image sequence of the object and
applied to surface recovery. We first calculate the
3D locations for a set of singular points from the
image sequence, and extract the brightness values
of these singular points from the image sequence to
estimate the reflectance function. Then we use the
estimated reflectance function and two images of the
rotating object for surface recovery. In surface re-
covery, we exploit both photometric constraints and
and geometric constraints on the correspondence of
a surface point in the two images and use first-
order Taylor series approximation to recover surface
depth and orientation simultaneously. The experi-
mental results on real image sequence show that the
method is feasible and robust.

1 Introduction

Based on physical properties of the reflectance of
a surface, shading in images can be used for sur-
face recovery. A lot of work, for example, shape
from shading [2, 8], photometric stereo [14, 15, 16],
and photometric sampling [4], has been done in this
area. In order to use shading information, the re-
flectance function of the surface under recovery is
usually assumed to be known or computed from im-
ages. The most common assumption on surface re-
flectance is Lambertian reflectance [12, 8] because
of its simplicity. In photometric stereo [15, 16], the

reflectance function is computed from a calibration
object which has the same surface reflectance func-
tion as that of the object under recovery.

However, for most real objects, the surface re-
flectance is not Lambertian. The Lambertian as-
sumption is only valid in some limited cases and
limited lighting and viewing conditions [13, 11, 6].
Empirical photometric stereo [15, 16] requires that
the calibration object and the object under recov-
ery have the same reflectance function and be il-
luminated and viewed under the same conditions.
The calibration process may become difficult or im-
possible when we cannot find a suitable calibration
object.

In our technique, we attempt to estimate the
surface reflectance function directly from image se-
quence of a rotating object and then use the es-
timated reflectance function to recover the scaled
surface depth and surface orientation of the object.
The object 1s mounted on a turntable whose rota-
tion angle can be controlled or detected. A collinear
light source, which points in the same direction as
the camera viewing direction, gives a uniform ra-
diance over the object. The images are taken by
a fixed camera while the object rotating around a
vertical axis. Under the illumination of a collinear
light source, the image brightness of a surface point
is a function of the incident angle i, which is the
angle between the illuminant direction and the sur-
face normal. This fact makes it easy to estimate
the reflectance function and apply the reflectance
function for surface recovery.

The estimation of the reflectance function is
based on a set of singular surface point whose inci-
dent angles are zero. The 3D coordinates of the sin-
gular points are computed from image points of the
maximum brightness values and the corresponding



contour points in the image sequence. Using the 3D
locations of these singular points, their brightness
values in the image sequence are extracted. The
correspondence between their image brightness val-
ues and their incident angles during the rotation are
used for building the reflectance function.

Surface recovery is done by using two images in
the image sequence. It starts from the singular
points which are used to extract the surface re-
flectance function. Applying first-order Taylor se-
ries approximation, the 3D coordinates of the neigh-
bor points of a singular surface point are calculated.
Then for each of these neighbor points, its projec-
tions on the two images and its corresponding two
image brightness values are obtained. Using the
inverse of the estimated reflectance function and
the two brightness values, the surface orientation
of each neighbor point is resolved up to a two-way
ambiguity. Based on the 3D locations and surface
orientations of these neighbor points and first-order
Taylor approximation, the 3D locations are com-
puted over a larger surface area, and using the in-
verse of the reflectance function and the brightness
values of the image correspondences on the larger
area, the surface orientations are calculated on the
area. In this way, starting from the singular points,
the surface depth and orientation can be computed
simultaneously over the object surface. The am-
biguity can be removed by using integrability con-
straints [5] or other information, such as image con-
tours and surface points of known 3D locations. The
computation for depth basically is an integration
process so 1t is robust against image noise. The
computation for surface orientation can be done by
look-up table just as in photometric stereo [15, 16].

Section 2 introduces the assumptions and the ex-
perimental setting for our work. Section 3 presents a
method for building the reflectance function of a ro-
tating object under a collinear light source. Section
4 describes the surface recovery procedure. Section
5 shows some experimental results on real image
sequence. The last section discusses experimental
results and further work.

