Specification and Verification
of Constraint-Based Dynamic Systems

Ying Zhang and Alan K. Mackworth*

Department of Computer Science
University of British Columbia
Vancouver, B.C.
Canada V6T 174

zhang,mack@cs.ubc.ca

Abstract. Constraint satisfaction can be seen as a dynamic process
that approaches the solution set of the given constraints asymptotically
[6]. Constraint programming is seen as creating a dynamic system with
the required property. We have developed a semantic model for dynamic
systems, Constraint Nets, which serves as a useful abstract target ma-
chine for constraint programming languages, providing both semantics
and pragmatics. Generalizing, here we view a constraint-based dynamic
system as a dynamic system which approaches the solution set of the
given constraints persistently. Most robotic systems are constraint-based
dynamic systems with tasks specified as constraints. In this paper, we
further explore the specification and verification of constraint-based dy-
namic systems. We first develop generalized V-automata for the specifica-
tion and verification of general (hybrid) dynamic systems, then explicate
the relationship between constraint-based dynamic systems and their re-
quirements specification.

1 Motivation and Introduction

We have previously proposed viewing constraints as relations and constraint sat-
isfaction as a dynamic process of approaching the solution set of the constraints
asymptotically [6]. Under this view, constraint programming is the creation of
a dynamic system with the required property. We have developed a semantic
model for dynamic systems, Constraint Nets, which serves as a useful abstract
target machine for constraint programming languages, providing both seman-
tics and pragmatics. Properties of various discrete and continuous constraint
methods for constraint programming have also been examined [6].
Generalizing, here we consider a constraint-based dynamic system as a dy-
namic system which approaches the solution set of the given constraints persis-
tently. One of the motivations for this view is to design and analyze a robotic
system composed of a controller that is coupled to a plant and an environment.

* Shell Canada Fellow, Canadian Institute for Advanced Research

The required properties of the controller may be specified as a set of constraints,
which, in general, vary with time. Thus, the controller should be synthesized so
as to solve the constraints on-line. Consider a tracking system where the target
may move from time to time. A well-designed tracking control system has to
ensure that the target can be tracked down persistently.

Here we start with general concepts of dynamic systems using abstract no-
tions of time, domains and traces. With this abstraction, hybrid as well as dis-
crete and continuous dynamic systems can be studied in a unitary framework.
The behavior of a dynamic system is then defined as the set of possible traces
produced by the system.

In order to specify required properties of a dynamic system, we develop a
formal specification language, a generalized version of V-automata [3]. In order
to verify that the behavior of a dynamic system satisfies its requirements speci-
fication, we develop a formal model checking method with generalized Liapunov
functions.

A constraint-based dynamic system is a special type of dynamic system. We
explore the properties of constraint-based dynamic systems and constraint-based
requirements specification, then relate behavior verification to control synthesis.

The rest of this paper is organized as follows. Section 2 briefly presents con-
cepts of general dynamic systems and constraint net modeling. Section 3 develops
generalized V-automata for specifying and verifying required properties of dy-
namic systems. Section 4 characterizes constraint-based dynamic systems and
requirements specification. Section 5 concludes the paper and points out related
work.

2 General Dynamic Systems

In this section, we first introduce some basic concepts in general dynamic sys-
tems: time, domains and traces, then present a formal model for general dynamic
systems.

2.1 Concepts in dynamic systems

In order to model dynamic systems in a unitary framework, we present abstract
notions of time, domains and traces. Both time structures and domains are
defined on metric spaces.

Let Rt be the set of nonnegative real numbers. A metric space is a pair
(X, d) where X isaset and d: X x X — Rt is a metric defined on X, satisfying
the following axioms for all z,y,z € X:

1. d(z,y) = d(y, z).
2. d(z,y)+d(y,z) > d(z,z).
3. d(z,y)=0iff z = y.

In a metric space (X,d), d(z,y) is called “the distance between z and y.” We
will use X to denote metric space (X, d) if no ambiguity arises.

