Variational Autoencoders - An Introduction

Devon Graham

University of British Columbia
drgraham@cs.ubc.ca

Oct 31st, 2017
Table of contents

Introduction

Deep Learning Perspective

Probabilistic Model Perspective

Applications

Conclusion
Introduction

- *Auto-Encoding Variational Bayes*, Diederik P. Kingma and Max Welling, ICLR 2014
Introduction

- *Auto-Encoding Variational Bayes*, Diederik P. Kingma and Max Welling, ICLR 2014
- Generative model
Introduction

- *Auto-Encoding Variational Bayes*, Diederik P. Kingma and Max Welling, ICLR 2014
- Generative model
- Running example: Want to generate realistic-looking MNIST digits (or celebrity faces, video game plants, cat pictures, etc)
Introduction

- Auto-Encoding Variational Bayes, Diederik P. Kingma and Max Welling, ICLR 2014
- Generative model
- Running example: Want to generate realistic-looking MNIST digits (or celebrity faces, video game plants, cat pictures, etc)
- https://jaan.io/
 what-is-variational-autoencoder-vae-tutorial/
Introduction

- Auto-Encoding Variational Bayes, Diederik P. Kingma and Max Welling, ICLR 2014
- Generative model
- Running example: Want to generate realistic-looking MNIST digits (or celebrity faces, video game plants, cat pictures, etc)
- https://jaan.io/
 what-is-variational-autoencoder-vae-tutorial/
- Deep Learning perspective and Probabilistic Model perspective
Introduction - Autoencoders

- Attempt to learn identity function
- Constrained in some way (e.g., small latent vector representation)
- Can generate new images by giving different latent vectors to trained network
- Variational: use probabilistic latent encoding
Introduction - Autoencoders

- Attempt to learn identity function
- Constrained in some way (e.g., small latent vector representation)
- Can generate new images by giving different latent vectors to trained network
- Variational: use probabilistic latent encoding
Introduction - Autoencoders

- Attempt to learn identity function
- Constrained in some way (e.g., small latent vector representation)
Introduction - Autoencoders

- Attempt to learn identity function
- Constrained in some way (e.g., small latent vector representation)
- Can generate new images by giving different latent vectors to trained network
Introduction - Autoencoders

- Attempt to learn identity function
- Constrained in some way (e.g., small latent vector representation)
- Can generate new images by giving different latent vectors to trained network
- Variational: use probabilistic latent encoding
Deep Learning Perspective
Deep Learning Perspective

- Goal: Build a neural network that generates MNIST digits from random (Gaussian) noise
Deep Learning Perspective

- Goal: Build a neural network that generates MNIST digits from random (Gaussian) noise
- Define two sub-networks: Encoder and Decoder
Deep Learning Perspective

- Goal: Build a neural network that generates MNIST digits from random (Gaussian) noise
- Define two sub-networks: Encoder and Decoder
- Define a Loss Function
Encoder

- A neural network $q_\theta(z|x)$
Encoder

- A neural network $q_\theta(z|x)$
- Input: datapoint x (e.g. 28 \times 28-pixel MNIST digit)
Encoder

- A neural network $q_\theta(z|x)$
- Input: datapoint x (e.g. 28 \times 28-pixel MNIST digit)
- Output: encoding z, drawn from Gaussian density with parameters θ
Encoder

- A neural network $q_\theta(z|x)$
- Input: datapoint x (e.g. 28 × 28-pixel MNIST digit)
- Output: encoding z, drawn from Gaussian density with parameters θ
- $|z| \ll |x|$
Encoder

- A neural network $q_\theta(z|x)$
- Input: datapoint x (e.g. 28 × 28-pixel MNIST digit)
- Output: encoding z, drawn from Gaussian density with parameters θ

$|z| \ll |x|$
Decoder

- A neural network $p_\phi(x|z)$, parameterized by ϕ
Decoder

- A neural network $p_\phi(x|z)$, parameterized by ϕ
- Input: encoding z, output from encoder
Decoder

- A neural network $p_\phi(x|z)$, parameterized by ϕ
- Input: encoding z, output from encoder
- Output: reconstruction \tilde{x}, drawn from distribution of the data
Decoder

- A neural network $p_\phi(x|z)$, parameterized by ϕ
- Input: encoding z, output from encoder
- Output: reconstruction \tilde{x}, drawn from distribution of the data
- E.g., output parameters for 28×28 Bernoulli variables
Decoder