2 Assumptions and Experi-
mental Conditions

The imaging geometry is shown in Fig. 1. The
object is on a turntable whose rotation angle can
be controlled or detected. The Y axis coincides
with the rotation axis of the turntable. The light
source and the camera are fixed and point in the
same direction. The camera viewing direction and

Figure 1: Experimental setup

the light illuminant direction are aligned with the Z
axis. The light source is a distant light source with
uniform radiance over time and illuminated area.
Since the camera is far away from the object, ortho-
graphical projection is used. Thus a surface point
(z,y,z) is projected on an image point (z,y). To
obtain the projection of the rotation axis in the im-
ages, a vertical while line on a black board is aligned
with the rotation axis and then identified from the
image of the board. Images are taken when the ob-
ject rates around the Y axis in the direction from
the X axis to the Z axis.

The surface of the object is piecewise continu-
ous and twice differentiable. The surface orienta-
tion is defined as (p,q,—1) with p = 9z(z,y)/0x
and ¢ = 0z(z,y)/0y. When the object rotates the
changes on coordinates and surface orientation can
be associated with their original states by a rota-
tional transformation. Let (z,y, z) be a 3D surface
point on the object and (p,q,—1) be the surface
orientation of this point. After an a degree rota-
tion, the 3D location (2a,Ya, 2e) of this point is
(T, Yo, 2a) = (zcosa—zsina, y, zsina+zcosa)
and the surface orientation (pq, ¢o, —1) of this point
is determined by

pcosa + sin a
Pa = (1)
cosa — psina
q :
fo = ————. (2)
cosa — psina
Since each image is taken after the object has ro-
tated by a certain angle, we relate coordinate and
surface orientation on the object with the images

taken during the rotation. For a surface point, when



we talk about its coordinate or orientation relative
to an image we mean the coordinate or orientation
of the surface point at the moment that the image
is taken.

We also assume the reflectance of the object
surface 1s uniform. In the general case, the im-
age brightness of a 3D point under a distant light
source 1s determined by the reflectance function
R(i,e,g9) [14]. As shown in Fig. 2, the incident an-
gle 7 is the angle between the incident ray and the
surface normal, the emergent angle e is the angle be-
tween the emergent ray and the surface normal, and
the phase angle e is the angle between the incident
and emergent rays. Under a collinear light source,
as shown in Fig. 3, the phase angle g becomes zero
and the incident angle ¢ becomes the same as the
emergent angle e. In this case, all the components
of the reflectance such as the specular component,
diffuse component and other components defined in
Tagare’s paper [11] are functions of the incident an-
gle ¢ only. Under a collinear light source the to-
tal image brightness at the surface point becomes a
function of one variable, that is, a function of the
incident angle i. Thus for the surface point (z,y, z),
its image brightness value can be written as

E(z,y) = R(i(z,y)) (3)

where i(z,y) is the incident angle at point (z,y, z).

The reflectance function has maximum brightness
value when ¢ = 0 and minimum brightness value
when i = 7/2. We assume the function is strictly
monotonic. This assumption is true for most sur-
faces. The most important aspect of the reflectance
function R(7) is that it is a function of one vari-
able. This makes the relation between brightness
value and surface orientation very simple. The sim-
plicity of the reflectance function makes it easy to
estimate the reflectance function and apply the es-
timated function for surface recovery.

3 Estimating the Reflectance
Function

The estimation of the reflectance function is based
on some singular points of surface orientation (0, 0,
-1) relative to the first image. These singular points
also have singular brightness values in the first im-
age because their incident angles are zero. Let the
surface point (z5,ys, z5s) be one of these points. The
values of x5 and ys; can be directly found from the
first image by searching for a point of the maximum
brightness. To determine z;, we look at the image
taken after the object has rotated by 90 degrees. In
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Figure 2: The image brightness is a function of the
angles 7, e and g.