A time structureis a metric space (7, d) where 7 is a linearly ordered set with
a least element 0 and d is a metric satisfying that for all tg <3 < t9,d(to,t2) =
d(to,t1)+d(t1,t2). We will use 7 to denote time structure (7, d) if no ambiguity
arises. In this paper, we consider a time structure 7 with the following properties:
(1) 7 is infinite, i.e., sup,;c7{d(0,t)} = oo, and (2) 7 is complete, ie., if T'C T
has an upper bound, 7" has a least upper bound. 7 can be either discrete or
continuous. For example, the set of natural numbers defines discrete time and
the set of nonnegative real numbers defines continuous time.

Let X be a metric space representing a discrete or continuous domain. A
trace v : T — X is a function from time to a domain.

2.2 Constraint Nets: a model for dynamic systems

We have developed a semantic model, Constraint Nets, for general (hybrid) dy-
namic systems [8]. We have used the Constraint Net model as an abstract target
machine for constraint programming languages [6], while constraint program-
ming is considered as designing a dynamic system that approaches the solution
set of the given constraints asymptotically.

Intuitively, a constraint net consists of a finite set of locations, a finite set of
transductions, each with a finite set of input ports and an output port, and a
finite set of connections between locations and ports of transductions. A location
can be regarded as a wire, a channel, a variable, or a memory cell, whose values
may change over time. A transduction is a mapping from input traces to output
traces, with the causal restriction, viz., the output value at any time is deter-
mined by the input values up to that time. For example, a temporal integration
with an initial value is a typical transduction on continuous time and any state
automaton with an initial state defines a transduction on discrete time.

A location [is the output location of a transduction F' iff it connects to the
output port of F'; [is an input location of F iff it connects to an input port of
F. Let C'N be a constraint net. A location is an output location of C'N if it is an
output location of some transduction in C'N; it is otherwise an input location of
CN.CN is open if there are input locations; it is otherwise closed.

Semantically, a transduction F' denotes an equation lo = F'(l1,...,l,) where
lo is the output location of F' and (l1,...,{,) is the tuple of input locations
of F'. A constraint net C'N denotes a set of equations, each corresponds to a
transduction in C'N. The semantics of C'N, denoted [CN], is a “solution” of
the set of equations [8], which is a transduction from input to output traces.
The behavior of a dynamic system is defined as a set of possible input/output
traces produced by the system. We will also use [C'N] to denote the behavior of
a dynamic system modeled by C'N if no ambiguity arises.

We have modeled two types of constraint solver, state transition systems
and state integration systems, in constraint nets. The former models discrete
dynamic processes and the latter models continuous dynamic processes [6]. Hy-
brid dynamic systems, with both discrete and continuous components, can also
be modeled in constraint nets [7, 8].

We illustrate the constraint net modeling with two simple examples. With-
out loss of generality, let time be the set of nonnegative real numbers R* and
domains be the set (or product) of real numbers R.

Consider a “standard” example of Cat and Mouse modified from [1]. Suppose
a cat and a mouse start running from initial positions X, and X,, respectively,
X. > X,;, > 0, with constant velocities V., < V,;;, < 0. Both of them will stop
running when the cat catches the mouse, or the mouse runs into the hole in
the wall at 0. The behavior of this system is modeled by the following set of
equations C'M7:

X, = /(Xc)(Vc)y, Ty = /(Xm)(Vm ¢), e= (x> xm) A(zm > 0)

where [(X) is a temporal integration with initial state X. At any time, ¢ is 1 if
the running condition (z. > #,,) A (2,, > 0) is satisfied and 0 otherwise. This
is a closed system. If the cat catches the mouse before the mouse runs into the
hole in the wall at 0, i.e., 0 < 2, < z,,, the cat wins; if the mouse runs into the
hole before the cat, i.e., z,, <0 < 2., the mouse wins.

Consider another Cat and Mouse problem, where the controller of the cat is
synthesized from its requirements specification, i.e., . = z,,. Suppose the plant
of the cat obeys the dynamics u = z, where u is the control input, i.e., the
velocity of the cat is controlled. One possible design for the cat controller uses
the gradient descent method [6] on the energy function (zp, — z.)? to synthesize
the feedback control law u = k- (2, — 2.), k > 0 where the distance between the
cat and the mouse z,, — z. can be sensed by the cat. The cat can be modeled
as an open constraint net with the following set of equations C'My:

x. = /(Xc)(U), u=k-(xm—z.).