- A neural network $p_{\phi}(x|z)$, parameterized by ϕ
- Input: encoding z, output from encoder
- Output: reconstruction \tilde{x}, drawn from distribution of the data
- E.g., output parameters for 28×28 Bernoulli variables

![Diagram]

- Reconstruction: \tilde{x}
Loss Function

- \(\tilde{x} \) is reconstructed from \(z \) where \(|z| \ll |\tilde{x}|\)
Loss Function

- \(\tilde{x} \) is reconstructed from \(z \) where \(|z| \ll |\tilde{x}|\)
- How much information is lost when we go from \(x \) to \(z \) to \(\tilde{x} \)?
Loss Function

- \tilde{x} is reconstructed from z where $|z| \ll |\tilde{x}|$
- How much information is lost when we go from x to z to \tilde{x}?
- Measure this with reconstruction log-likelihood: $\log p_\phi(x|z)$
Loss Function

- \(\tilde{x} \) is reconstructed from \(z \) where \(|z| \ll |\tilde{x}| \)
- How much information is lost when we go from \(x \) to \(z \) to \(\tilde{x} \)?
- Measure this with reconstruction log-likelihood: \(\log p_\phi(x|z) \)
- Measures how effectively the decoder has learned to reconstruct \(x \) given the latent representation \(z \)
Loss Function

- Loss function is negative reconstruction log-likelihood + regularizer
Loss Function

- Loss function is negative reconstruction log-likelihood + regularizer
- Loss decomposes into term for each datapoint:

\[
L(\theta, \phi) = \sum_{i=1}^{N} l_i(\theta, \phi)
\]
Loss Function

- Loss function is negative reconstruction log-likelihood + regularizer
- Loss decomposes into term for each datapoint:

\[
L(\theta, \phi) = \sum_{i=1}^{N} l_i(\theta, \phi)
\]

- Loss for datapoint \(x_i \):

\[
l_i(\theta, \phi) = -\mathbb{E}_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] + KL(q_{\theta}(z|x_i) || p(z))
\]
Loss Function

- Negative reconstruction log-likelihood:

\[-\mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] \]
Loss Function

- Negative reconstruction log-likelihood:

 \[-\mathbb{E}_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] \]

- Encourages decoder to learn to reconstruct the data
Loss Function

- Negative reconstruction log-likelihood:

$$-\mathbb{E}_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right]$$

- Encourages decoder to learn to reconstruct the data
- Expectation taken over distribution of latent representations
Loss Function

- KL Divergence as regularizer:

\[
KL(q_\theta(z|x_i) || p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
\]
Loss Function

- **KL Divergence as regularizer:**

 \[
 KL(q_\theta(z|x_i) || p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
 \]

- Measures information lost when using \(q_\theta \) to represent \(p \)
Loss Function

- KL Divergence as regularizer:

\[
KL(q_\theta(z|x_i) \| p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
\]

- Measures information lost when using \(q_\theta \) to represent \(p \)
- We will use \(p(z) = \mathcal{N}(0, I) \)
Loss Function

- KL Divergence as regularizer:

\[
KL(q_\theta(z|x_i)||p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
\]

- Measures information lost when using \(q_\theta\) to represent \(p\)
- We will use \(p(z) = \mathcal{N}(0, I)\)
- Encourages encoder to produce \(z\)'s that are close to standard normal distribution
- Otherwise could "memorize" the data and map each observed datapoint to a distinct region of space
Loss Function

- KL Divergence as regularizer:

\[
KL(q_\theta(z|x_i) \| p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
\]

- Measures information lost when using \(q_\theta \) to represent \(p \)
- We will use \(p(z) = \mathcal{N}(\mathbf{0}, \mathbf{I}) \)
- Encourages encoder to produce \(z \)'s that are close to standard normal distribution
- Encoder learns a meaningful representation of MNIST digits
Loss Function

- **KL Divergence as regularizer:**

\[
KL(q_\theta(z|x_i) \| p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
\]

- Measures information lost when using \(q_\theta \) to represent \(p \)
- We will use \(p(z) = \mathcal{N}(0, I) \)
- Encourages encoder to produce \(z \)'s that are close to standard normal distribution
- Encoder learns a meaningful representation of MNIST digits
- Representation for images of the same digit are close together in latent space
Loss Function

- KL Divergence as regularizer:

\[
KL(q_\theta(z|x_i) \| p(z)) = \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log q_\theta(z|x_i) - \log p(z) \right]
\]