Surface normal
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Figure 3: Under a collinear light the image bright-
ness only depends on angle 3.

that image, the projection of the singular surface
point is (—zs,ys). The value for z; is the horizon-
tal distance from the corresponding contour point
to the image of the rotation axis. Finding the cor-
responding contour point is not difficult since its y
coordinate 1s already known and the tangent line
of this point along the contour is parallel to the Y
axis. Once we know the 3D locations of these sin-
gular points, we can extract the brightness values of
these points from the image sequence. For the sin-
gular point (z,ys, zs), after the object has rotated
by an angle 8; < 90°, the 3D location of this point
(ziy, yi, zi) = (xscosby — zgsinb;, ys, zssinb; +
zs cosB;). The image brightness F(z;,y;) of this
point can be directly obtained from image point
(i, i) in image; taken after a 6; degree rotation
of the object. It is easy to show that the incident
angle for point (z;, yi, z;) is 6;. From the brightness
E(z;,y;) and the corresponding incident angle 6;,
we can build the reflectance function for the sur-
face.
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Figure 4: Tracking the singular points over the im-
age sequence

Fig. 5 shows the reflectance function £ = R(i)
obtained from an image sequence of a rotating vase.
The rotation angle between two consecutive images
in the image sequence is 5 degree. Thus nineteen im-
ages are taken during a 90 degree rotation. The im-
ages in Fig. 4 are four images of a rotating vase. The
images (a), (b), (c) and (d) are the images taken af-
ter 0, 30, 60, and 90 degrees rotation, respectively.
Three singular points are extracted from the first
image by searching for image points of maximum
brightness value and their corresponding contour
points in the last image. The white line in the mid-
dle of each image is the virtual image of the rotation
axis of the object. The centers of the small square
boxes in each image denote the three points tracked
over the image sequence. The image brightness val-
ues are sampled at every 5° in the range from 0°
to 90° of the incident angle. The average of the
brightness values of the three points is used to build

The reflectance function under collinear light source
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Figure 5: The reflectance function obtained from
the image sequence

the reflectance function. Since the reflectance func-
tion is strictly monotonic, its inverse exists. The
function we actually used for surface recovery is the
inverse function i = R~!(E). The inverse function
is linearly interpolated for every integer brightness
value ranging from 0 to 255.

4 Surface Recovery

After the reflectance function has been obtained,
surface recovery can be done by using any two im-
ages in the image sequence of a rotating object. In
this paper, the first image and the image taken after
the object has rotated by a certain angle are used.
The depth and surface orientation are computed at
every point in the first image. Surface recovery uses
two subprocedures to compute the depth and sur-
face orientation. The first subprocedure does local
expansion of depth by using first-order Taylor se-
ries approximation. For an image point (z,y), if
the depth z and the surface orientation (p, ¢, —1) are
known, the depth 2z’ of an image point (z+dz, y+dz)
in the small neighborhood of the image point (z, y)
is calculated by 2/ = z + dz = z + pdz + qdy. The
second subprocedure determines surface orientation
(up to a two-way ambiguity) from image brightness
values of a surface point in the two images. The fol-
lowing calculation shows how we derive orientation
from image brightness.

Let ¢magey be the image taken before the rota-
tion of the object and image; be the image taken
after an a degree rotation of the object. Let (2o, yo)
and (z1, y1) be the projections of a 3D surface point
in ¢mageg and image; respectively and their bright-
ness values are F(zg,yo0) and E(z1,31). Using the
inverse reflectance function i = R™!(E), we ob-
tain the incident angle éq and ¢; from FE(zo,yo)
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Figure 6: The solution for surface orientation

and F(z1,y1). Let the surface orientation of the
3D point be (pg, go, —1) relative to imageg and and
the surface orientation of the same 3D point be
(p1,q1,—1) relative to with image;. From the defi-
nition of incident angle and the transformation be-
tween the object coordinates, we have

1

coslg = ——— | 4)
pg+ a5 + 1
1
COSZ’lzﬁ, (5)
pitagi+1

Po oS @ + Sin a
n=———-,
cosa — pgsin

and

qo
n=_—"—""—. (7)
cos a — pgsin «

Substituting p; and ¢; in Equation 5, we get
1

cost] = ;

\/1+ (pgcosoz+sinoc)2 +( 9o )2

cos a—pp sin a cos a—pop sin o

(8)

The equation can be simplified to
cos iy = cos ig(cos a — pg sin ). 9)

Solving Equation 9 for pg and from Equation 4, we
have

1 cos 1
Po = - - (10)