Will the cat catch the mouse?

3 Generalized V-Automata

While modeling focuses on the underlying structure of a system — the organiza-
tion and coordination of components or subsystems — the overall behavior of the
modeled system is not explicitly expressed. However, for many situations, it is
important to specify some global properties and guarantee that these properties
hold in the proposed design.

We advocate a formal approach to specifying required properties and to ver-
ifying the relationship between the behavior of a dynamic system and its re-
quirements specification. A trace v : 7 — X is a generalization of a sequence.
In fact, when 7 is the set of natural numbers, v is an infinite sequence. A set
of sequences defines a conventional formal language. If we take the behavior of
a system as a language and a specification as an automaton, then verification
is to check the inclusion relation between the language of the system and the
language accepted by the automaton.

V-automata [3] are non-deterministic finite state automata over infinite se-
quences. These automata were proposed as a formalism for the specification and
verification of temporal properties of concurrent programs. In this section, we
generalize V-automata to specify languages composed of traces on continuous
as well as discrete time, and modify the formal verification method [3] by gen-
eralizing both Liapunov functions [6] and the method of continuous induction

[9].

3.1 Requirements specification

Let an assertion be a logical formula defined on a domain X, i.e., an assertion
« for a value z € X will be evaluated to either true, denoted |= «, or false,
denoted z [£ a.

A VY-automaton A is a quintuple (@, R, S,e,c¢) where @ is a finite set of
automaton-states, R C @ is a set of recurrent states and S C @ is a set of stable
states. With each ¢ € @, we associate an assertion e(q), which characterizes the
entry condition under which the automaton may start its activity in ¢. With
each pair ¢, ¢’ € @, we associate an assertion ¢(q,¢’), which characterizes the
transition condition under which the automaton may move from ¢ to ¢’. R and
S are the generalization of accepting states to the case of infinite inputs. We
denote by B = @ — (RUS) the set of non-accepting (bad) states.

Let 7 be a time structure and v : 7 — X be a trace. A run of A over v is a
trace r : 7 — (@ satisfying

1. Initiality: v(0) = e(r(0));
2. Consecution:
— inductivity: V¢t > 0,3¢ € @,/ < t,Vt", ¢’ < t" < t,r(t") = ¢ and
v(t) E e(r(t”), (1)), and
— continuity: V¢,3¢ € Q,t' > t,Vt",;t <t < t',r(t") = ¢ and v(t")

e(r(t), r(t")).

A trace v is specifiable by A iff there is a run of A over v. The behavior of a
system is specifiable by A iff every trace of the behavior is specifiable.

If r is a run, let Inf(r) be the set of automaton-states appearing “infinitely
many times” in r, i.e., Inf(r) = {q|VtIte > t,r(te) = ¢}. A run r is defined to
be accepting iff:

1. Inf(r)N R # 0, i.e., some of the states appearing infinitely many times in 7
belong to R, or

2. Inf(r) C S, i.e., all the states appearing infinitely many times in r belong
to S.

A V-automaton A accepts a trace v, written v |= A, iff all possible runs of A
over v are accepting; A accepts a behavior B, written B = A, iff Vv € B, v E A.
One of the advantages of using automata as a specification language is its
graphical representation. It is useful and illuminating to represent V-automata
by diagrams. The basic conventions for such representations are the following:

The automaton-states are depicted by nodes in a directed graph.

— Each initial state is marked by a small arrow, called the entry arc, pointing
to it.

— Arcs, drawn as arrows, connect some of the states.

— FEach recurrent state is depicted by a diamond shape inscribed within a circle.

Each stable state is depicted by a square inscribed within a circle.

Nodes and arcs are labeled by assertions. A node or an arc that is left unla-
beled is considered to be labeled with true. The labels define the entry conditions
and the transition conditions of the associated automaton as follows:

— Let ¢ € @ be a node in the diagram. If ¢ is labeled by 3 and the entry arc
is labeled by ¢, the entry condition e(q) is given by e(q) = ¢ A ¢. If there is
no entry arc, e(q) = false.