- Measures information lost when using \(q_\theta \) to represent \(p \)
- We will use \(p(z) = \mathcal{N}(0, I) \)
- Encourages encoder to produce \(z \)'s that are close to standard normal distribution
- Encoder learns a meaningful representation of MNIST digits
- Representation for images of the same digit are close together in latent space
- Otherwise could “memorize” the data and map each observed datapoint to a distinct region of space
MNIST latent variable space
Reparameterization trick

- We want to use gradient descent to learn the model’s parameters.
Reparameterization trick

- We want to use gradient descent to learn the model’s parameters
- Given z drawn from $q_\theta(z|x)$, how do we take derivatives of (a function of) z w.r.t. θ?
Reparameterization trick

- We want to use gradient descent to learn the model’s parameters.
- Given z drawn from $q_\theta(z|x)$, how do we take derivatives of (a function of) z w.r.t. θ?
- We can reparameterize: $z = \mu + \sigma \odot \epsilon$.
Reparameterization trick

- We want to use gradient descent to learn the model’s parameters.
- Given z drawn from $q_\theta(z|x)$, how do we take derivatives of (a function of) z w.r.t. θ?
- We can reparameterize: $z = \mu + \sigma \odot \epsilon$
- $\epsilon \sim \mathcal{N}(0, I)$, and \odot is element-wise product.
Reparameterization trick

- We want to use gradient descent to learn the model’s parameters.
- Given z drawn from $q_{\theta}(z|x)$, how do we take derivatives of (a function of) z w.r.t. θ?
- We can reparameterize: $z = \mu + \sigma \odot \epsilon$
- $\epsilon \sim \mathcal{N}(0, I)$, and \odot is element-wise product.
- Can take derivatives of (functions of) z w.r.t. μ and σ.
Reparameterization trick

- We want to use gradient descent to learn the model’s parameters.
- Given z drawn from $q_\theta(z|x)$, how do we take derivatives of (a function of) z w.r.t. θ?
- We can reparameterize: $z = \mu + \sigma \odot \epsilon$
- $\epsilon \sim \mathcal{N}(0, I)$, and \odot is element-wise product.
- Can take derivatives of (functions of) z w.r.t. μ and σ.
- Output of $q_\theta(z|x)$ is vector of μ’s and vector of σ’s.
Deep Learning objective is to minimize the loss function:

\[
L(\theta, \phi) = \sum_{i=1}^{N} \left(- \mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] + KL(q_\theta(z|x_i) \| p(z)) \right)
\]
Probabilistic Model Perspective
Probabilistic Model Perspective

- Data x and latent variables z

Joint pdf of the model: $p(x, z) = p(x|z)p(z)$

Decomposes into likelihood: $p(x|z)$, and prior: $p(z)$

Generative process:
- Draw latent variables $z_i \sim p(z)$
- Draw datapoint $x_i \sim p(x|z)$

Graphical model:
Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: $p(x, z) = p(x|z)p(z)$
Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: $p(x, z) = p(x|z)p(z)$
- Decomposes into likelihood: $p(x|z)$, and prior: $p(z)$
Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: $p(x, z) = p(x|z)p(z)$
- Decomposes into likelihood: $p(x|z)$, and prior: $p(z)$
- Generative process:
 - Draw latent variables $z_i \sim p(z)$
 - Draw datapoint $x_i \sim p(x|z)$
Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: $p(x, z) = p(x|z)p(z)$
- Decomposes into likelihood: $p(x|z)$, and prior: $p(z)$
- Generative process:
 - Draw latent variables $z_i \sim p(z)$
 - Draw datapoint $x_i \sim p(x|z)$
- Graphical model:
Probabilistic Model Perspective

- Suppose we want to do inference in this model

\[
p(z|x) = \frac{p(x|z)p(z)}{p(x)}
\]

- Need to calculate evidence:
 \[
p(x) = \int p(x|z)p(z) \, dz
\]

/ Intractable
Suppose we want to do inference in this model
We would like to infer good values of \(z \), given observed data

\[
p(z|x) = \frac{p(x|z)p(z)}{p(x)}
\]

Need to calculate evidence:
\[
p(x) = \int p(x|z)p(z) \, dz
\]

Integral over all configurations of latent variables / Intractable
Probabilistic Model Perspective

- Suppose we want to do inference in this model
- We would like to infer good values of z, given observed data
- Then we could use them to generate real-looking MNIST digits
Probabilistic Model Perspective

- Suppose we want to do inference in this model
- We would like to infer good values of z, given observed data
- Then we could use them to generate real-looking MNIST digits
- We want to calculate the posterior:

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$
Suppose we want to do inference in this model.
We would like to infer good values of \(z \), given observed data.
Then we could use them to generate real-looking MNIST digits.