— )
tan a CoS 1g S1n «

[ 1
4,/ ——= —p? — 1. 11
cosi(zJ Po ( )

The geometric explanation for the solution of pg
and ¢gq is shown in Fig. 6. Here we assume imageg
and image; are taken from two different viewing

qo =

directions with the object fixed. We denote the
viewing direction for imagey as vector vg and the
viewing direction for image; as vector vy. All the
surface normals with incident angle 7y to the view-
ing direction vector vg form a cone. All the surface
normals with incident angle #; to the viewing direc-
tion vy form another cone. The intersection of the
two cones is two vectors. The two vectors are sym-
metric about the XZ plane. Only one of the two
vectors overlaps with the surface normal. So there
is a two-way ambiguity in the solution for surface
orientation which is caused by the two solutions for
¢o in Equation 11.

The surface recovery procedure starts at the im-
age points whose depth and surface orientations are
known. These starting points could be the singu-
lar points we used to estimate the reflectance func-
tion. For each starting point of known depth, we use
the first subprocedure to compute the depth for the
neighbors of the starting point. For each neighbor
point, using the depth value computed by the first
subprocedure, we compute its projections on the
two 1mages and extract the two brightness values
from the two images. Then we use the second sub-
procedure with the two brightness values extracted
to compute surface orientation for every neighbor
point. Using the first subprocedure on the neighbor
points, we expand the depth over a larger area. Us-
ing the second subprocedure on the larger area, we
compute surface orientation for the larger area. By
iteratively applying the first and the second subpro-
cedures, we spread the computation over the whole
image to obtain the depth and surface orientation
at the same time. The number of local operations
in this process is linear in the number of pixels in
the image.

5 Experimental Results

In our experiment, we use a calibrated image facil-
ity (CIF) [16] built in our lab to control the rotation
of the object and the imaging condition. Although
the camera we used is a 24-bit RGB camera, we
only use one of the three B&W images. We use a
DC powered beamed light source and mount it on
the top of the camera. The light source and the
camera point in the same direction to the object on
a turntable. We considered putting a half-silvered
mirror in front of the camera to make the viewing di-
rection and illuminant direction precisely collinear,
but it turned out to be unnecessary because we did
not observe the effects caused by the small angle be-
tween the viewing direction and the illuminant di-
rection. In practice, the radiance of the light source



is not constant over illuminated area. We use a uni-
form white board to calibrate the non-uniform illu-
mination. Since the distance from the camera to the
object is far bigger than the size of the object, the
camera is set to telephoto mode and orthographical
projection is used for a reasonable approximation.
The actions of rotating an object and taking images
of the object are well synchronized by a computer.
Nineteen images of a vase are taken with a 5° in-
terval between two adjacent images. Thus the total
rotation of the vase is 90 degrees.

To filter image noise and quantization noise, the
images are smoothed with a Gaussian filter of ¢ = 1.
Four images from the image sequence of the vase
are shown in Fig. 4. Tmages (a), (b), (c) and (d)
are, respectively, the images taken after 0, 30, 60
and 90 degrees rotation of the vase. The estimated
reflectance function of the vase is shown in Fig. 5.
We track the three singular points starting from the
first image to estimate the reflectance function. The
brightness value for the reflectance function is the
average of the brightness values of the three points.
The singular surface points relative to the last image
can also be used for better estimation. For the time
being, only the singular points relative to the first
image are used.

In surface recovery the first image (Fig. 7(a)) and
the image after a 5 degree rotation (Fig. 7(b)) are
used. We first compute depth and surface orien-
tation along a line in the y direction starting from
the singular point in the lower body part of the vase.
Later on the 3D points on this line are used as start-
ing points for computation along the x direction. In
Fig 7(a)), the center of the small box denotes the
starting point for surface recovery and the white
line is the line along which depth and surface ori-
entation are first computed. Fig. 7(c) shows the
depth along this line. The horizontal distance from
a point on the curve to the middle black straight
line is the depth. Depth and orientation are ex-
pressed in the coordinate system related to the first
image. During surface recovery, depth and orienta-
tion are computed at every pixel in the first image.
The image brightness value of a 3D point in the
second image are interpolated between pixels as the
projection of a 3D point may be located between
pixels in the second image. The surface plot of the
recovered vase are shown in Fig. 8. The surface
plot is displayed with Matlab by using the depth
data calculated over the first image. We did not do
any smoothing or regularization on the depth and
surface orientation data.