— Let ¢, 4’ be two nodes in the diagram. If ¢’ is labeled by ¢, and arcs from ¢
to ¢’ are labeled by ¢;,i = 1---n, the transition condition ¢(q, ¢') is given by
c(q,9) =(p1V -+ V,) A If there is no arc from ¢ to ¢', ¢(q,¢") = false.

This type of automaton is powerful enough to specify various qualitative
properties. Some typical required properties are shown in Fig. 1: (a) accepts
a trace which satisfies =G only in finite time, (b) accepts a trace which never
satisfies B, and (c) accepts a trace which will satisfy S in the finite future
whenever it satisfies R.

b e B

@ (b)

=)
@©

Fig. 1. V-automata: (a) reachability (b) safety (c) bounded response

For the Cat and Mouse examples, we can have the formal requirements spec-
ifications shown in Fig. 2.

3.2 Behavior verification

Given a constraint net model of a discrete- or continuous-time dynamic system,
the behavior of the system is obtained from a “solution” of the set of equations
denoted by the model. Given a behavior and a V-automata specification of re-
quirements, a formal method is developed here for verifying that the behavior
satisfies its requirements specification.

For any trace v : 7 — X, let {p}v{¢} denote the validity of the following
two consecutive conditions:

Running: %, >x;,> 0 Escaped: |xp, - X, | >= ¢

.

CatWins: 0=<x; <=x
MouseWins: x,,<=0<=x.

Fig. 2. (a) Either the cat or the mouse wins (b) The cat catches the mouse persistently

— {ptv{¢}:forallt >0, 3 <, Vt" ' <t <t,v(t") = ¢ implies v(t) = ¢.
— {ptvt{¢}: for all t, v(t) £ ¢ implies I’ > ¢, V"' t <t <t/ v(t") E .

Let B be a behavior with time 7 and domain X, @ = {v(0)|v € B} be the
set of initial values of B, and A = (@, R, S,e,¢) be a V-automaton. A set of
assertions {a,}qeq is called a set of invariants for B and A iff

— Initiality: Vg € Q,0 Ne(q) — ay.
— Consecution: Yv € B, Vq,q¢' € Q, {ag}v{c(q, ¢') — aq}.

Without loss of generality, we assume that time is encoded in domain X by
t. : X — 7. Given that {ag}eq is a set of invariants for B and A, a set of
partial functions {p, }seq : X — R7 is called a set of Liapunov functions for B
and A iff the following conditions are satisfied:

— Definedness: Vg € Q, a, — Jw, p; = w.
— Non-increase: Yv € B,Vq € S,¢ € Q,

{ag A pg = whv{c(q,4) — py < w}
and Vg € Q,q' € S,
{og Apy = whvt{e(q,q') — pyr < w}.
— Decrease: Yv € B, 3¢ > 0,Vq € B, ¢' € Q,

Py — W

A1) S —<}

{ag Apg=wnt. =t} {c(q,¢) —
and Vg € Q, ¢ € B,

py —w
o A py = w A e = ¥ {elg, o) — = < =)

We conclude that if the behavior of a system B is specifiable by a V-automaton
A and the following requirements are satisfied, the validity of .4 over B is proved:

(I) Associate with each automaton-state ¢ € @ an assertion «g, such that
{ag}qeq is a set of invariants for B and A.

(L) Associate with each automaton-state ¢ € @ a partial function p, : X — R¥,
such that {p, }4eq is a set of Liapunov functions for 8 and A.

Theorem 1 If B is specifiable by A, and both (I) and (L) are satisfied, B = A.

Proof: (Sketch, details in appendix) Use the method of continuous induction to
show that Yv € B and a run r of A over v, v(t) = a,@), VE € 7. O

We illustrate this verification method by the Cat and Mouse examples.

Consider the first Cat and Mouse example adopted from [1]. We show that
the constraint net model C'M; in section 2 satisfies the requirements specification
in Fig. 2(a).

Associate with qg, g1 and g5 assertions Running, CatWins and MouseWins,
respectively. Therefore, the set of assertions is a set of invariants.

