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Abstract

This paperis a retrospectiveaccountof someof thedevelopmentsleadingup to, andensuingfrom, theanalysis
of the complexityof somepolynomialnetworkconsistencyalgorithmsfor constraintsatisfactionproblems.

1 Historical Context
In 1970 one of us (AKM) worked on an implementationof Huffman-Clowes[1] labeling

of line drawings. This exploited the consequencesof a deceptivelysimple constrainton the
visual world of planarobjects: the three-dimensionalinterpretationof a line as an edgemust
be the sameat both ends. Unfortunately,he observedthat standardbreadth-firstand depth-
first searchtechniquessufferedfrom severecombinatorialexplosions.About the sametime the
otheroneof us (ECF) shareda graduatestudentoffice in the M.I.T. AI Lab with David Waltz,
who was also working on a programto interpret line drawings. Waltz designeda filtering
processto removeinconsistentinterpretationsduring the analysisof a scene[21], making the
combinatorialexplosionmanageable.Waltz observedexperimentallythat the effort requiredfor
this filtering processwas“roughly” linear in the sizeof the scene.A heuristicargumentbased
on the semanticsof his domainsupportedthe plausibility of this behavior.

Sincethis techniqueappearedto havepromise,AKM describeda classof network consis-
tency algorithms[10], abstractedaway from the applications,which contains,amongstothers,
the algorithmsdescribedby Waltz [21] and Ugo Montanari [16]. Incidentally, one of the ref-
ereesof [10] suggestedfurther complexity analysisof the problemsand the algorithmscould
be done. BernardMeltzer, the founding editor of Artificial Intelligence, agreedbut did not re-
quire it for publication. He suggestedit as a topic for a sequelas, indeed,it became. John
Gaschnigsubsequentlyraisedsomedoubtaboutthe linearbehaviorof filtering [8]; however,he
wascareful not to draw any firm conclusionsfrom the limited data,and the complexityof the
processremainedan open issue.

Bothof ussolvedthisproblem,independently,in 1981. RaimundSeidel,astudentin AKM’s
graduatecourse,hadachieveda nicenew algorithm[18]. In the courseof discussionwith ECF,
Seidelrealizedwe (AKM andECF) eachhadthe sameresult. We joined forcesandeventually
the paperappeared[11].
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2 Complexity and Network Consistency
Oneoutcomeof our 1985paper[11] wasa resolutionof the openissue.Heuristic intuition

and experimentaldatacould not, by their nature,hopeto achievea completeresolutionof the
question. We used formal analytical techniquesto prove that the filtering processcould be
carriedout in linear time for any application.

The proof relied on our analysisof an abstractionof the visual filtering processcalledarc
consistency. Arc consistencyis a basic tool in what has come to be called constraint-based
reasoning. Constraint-basedreasoninghasbeenwidely usedin artificial intelligence: in vision,
language,planning,diagnosis,scheduling,configuration,design,temporalreasoning,defeasible
reasoning,truth maintenance,qualitativephysics,logic programmingand expertsystems.The
analysisof techniqueslike arc consistencycanthus leadto tractability resultsin manyareasof
artificial intelligence.

A constraintsatisfactionproblem (CSP)involvesfindingvaluesfor asetof problemvariables
whichsimultaneouslysatisfyasetof restrictions(constraints) onwhichcombinationsof variables
areacceptable(consistent). The Huffman-Clowes-Waltz scenelabelingproblemis a Finite CSP
(FCSP)sincethevariabledomainsarediscreteandfinite. Ourcomplexityresultswerefor FCSPs.

One of the key insightsof arc consistencyfor FCSPscan be found in Fikes’ paperin the
very first issueof Artificial Intelligence[6]; in particular,if a value, � , for oneproblemvariable
is inconsistentwith all valuesfor someotherproblemvariable,then � will neverparticipatein
a completesolution to the problemand can be eliminatedfrom all further consideration.The
obvious algorithm for removing all such inconsistencies,AC-1, has an

� �������
complexity

bound,for an FCSPwith
�

variableseachwith
�

possiblevalues. AC-3, a simpler and more
generalversion of the Waltz filtering algorithm AC-2, was shown in our paper to have an� �������

bound.

That bound can be expressedas
� 	
���

, where
	

is the numberof constraints,or edges
in a constraint graph, whose vertices correspondto variablesand whose edgescorrespond
to constraintsbetweenvariables. (We will restrict our attention here to binary constraints,
which involve only two variables;analogousmethodsareavailablefor dealingwith higherorder
constraints.)Sincescenelabelingproblemshaveplanarconstraintgraphs,andfor planargraphs
thenumberof edgesis linearin thenumberof vertices,wewereableto showthatarcconsistency
for the scenelabeling problemis linear in the numberof problemvariables. We also showed
that path consistency,a generalizationof arc consistency,could be achievedin time cubic in
the numberof variables.

Thecomplexityof arcconsistencyhassincebeenrefinedfurther. Mohr andHenderson[15]
found an arc consistencyalgorithm, AC-4, which has a theoreticallyoptimal

� 	
���
bound.

