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Introduction - Autoencoders

I

I Attempt to learn identity function

I Constrained in some way (e.g., small latent vector
representation)

I Can generate new images by giving different latent vectors to
trained network

I Variational: use probabilistic latent encoding
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Loss Function

I x̃ is reconstructed from z where |z | � |x̃ |

I How much information is lost when we go from x to z to x̃?

I Measure this with reconstruction log-likelihood: log pφ(x |z)

I Measures how effectively the decoder has learned to
reconstruct x given the latent representation z
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Loss Function

I Loss function is negative reconstruction log-likelihood +
regularizer

I Loss decomposes into term for each datapoint:

L(θ, φ) =
N∑
i=1

li (θ, φ)

I Loss for datapoint xi :

li (θ, φ) = −Ez∼qθ(z|xi )
[

log pφ(xi |z)
]

+ KL
(
qθ(z |xi )||p(z)

)
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Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi )||p(z)

)
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log qθ(z |xi )− log p(z)

]

I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space
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Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε
I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s
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Summary

I Deep Learning objective is to minimize the loss function:

L(θ, φ) =
N∑
i=1

(
− Ez∼qθ(z|xi )

[
log pφ(xi |z)

]
+ KL

(
qθ(z |xi )||p(z)

))
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Probabilistic Model Perspective

I Data x and latent variables z

I Joint pdf of the model: p(x , z) = p(x |z)p(z)

I Decomposes into likelihood: p(x |z), and prior: p(z)

I Generative process:
Draw latent variables zi ∼ p(z)
Draw datapoint xi ∼ p(x |z)

I Graphical model:
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Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable
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Probabilistic Model Perspective

I Variational inference to the rescue!

I Let’s approximate the true posterior p(z |x) with the ‘best’
distribution from some family qλ(z |x)

I Which choice of λ gives the ‘best’ qλ(z |x)?

I KL divergence measures information lost when using qλ to
approximate p

I Choose λ to minimize KL
(
qλ(z |x)||p(z |x)

)
= KL

(
qλ||p

)
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Probabilistic Model Perspective

I

KL
(
qλ||p

)
:= Ez∼qλ

[
log qλ(z |x)− log p(z |x)

]
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

I Still contains p(x) term! So cannot compute directly

I But p(x) does not depend on λ, so still hope
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Probabilistic Model Perspective

I Define Evidence Lower BOund:

ELBO(λ) := Ez∼qλ
[

log p(x , z)
]
− Ez∼qλ

[
log qλ(z |x)

]

I Then

KL
(
qλ||p

)
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

= −ELBO(λ) + log p(x)

I So minimizing KL
(
qλ||p

)
w.r.t. λ is equivalent to maximizing

ELBO(λ)
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Probabilistic Model Perspective

I Since no two datapoints share latent variables, we can write:

ELBO(λ) =
N∑
i=1

ELBOi (λ)

I Where

ELBOi (λ) = Ez∼qλ(z|xi )
[

log p(xi , z)
]
− Ez∼qλ(z|xi )

[
log qλ(z |xi )

]
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Probabilistic Model Perspective

I We can rewrite the term ELBOi (λ):

ELBOi (λ) = Ez∼qλ(z|xi )
[

log p(xi , z)
]
− Ez∼qλ(z|xi )

[
log qλ(z |xi )

]
= Ez∼qλ(z|xi )

[
log p(xi |z) + log p(z)

]
− Ez∼qλ(z|xi )

[
log qλ(z |xi )

]
= Ez∼qλ(z|xi )

[
log p(xi |z)

]
− Ez∼qλ(z|xi )

[
log qλ(z |xi )− log p(z)

]
= Ez∼qλ(z|xi )

[
log p(xi |z)

]
− KL

(
qλ(z |xi )||p(z)

)
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Probabilistic Model Perspective

I How do we relate λ to φ and θ seen earlier?

I We can parameterize approximate posterior qθ(z |x , λ) by a
network that takes data x and outputs parameters λ

I Parameterize the likelihood p(x |z) with a network that takes
latent variables and outputs parameters to the data
distribution pφ(x |z)

I So we can re-write

ELBOi (θ, φ) = Ez∼qθ(z|xi )
[

log pφ(xi |z)
]
− KL

(
qθ(z |xi )||p(z)

)
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Probabilistic Model Objective

I Recall the Deep Learning objective derived earlier. We want
to minimize:

L(θ, φ) =
N∑
i=1

(
− Ez∼qθ(z|xi )

[
log pφ(xi |z)

]
+ KL

(
qθ(z |xi )||p(z)

))

I The objective just derived for the Probabilistic Model was to
maximize:

ELBO(θ, φ) =
N∑
i=1

(
Ez∼qθ(z|xi )

[
log pφ(xi |z)

]
− KL

(
qθ(z |xi )||p(z)

))
I They are equivalent!
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Applications - Image generation

A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. arXiv
preprint arXiv :1602.02644, 2016.
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Applications - Caption generation

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for deep learning of
images, labels and captions. In NIPS, 2016.
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Applications - Semi-/Un-supervised document classification

Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick. Improved variational autoencoders for text modeling
using dilated convolutions. In Proceedings of The 34rd International Conference on Machine Learning, 2017.
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Applications - Pixel art videogame characters

https://mlexplained.wordpress.com/category/generative-models/vae/.
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Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?
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