Associate with qg, ¢; and g5 the same function p : R x R x {0,1} — R*, such
that p(z¢, #m,0) = 0 and p(a¢, #m, 1) = —(f/—: + %) Clearly, p is decreasing at
qo with rate 2. Therefore, it is a Liapunov function.

The behavior of C'M; is specifiable by the automaton in Fig. 2(a) since z,
and z,, are continuous. Therefore, C'M; satisfies the required property.

If we remove the square O from node ¢ in Fig. 2(a), i.e., ¢z € B, the modified
requirements specification declares that “the cat always wins.” Not every trace
of the behavior of C'M; satisfies this specification. However, if the initial value
(X¢, Xpm) satisfies)‘5—: > %, in addition to X, > X,;, > 0, we can prove that “the
cat always wins.” To see this, let A = % — % and let Inv denote ‘x,—z — f,—:: = A.

Associate with ¢g, g1 and g5 assertions Running A Inv, CatWins and false,
respectively. Note that for all v € [CM;],

{Running A Inv}v{Running — Running A Inv}

since the derivative of {# — {7 is 0 given that Running is satisfied, and

{Running A Inviv{MouseWin — false}

since z. and x,, are continuous. Therefore, the set of assertions is a set of in-
variants.

Associate with qg, 1 and g5 the same function p : R x R x {0,1} — R*, such
that p(x¢, 2m,0) = 0 and p(ze, 2m, 1) = _(% + f,—z) Again, it is a Liapunov
function.

Consider the second Cat and Mouse example, in which the motion of the
mouse is unknown, but the cat tries to catch the mouse anyhow. Clearly, not
every trace of the behavior of the constraint net C'M, satisfies the requirements
specification in Fig. 2(b). For example, if . = &, all the time, the distance
between the cat and the mouse will be constant and the cat may never catch
the mouse. However, suppose the mouse is short-sighted, i.e., it can only see the
cat if their distance |z, — .| < § < ¢, and when it does not see the cat, it will
stop running within time 7.

The short-sighted property of the mouse is equivalent to adding the following
assumption to C'My: for all v € [C'Ma],

{lem —xc| > 6 ANam = 0}v{|em — 2| > 6 — &, = 0}

i.e., the mouse will not run if it does not see the cat. The maximum running
time property of the mouse is equivalent to adding the following assumption to
CMs: let l; be the time left for the mouse to run when it does not see the cat,

for all v € [CM-],
{lzm —zc| < 8}v{lem — 2| > 6 A2y #0 =1 < 7}
and
{@m—2c| > 6Aim £ OAl = IAt, = tho{|zm—2o| > 6Adm # 0 — I, < I—d(t.,t)}.

We show that no matter how fast the mouse may run, the cat tracks down
the mouse persistently (including the case in which the mouse is caught perma-
nently).

In order to prove this claim, we decompose the automaton-state g in Fig.
2(b) into two automaton-states goo and ¢o1 as shown in Fig. 3.

Track: Xy - X, | >= € A §<m=0
Escapel |y, - X, | >= € A §<m=/=0
Caught: Xy, - %, | <€

Fig.3. A refinement of the cat-mouse specification

Associate with automaton-states oo, qo1 and ¢y assertions Track, FEscape
and Caught, respectively. Note that Vv € [CMs], {Track}v{Escape — false}.
Therefore, [C'Ms] is specifiable and the set of assertions is a set of invariants.

Let V;, € RT be the maximum speed of the mouse and D,, = V,,7 + 6.
Associate with automaton-states qog, qo1 and ¢; functions pyy,, pg,; and pg,,
respectively, where

Pqo0 = (.Z‘m - xc)2¢ Pgor = Dr2n + lta Py = 0.
The feedback control law of the cat guarantees that p,,, decreases at ggo at a rate
no less than 2ke?. The maximum running time property of the mouse guarantees
that pg,, decrease at go; at a rate no less than 1. Therefore, p decreases at g
with minimum rate min(2ke?, 1). We can check that the set of functions is a set
of Liapunov functions.

4 Constraint-Based Dynamic Systems

In this section, we first explore the relationship between a constraint solver and
its requirements specification, then define constraint-based dynamic systems as
a generalization of constraint solvers.