We want to calculate the posterior:

\[
p(z|x) = \frac{p(x|z)p(z)}{p(x)}
\]

Need to calculate evidence: \(p(x) = \int p(x|z)p(z)dz \)
Suppose we want to do inference in this model
We would like to infer good values of z, given observed data
Then we could use them to generate real-looking MNIST digits
We want to calculate the posterior:

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

Need to calculate evidence: $p(x) = \int p(x|z)p(z)dz$
Integral over all configurations of latent variables 😞
Probabilistic Model Perspective

- Suppose we want to do inference in this model
- We would like to infer good values of z, given observed data
- Then we could use them to generate real-looking MNIST digits
- We want to calculate the posterior:

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

- Need to calculate evidence: $p(x) = \int p(x|z)p(z)dz$
- Integral over all configurations of latent variables 😞
- Intractable
Probabilistic Model Perspective

▶ Variational inference to the rescue!
Variational inference to the rescue!

Let’s approximate the true posterior $p(z|x)$ with the ‘best’ distribution from some family $q_{\lambda}(z|x)$
Variational inference to the rescue!
Let’s approximate the true posterior $p(z|x)$ with the ‘best’ distribution from some family $q_\lambda(z|x)$
Which choice of λ gives the ‘best’ $q_\lambda(z|x)$?
Probabilistic Model Perspective

- Variational inference to the rescue!
- Let’s approximate the true posterior $p(z|x)$ with the ‘best’ distribution from some family $q_\lambda(z|x)$
- Which choice of λ gives the ‘best’ $q_\lambda(z|x)$?
- KL divergence measures information lost when using q_λ to approximate p
Variational inference to the rescue!

Let’s approximate the true posterior $p(z|x)$ with the ‘best’ distribution from some family $q_\lambda(z|x)$.

Which choice of λ gives the ‘best’ $q_\lambda(z|x)$?

KL divergence measures information lost when using q_λ to approximate p.

Choose λ to minimize $KL(q_\lambda(z|x)\|p(z|x)) = KL(q_\lambda\|p)$.
Probabilistic Model Perspective

\[
KL(q_\lambda \| p) := \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) - \log p(z|x) \right]
= \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) \right] - \mathbb{E}_{z \sim q_\lambda} \left[\log p(x, z) \right] + \log p(x)
\]
KL\((q_\lambda \parallel p) := \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) - \log p(z|x) \right] \]
\[
= \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) \right] - \mathbb{E}_{z \sim q_\lambda} \left[\log p(x, z) \right] + \log p(x)
\]

Still contains \(p(x) \) term! So cannot compute directly
Probabilistic Model Perspective

\[KL(q_\lambda \| p) := \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) - \log p(z|x) \right] \]
\[= \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) \right] - \mathbb{E}_{z \sim q_\lambda} \left[\log p(x, z) \right] + \log p(x) \]

- Still contains \(p(x) \) term! So cannot compute directly
- But \(p(x) \) does not depend on \(\lambda \), so still hope
Probabilistic Model Perspective

- Define Evidence Lower Bound:

\[
ELBO(\lambda) := \mathbb{E}_{z \sim q_\lambda} \left[\log p(x, z) \right] - \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) \right]
\]
Probabilistic Model Perspective

- Define Evidence Lower Bound:

\[
ELBO(\lambda) := \mathbb{E}_{z \sim q_\lambda} \left[\log p(x, z) \right] - \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) \right]
\]

- Then

\[
KL(q_\lambda||p) = \mathbb{E}_{z \sim q_\lambda} \left[\log q_\lambda(z|x) \right] - \mathbb{E}_{z \sim q_\lambda} \left[\log p(x, z) \right] + \log p(x) \\
= -ELBO(\lambda) + \log p(x)
\]
Define Evidence Lower BOund:

\[
ELBO(\lambda) := \mathbb{E}_{z \sim q_{\lambda}} \left[\log p(x, z) \right] - \mathbb{E}_{z \sim q_{\lambda}} \left[\log q_{\lambda}(z|x) \right]
\]

Then

\[
KL(q_{\lambda} \parallel p) = \mathbb{E}_{z \sim q_{\lambda}} \left[\log q_{\lambda}(z|x) \right] - \mathbb{E}_{z \sim q_{\lambda}} \left[\log p(x, z) \right] + \log p(x) = -ELBO(\lambda) + \log p(x)
\]