When we compute a new depth value z’ in the
y direction, we have z/ = z + qdy. Thus the am-

Figure 7: Images used for surface recovery and the
depth along the vertical line in (a)
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Figure 8: The height plot of the recovered surface




biguity in depth occurs as there are two solutions
of q obtained from Equation 11. During the sur-
face recovery procedure the surface i1s constructed
by using the two possible values of q. Two different
surfaces are constructed at the beginning. The two
partially constructed surfaces are projected back on
the last image in the image sequence. The contours
in the last image are checked against the contours
in the images of the two partially constructed sur-
faces. The partial surface whose contours are not
consistent with those in the last image is discarded.
The other partial surface is used to recover the re-
maining part of the surface with the continuous con-
straint. This ambiguity can also be removed by the
integrability constraint [5]. For the two partially
constructed surfaces, sy and s;, with two continu-

ous values ¢y and ¢y, we compare fsﬂ(% - 2—5)2

with f (% — g—p)2 and abandon the surface with
Js:\Fr ~ By
the bigger integral.

6 Discussion and Further

Work

The results obtained shows that the technique is
feasible and robust for surface recovery. We don’t
assume the reflectance function has any particular
form. We estimate the reflectance function directly
from the image sequence of a rotating object. The
surface recovery procedure exploits the photomet-
ric constraint through the reflectance function and
the geometric constraint by using first-order Taylor
series approximation and rotational transformation.
The subprocedure for calculating surface depth in-
tegrates surface orientation. So in theory this pro-
cedure is robust against image noise. The pertur-
bation on depth value of the starting point only af-
fect the surface depth near the starting point and
do not change the surface depth which is far from
the starting point. Shifting the rotation axis 3 or
4 pixels does not make much difference on the final
results.

We have not made a detailed error analysis on
the surface recovery process. From the surface plot
in Fig. 8 we can observe some errors. These errors
mainly come from three sources: inaccurate estima-
tion of the reflectance function, non-uniform albedo
over the object surface and interreflection on the ob-
ject. To reduce the error in the estimation of the re-
flectance function, we can use more singular points
or use other surface points whose surface orienta-
tion and 3D location can be computed by image cues
such as contours [17]. To reduce the error caused by
non-uniform albedo, we can extract the reflectance

function for a local area of relatively constant albedo
and use the local reflectance function for the local
surface recovery. This idea can be applied to sur-
faces of piecewise uniform reflectance. This is our
current area of research. Reducing the error caused
by interreflection in the general case is very hard [3].
So far we do not have effective methods for remov-
ing interreflection on surfaces with non-Lambertian
reflectance.

Beside shading, there are other kinds of cues such
as contour and stereo available from image sequence
of a rotating object. These cues can be used in dif-
ferent ways. One way to use the contour is to get lo-
cal reflectance function from contours. In our work
we use singular points to estimate the reflectance
function and assume these points will be visible dur-
ing the 90° rotation. It has been shown that con-
tours in an image sequence of a rotating object can
be used to compute the location and orientation of
some surface points [17]. These surface points can
be alternatives for singular points. One way to use
the stereo information is to get the 3D locations of
some surface points from surface features and use
these points as starting points for our surface recov-
ery procedure. The stereo information can also be
used to remove the ambiguity on the ¢ component of
surface orientation. The integration of all the cues
is not an easy task [9, 10, 7, 18, 1]. extending our
work to surfaces with piecewise uniform reflectance
will require integrating different cues.

Another extension of our work is surface recov-
ery by rotating the object more than 90 degrees. In
this way, we can get more singular points and obtain
a more accurate estimate of the surface reflectance
function. Also we can construct the whole object
by integrating surface depth recovered from differ-
ent views. We intend to apply our surface recovery
method and its extensions in automatic modeling,
fast prototyping, surface inspection for Computer

Graphics, CAD and CAM.
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