4.1 Constraint solver

Constraint satisfaction can be seen as a dynamic process that approaches the
solution set of the given constraints asymptotically, and a constraint solver,
modeled by a constraint net, satisfies this required property [6]. Here we briefly
introduce some related concepts.

Let (X,d) be a metric space. Given a point « € X and a subset X* C X,
the distance between z and X* is defined as d(z, X*) = infyre x+{d(z, 2*)}. For
any € > 0, the e-neighborhood of X* is defined as N¢(X*) = {z|d(z, X*) < €}; it
is strict if it is a strict superset of X*. Let v : 7 — X be a trace, v approaches
X*iff VetV > to,d(v(t), X*) < e.

Given a dynamic process [6] p: X — (7 — X) and X* C X, let ¢,(X*) =
{p(z)(t)|z € X*,t € T}. X* is an equilibrium of p iff ¢,(X*) = X*. X* is a
stable equilibrium of p iff X* is an equilibrium and Ve38, ¢,(N°(X*)) C N¢(X*).
X* is an attractor of p iff there exists a strict e-neighborhood N¢(X™) such that
Vo € N¢(X*), p(x) approaches X*; X* is an attractor in the large iff Vo € X,
p(z) approaches X*. If X* is an attractor (in the large) and X™* is a stable
equilibrium, X* is an asymptotically stable equilibrium (in the large).

Let C' = {C;}ier be a set of constraints, whose solution sol(C) = {z|Vi €
I,Ci(z)} is a subset of domain X. A constraint solver for C' is a constraint
net C'S whose semantics is a dynamic process p : X — (7 — X) with sol(C)
as an asymptotically stable equilibrium. C'S solves C globally iff sol(C) is an
asymptotically stable equilibrium in the large.

We have discussed two types of constraint solvers: state transition systems
and state integration systems. Various discrete and continuous constraint meth-
ods have been presented, and also analyzed using Liapunov functions [6].

4.2 Constraint-based requirements specification

Given a set of constraints C, let C'¢ denote the assertion which is true on the
e-neighborhood of its solution set N¢(sol(C)), and let A(C¢;0O) denote the V-
automaton in Fig. 4(a). Using the asymptotic property of constraint solvers, we
can verify that C'S solves C' iff there exists an initial condition @ D sol(C') such
that Ve, [CS(0)] |E A(C<; O); CS solves C globally when 6 is the domain itself.
We call A(C¢;0) an open specification of the set of constraints C'. Note that it
is important to have open specification, otherwise, if we replace C'¢ with sol(C),
a constraint solver for C' may never satisfy the specification, since it may take
infinite time to approach sol(C').

.) @ 3
Bl S

Fig.4. Specification for (a) constraint solver (b) constraint-based dynamic system

However, requiring the integration of a controller with its environment to be
a constraint solver is still too stringent for a control problem, with disturbance
and uncertainty in its environment. If we consider the solution set of a set of
constraints as the “goal” for the controller to achieve, one relaxed requirement
for the controller is to make the system “stable” at the goal. In other words,
if the system diverges from the goal by some disturbance, the controller should
always be able to regulate the system back to its goal. We call a system C'B
constraini-based w.r.t. a set of constraints C' iff there exists an initial condition
© D sol(C) such that Ve, [CB(O)] E A(C¢;) where A(C¢; <) denotes the
V-automaton in Fig. 4(b). In other words, a dynamic system is constraint-based
iff it approaches the solution set of the given constraints persistently.

We may relax this condition further and define constraint-based systems
with errors. We call a system CB constraint-based w.r.t. a set of constraints
C' with error 6 iff Ve > §,[CB(O)] E A(C¢;O); 6 is called the steady-state
error of the system. Normally, steady-state errors are caused by uncertainty and
disturbance of the environment. For example, the second cat-mouse system C' M,
is a constraint-based system with steady-state error §, which is the radius of the
mouse sensing range.

If A(C¢;0) is considered as an open specification of a constraint-based com-
putation for a closed system, A(C¢; O) can been seen as an open specification of
a constraint-based control for an open or embedded system.