(In retrospect,we regretthat this did not fall out in our paper;optimality waswithin our grasp
— only a factor of

�
away!) This brought the complexity of scenelabeling filtering down to
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� ��� �
. However,betterboundshavebeenfound for arc consistencyfor restrictedclassesof

problems.In particular,Perlin[17] hasidentified a classof problemsthat includesscenelabeling
for which arc consistencycanbe obtainedin time linear in

�
. Thusarc consistencycan,in fact,

be obtainedfor scenelabeling in time that is linear in both the numberof variablesand the
numberof valuespervariable.Thereareevencaseswhereit canbeobtainedin

���	����������
[12].

This maybe theendof thatstory,but thereareotherstoriesto tell, too manyfor this shortnote.

3 Tractable Problem Classes
It is important to realize that the varying forms of consistencyalgorithmscan be seenas

approximationalgorithms,in that they imposenecessarybut not alwayssufficientconditionsfor
theexistenceof a solutionon a CSP.Eachof themcanbe thoughtof asa low-orderpolynomial
algorithmfor exactlysolving a relaxedversionof an FCSPwhosesolutionsetcontainsthe set
of solutionsto the FCSP.The more effort one puts into finding the approximationthe smaller
the discrepancybetweenthe approximatingsolutionsetand the exactsolutionset.

SinceFCSPsareso hard (NP-complete)asa generalclass,it becameimportantto identify
specificclassesof problemswhich admit tractablesolution techniques.Tradeoffs canbe made
betweenrepresentationaland computationalcomplexity, trading representationalcomplexity to
remain within the comfortablecomputationalconfinesof a tractableproblem class. These
tractableclassescan also be used to assistin the solution of more generalproblems. One
way to identify theseclassesis to look for restrictedFCSPclasseswhere the approximation
algorithmsare exact, namely, where the consistencyconditionsare necessaryand sufficient.
Theseclassescanbecharacterizedby restrictionson thetopologyof theconstraintgraph,on the
sizeof the domainsor on the natureof the constraints.We pointedout this possibility, giving
one concreteexampleand leaving it as an openissueto identify others.

FCSPswith tree-structuredconstraint graphs were the first such tractable class to be
identified, and provide a good illustration of theseissues. Our paper provided an

� �����

boundon the complexity of tree-structuredproblems(improvedto an optimal
� �����

in [3]).
Tambeand Rosenbloomusedtheseresultsto boundthe complexity of productionrule pattern
matchingby restrictingto treestructures[19]. Dechter,PearlandMeiri havedemonstratedhow
tree-structuredsubstructureor superstructurecan assistin the solution of non tree-structured
problems[3,4,2,14]. Complexity boundshavebeenobtainedfor “higher-level” tree structures,
whereeachlevel tradesincreasedrepresentationalpower for increasedcomplexity [7].

Oneof thepracticalconsequencesof our resultswasthat thedesignersandimplementersof
constraint-basedprogramminglanguagescouldfeelcomfortableincludingconsistencyalgorithms
asprimitives in the language[6,10]. Ideally, a languageprimitive shouldrequireconstanttime;
but, failing that, it is comforting to know that it will terminatein linear time. The constraint
logic programminglanguageCHIP [20] wasthe first to exploit this potentialfully by providing
an arc consistencybasedinferenceengine.
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Progresscontinuesto be made on finding efficient ways to solve important classesof
problems,e.g. Deville andVan Hentenryck’s

���	����
algorithmfor a successorto CHIP [5], and

on identifying the trade-offs betweenrepresentationaladequacyandcomputationalcomplexity,
e.g. Meiri’s clarification of the effort requiredto answerconsistencyquestionsfor classesof
temporalreasoningproblems[13].

Anotherinterestingfollow-on resultwasthatalthougharcconsistencyis achievablein linear
sequentialtime there is apparentlyno polylogarithmic time parallel algorithm in the general
case: it is log-spacecompletefor P [9] and, hence,unlikely to be in NC. (Thereare, though,
well-behavedparallel and distributedalgorithmsfor somespecialcases[22].) This negative
resultstrucksomeascounter-intuitive.Algorithm AC-1, which haspoor sequentialcomplexity,
hasa high degreeof intrinsic parallelism(but potentialserialdatadependencies);whereaseach
AC-p (p>1) hasbeenoptimizedfor a singleprocessor.In fact, variousgeneralizationsof AC-1
havebeenproposedfor neuralnetworks.But the gloomy theoreticalresulthasnot deterredthe
designersof AC VLSI chips or other intrepid experimentalists.

4 Conclusion
The developmentof constraintsatisfactionalgorithmswasoriginally motivatedby concerns

for efficiency. Thesubsequentanalysisof thecomplexityof boththeproblemsandthealgorithms
furtherstimulatedthedevelopmentof practicaltoolsandtheidentificationof significanttractable
problem classes.So the history of the topic is a tale of intimate interactionamongsttheory,
implementation,experimentandapplicationcharacteristicof artificial intelligenceresearch.
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