So minimizing \(KL(q_{\lambda} \parallel p) \) w.r.t. \(\lambda \) is equivalent to maximizing \(ELBO(\lambda) \).
Probabilistic Model Perspective

Since no two datapoints share latent variables, we can write:

$$ELBO(\lambda) = \sum_{i=1}^{N} ELBO_i(\lambda)$$
Since no two datapoints share latent variables, we can write:

\[
ELBO(\lambda) = \sum_{i=1}^{N} ELBO_i(\lambda)
\]

Where

\[
ELBO_i(\lambda) = \mathbb{E}_{z \sim q_\lambda(z|x_i)} \left[\log p(x_i, z) \right] - \mathbb{E}_{z \sim q_\lambda(z|x_i)} \left[\log q_\lambda(z|x_i) \right]
\]
Probabilistic Model Perspective

We can rewrite the term $ELBO_i(\lambda)$:

$$ELBO_i(\lambda) = \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log p(x_i, z)] - \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log q_\lambda(z|x_i)]$$

$$= \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log p(x_i|z) + \log p(z)]$$

$$- \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log q_\lambda(z|x_i)]$$

$$= \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log p(x_i|z)]$$

$$- \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log q_\lambda(z|x_i) - \log p(z)]$$

$$= \mathbb{E}_{z \sim q_\lambda(z|x_i)}[\log p(x_i|z)] - KL(q_\lambda(z|x_i)||p(z))$$
How do we relate λ to ϕ and θ seen earlier?
Probabilistic Model Perspective

- How do we relate λ to φ and θ seen earlier?
- We can parameterize approximate posterior $q_\theta(z|x, \lambda)$ by a network that takes data x and outputs parameters λ
How do we relate λ to ϕ and θ seen earlier?

We can parameterize approximate posterior $q_{\theta}(z|x, \lambda)$ by a network that takes data x and outputs parameters λ.

Parameterize the likelihood $p(x|z)$ with a network that takes latent variables and outputs parameters to the data distribution $p_\phi(x|z)$.
Probabilistic Model Perspective

- How do we relate λ to ϕ and θ seen earlier?
- We can parameterize approximate posterior $q_\theta(z|x, \lambda)$ by a network that takes data x and outputs parameters λ
- Parameterize the likelihood $p(x|z)$ with a network that takes latent variables and outputs parameters to the data distribution $p_\phi(x|z)$
- So we can re-write

$$ELBO_i(\theta, \phi) = \mathbb{E}_{z\sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] - KL(q_\theta(z|x_i)\|p(z))$$
Probabilistic Model Objective

- Recall the Deep Learning objective derived earlier. We want to minimize:

\[
L(\theta, \phi) = \sum_{i=1}^{N} \left(- E_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] + KL(q_{\theta}(z|x_i)||p(z)) \right)
\]
Recall the Deep Learning objective derived earlier. We want to minimize:

\[L(\theta, \phi) = \sum_{i=1}^{N} \left(- E_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] + KL(q_{\theta}(z|x_i) || p(z)) \right) \]

The objective just derived for the Probabilistic Model was to maximize:

\[ELBO(\theta, \phi) = \sum_{i=1}^{N} \left(E_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] - KL(q_{\theta}(z|x_i) || p(z)) \right) \]

They are equivalent!
Applications - Image generation

![Image generation](image)

Figure 1: Reconstructions from AlexNet FC6 with different components of the loss.

Applications - Caption generation

Figure 2: Examples of generated caption from unseen images on the validation dataset of ImageNet.

Applications - Semi-/Un-supervised document classification

Figure 3: Visualizations of learned latent representations.

Applications - Pixel art videogame characters

Figure 6: Samples of the generated characters

https://mlexplained.wordpress.com/category/generative-models/vae/.
Conclusion

- We derived the same objective from

1) A deep learning point of view, and
2) A probabilistic models point of view

Showed they are equivalent

Thank you. Questions?
Conclusion

- We derived the same objective from
- 1) A deep learning point of view, and
Conclusion

- We derived the same objective from
 - 1) A deep learning point of view, and
 - 2) A probabilistic models point of view
Conclusion

- We derived the same objective from
 - 1) A deep learning point of view, and
 - 2) A probabilistic models point of view
- Showed they are equivalent
Conclusion

- We derived the same objective from
- 1) A deep learning point of view, and
- 2) A probabilistic models point of view
- Showed they are equivalent
- Saw some applications
We derived the same objective from

1) A deep learning point of view, and
2) A probabilistic models point of view

Showed they are equivalent

Saw some applications

Thank you. Questions?