4.3 Constraint-based control and behavior verification

We have developed a systematic approach to control synthesis from requirements
specification [6]. In particular, requirements specification imposes constraints
over a system’s global behavior and controllers can be synthesized as embedded
constraint solvers which solve constraints over time. By exploring a relation
between constraint satisfaction and dynamic systems via constraint methods,
discrete/continuous constraint solvers or constraint-based controllers are derived.

We have developed here a requirements specification language and a formal
verification method for dynamic systems. With this approach, control synthesis
and behavior verification are coupled via requirements specification and Lia-
punov functions. If we consider a Liapunov function for a set of constraints as
a measurement of the degree of satisfaction, this function can be used for both
control synthesis and behavior verification.

5 Conclusion and Related Work

We have presented a formal language, generalized V-automata, for specifying
required properties of dynamic systems, and a formal method, based on gener-
alized Liapunov functions, for verifying that the behavior of a dynamic system
satisfies its requirements specification. A constraint-based dynamic system can
be modeled by a constraint net, whose desired behavior can be specified by a
V-automaton.

Some related work has also been done. Nerode and Kohn have proposed
the notion of open specification for control systems [4]. Saraswat et al. have
developed a family of timed concurrent constraint languages for modeling and
specification of discrete dynamic systems [5]. Problems on the specification and
verification of hybrid dynamic systems have become a new challenge to both the
traditional control systems design and the traditional programming methodology

(1.

Acknowledgement

We wish to thank Nick Pippenger and Runping Qi for valuable discussions.
This research was supported by the Natural Sciences and Engineering Research
Council and the Institute for Robotics and Intelligent Systems.

References

1. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems.
Number 736 in Lecture Notes on Computer Science. Springer-Verlag, 1993.

2. G. F. Khilmi. Qualitative Methods in the Many Body Problem. Science Publishers
Inc. New York, 1961.

3. Z. Manna and A. Pnueli. Specification and verification of concurrent programs by
V-automata. In Proc. 14th Ann. ACM Symp. on Principles of Programming Lan-
guages, pages 1-12, 1987.

4. A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, control-
lability, observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
editors, Hybrid Systems, number 736 in Lecture Notes on Computer Science.
Springer-Verlag, 1993.

5. V. Saraswat, R. Jagadeesan, and V. Gupta. Programming in timed concurrent con-
straint languages. In B. Mayoh, E. Tyugu, and J. Penjam, editors, Constraint Pro-
gramming, NATO Advanced Science Institute Series, Series F: Computer And Sys-
tem Sciences. 1994.

6. Y. Zhang and A. K. Mackworth. Constraint programming in constraint nets. In
First Workshop on Principles and Practice of Constraint Programming, pages 303—
312, 1993. A revised version will appear in a book with the same title in MIT Press,
1995.

7. Y. Zhang and A. K. Mackworth. Design and analysis of embedded real-time sys-
tems: An elevator case study. Technical Report 93-4, Department of Computer
Science, University of British Columbia, February 1993.

8. Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model for hybrid
dynamic systems, 1994. Accepted for TCS Special Issue on Hybrid Systems.

A Proof of Theorem 1

In order to prove this theorem, we shall introduce a method of continuous in-
duction modified from [2]. A property I' is inductive on a time structure 7 iff
I is satisfied at all ¢ < tg € 7 implies that I" is satisfied at tg, for all tg € 7.
I' is continuous iff I' is satisfied at tg € 7 implies that I, > ¢,V tg < t < 1q,
I is satisfied at t. We should notice that when 7 is discrete, any property is
continuous. The theorem of continuous induction says:

Theorem 2 If a property I' is inductive and continuous on a time structure T
and I' is satisfied at 0, I' s satisfied at allt € T.

Proof: We call a time point t € 7 regular iff I' is satisfied at all ¢/, 0 < ¢ < ¢.
Let T" denote the set of all regular time points. 7" is not empty since I is satisfied
at 0. We prove the theorem by contradiction, i.e., assume that I' is not satisfied
at all t € 7. Therefore, T'C T is bounded above; let tg = \/T € T be the least
upper bound of T' (7 is complete). Since ¢g is the least upper bound, it follows
that I' is satisfied at all £, 0 < ¢ < ¢y. Since I' is inductive, it is satisfied at time
to. Therefore, to € T

Since T" C 7, tg is not the greatest element in 7. Let 77 = {t|t > to}.
There are two cases: (1) if 77 has a least element ¢, since I is inductive, t' € T
is a regular time point. (2) otherwise, for any t' € T7, {t|tq < t < t'} # 0.
Since I' is also continuous, we can find a ' € 7" such that I" is satisfied at all
T" = {t|to < t < t'}. Therefore, t is a regular time point V¢t € T". Both cases
contradict the fact that ¢y is the least upper bound of the set 7. O

Using the method of continuous induction, we obtain the following two lem-
mas.

Lemma 1 Let {ag}4eq be invariants for B and A. Ifr is a run of A over v € B,
Vte T, U(t) E Qr(t)-

Proof: We prove that the property v(t) = () is satisfied at 0 and is both
inductive and continuous on any time structure 7.

— Initiality: Since v(0) = @ and v(0) |= e((0)), we have v(0) = © A e(r(0)).
According to the Initiality condition of invariants, we have v(0) |= , q)-

— Inductivity: Suppose v(t) = a,) is saisfied at 0 < t < #5. Since r is a
run over v, 3¢ € @ and) < to,Vt,t] <t < to, r(t) = ¢ and v(to)
¢(q,r(to)). According to the Consecution condition of the invariants, 3t} <
to, Vi, 15 <t < to, v(t) | a, implies v(to) = c(q,7(to)) — (). There-
fore, Vt, max(t],t5) < t < tg, 7(t) = ¢, v(t) E a4 (assumption), v(te) E
c(q,7(to)) — ar(z,) and v(to) = c(q, r(to)). Thus, v(to) = ar(zy).-

— Continuity: Suppose v(tg) = @,(s,). Since r is a run over v, ¢ € @ and
th > to, Vi, to <t <), r(t) = ¢ and v(t) = ¢(r(to),q). According to the
Consecution condition of the invariants, Ity > to,Vt, to < t < th, v(to) E
@ (1y) implies v(t) = ¢(r(to),q) — a4. Therefore, V¢, 1o < t < min(t,15),
r(t) = q, v(to) E o, (assumption), v(t) k= c(r(to),q) — a4 and v(t) =
c(r(to), q). Thus, ¥t,to <t < min(t],5), v(t) = ar@).

Given any interval I of time 7, let u(I) = fI dt be the measurement of the
interval. Given a property I, let u(Ip) = [, I'(t)dt be the measurement of time
points at which I is satisfied.

Lemma 2 Let {ag}4eq be invariants for B and A and v be a run of A over a
trace v € B. If {py}qeq is a set of Liapunov functions for B and A, then

= Pr(t)(v(t2)) < pr(ey)(v(t1)) when Vt; <t <ty,7(t)c BUS,
— pr(”)(v(tzgil_f;)(”)(v(tl)) < —€ when t; <tz and Vt; <t <ty,7(t) € B, and
— for any interval I with only bad and stable automaton-states, p(Ip) is finite.

Proof: For any run r over v and for any segments ¢* : I — @ of r with only
bad and stable states, p on ¢* is nonincreasing, i.e., for any t; < t2 € I,
pr(t)(v(t1)) > pr(t,)(v(t2)), and the decreasing speed at the bad states is no
less than €. Let m be the upper bound of {p,)(v(t))[t € I}. Since p, > 0,
p(lp) <mje < oco. O

Proof of Theorem 1: For any trace v of B, there is a run since B is specifiable by
A. For any run r of A over v, if any automaton-state in R appears infinitely many
times in 7, 7 is accepting. Otherwise there is a time point ¢y, the sub-sequence
ronl={teTt>ty}, denoted ¢*, has only bad and stable automaton-states.
If there exist a set of invariants and a set of Liapunov functions, u(Ip) is finite.
Since time is infinite, all the automaton-states appearing infinitely many times
in r belong to S; r is accepting too. Therefore, every trace is accepting for the
automaton. O

This article was processed using the INTpX macro package with LLNCS style

