
Variational Autoencoders - An Introduction

Devon Graham

University of British Columbia
drgraham@cs.ubc.ca

Oct 31st, 2017

Table of contents

Introduction

Deep Learning Perspective

Probabilistic Model Perspective

Applications

Conclusion

Introduction

I Auto-Encoding Variational Bayes, Diederik P. Kingma and
Max Welling, ICLR 2014

I Generative model

I Running example: Want to generate realistic-looking MNIST
digits (or celebrity faces, video game plants, cat pictures, etc)

I https://jaan.io/

what-is-variational-autoencoder-vae-tutorial/

I Deep Learning perspective and Probabilistic Model perspective

3 / 30

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Introduction

I Auto-Encoding Variational Bayes, Diederik P. Kingma and
Max Welling, ICLR 2014

I Generative model

I Running example: Want to generate realistic-looking MNIST
digits (or celebrity faces, video game plants, cat pictures, etc)

I https://jaan.io/

what-is-variational-autoencoder-vae-tutorial/

I Deep Learning perspective and Probabilistic Model perspective

3 / 30

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Introduction

I Auto-Encoding Variational Bayes, Diederik P. Kingma and
Max Welling, ICLR 2014

I Generative model

I Running example: Want to generate realistic-looking MNIST
digits (or celebrity faces, video game plants, cat pictures, etc)

I https://jaan.io/

what-is-variational-autoencoder-vae-tutorial/

I Deep Learning perspective and Probabilistic Model perspective

3 / 30

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Introduction

I Auto-Encoding Variational Bayes, Diederik P. Kingma and
Max Welling, ICLR 2014

I Generative model

I Running example: Want to generate realistic-looking MNIST
digits (or celebrity faces, video game plants, cat pictures, etc)

I https://jaan.io/

what-is-variational-autoencoder-vae-tutorial/

I Deep Learning perspective and Probabilistic Model perspective

3 / 30

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Introduction

I Auto-Encoding Variational Bayes, Diederik P. Kingma and
Max Welling, ICLR 2014

I Generative model

I Running example: Want to generate realistic-looking MNIST
digits (or celebrity faces, video game plants, cat pictures, etc)

I https://jaan.io/

what-is-variational-autoencoder-vae-tutorial/

I Deep Learning perspective and Probabilistic Model perspective

3 / 30

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Introduction - Autoencoders

I

I Attempt to learn identity function

I Constrained in some way (e.g., small latent vector
representation)

I Can generate new images by giving different latent vectors to
trained network

I Variational: use probabilistic latent encoding

4 / 30

Introduction - Autoencoders

I

I Attempt to learn identity function

I Constrained in some way (e.g., small latent vector
representation)

I Can generate new images by giving different latent vectors to
trained network

I Variational: use probabilistic latent encoding

4 / 30

Introduction - Autoencoders

I

I Attempt to learn identity function

I Constrained in some way (e.g., small latent vector
representation)

I Can generate new images by giving different latent vectors to
trained network

I Variational: use probabilistic latent encoding

4 / 30

Introduction - Autoencoders

I

I Attempt to learn identity function

I Constrained in some way (e.g., small latent vector
representation)

I Can generate new images by giving different latent vectors to
trained network

I Variational: use probabilistic latent encoding

4 / 30

Introduction - Autoencoders

I

I Attempt to learn identity function

I Constrained in some way (e.g., small latent vector
representation)

I Can generate new images by giving different latent vectors to
trained network

I Variational: use probabilistic latent encoding

4 / 30

Deep Learning Perspective

5 / 30

Deep Learning Perspective

I Goal: Build a neural network that generates MNIST digits
from random (Gaussian) noise

I Define two sub-networks: Encoder and Decoder

I Define a Loss Function

6 / 30

Deep Learning Perspective

I Goal: Build a neural network that generates MNIST digits
from random (Gaussian) noise

I Define two sub-networks: Encoder and Decoder

I Define a Loss Function

6 / 30

Deep Learning Perspective

I Goal: Build a neural network that generates MNIST digits
from random (Gaussian) noise

I Define two sub-networks: Encoder and Decoder

I Define a Loss Function

6 / 30

Encoder

I A neural network qθ(z |x)

I Input: datapoint x (e.g. 28× 28-pixel MNIST digit)

I Output: encoding z , drawn from Gaussian density with
parameters θ

I |z | � |x |

I

7 / 30

Encoder

I A neural network qθ(z |x)

I Input: datapoint x (e.g. 28× 28-pixel MNIST digit)

I Output: encoding z , drawn from Gaussian density with
parameters θ

I |z | � |x |

I

7 / 30

Encoder

I A neural network qθ(z |x)

I Input: datapoint x (e.g. 28× 28-pixel MNIST digit)

I Output: encoding z , drawn from Gaussian density with
parameters θ

I |z | � |x |

I

7 / 30

Encoder

I A neural network qθ(z |x)

I Input: datapoint x (e.g. 28× 28-pixel MNIST digit)

I Output: encoding z , drawn from Gaussian density with
parameters θ

I |z | � |x |

I

7 / 30

Encoder

I A neural network qθ(z |x)

I Input: datapoint x (e.g. 28× 28-pixel MNIST digit)

I Output: encoding z , drawn from Gaussian density with
parameters θ

I |z | � |x |

I

7 / 30

Decoder

I A neural network pφ(x |z), parameterized by φ

I Input: encoding z , output from encoder

I Output: reconstruction x̃ , drawn from distribution of the data

I E.g., output parameters for 28× 28 Bernoulli variables

I

8 / 30

Decoder

I A neural network pφ(x |z), parameterized by φ

I Input: encoding z , output from encoder

I Output: reconstruction x̃ , drawn from distribution of the data

I E.g., output parameters for 28× 28 Bernoulli variables

I

8 / 30

Decoder

I A neural network pφ(x |z), parameterized by φ

I Input: encoding z , output from encoder

I Output: reconstruction x̃ , drawn from distribution of the data

I E.g., output parameters for 28× 28 Bernoulli variables

I

8 / 30

Decoder

I A neural network pφ(x |z), parameterized by φ

I Input: encoding z , output from encoder

I Output: reconstruction x̃ , drawn from distribution of the data

I E.g., output parameters for 28× 28 Bernoulli variables

I

8 / 30

Decoder

I A neural network pφ(x |z), parameterized by φ

I Input: encoding z , output from encoder

I Output: reconstruction x̃ , drawn from distribution of the data

I E.g., output parameters for 28× 28 Bernoulli variables

I

8 / 30

Loss Function

I x̃ is reconstructed from z where |z | � |x̃ |

I How much information is lost when we go from x to z to x̃?

I Measure this with reconstruction log-likelihood: log pφ(x |z)

I Measures how effectively the decoder has learned to
reconstruct x given the latent representation z

9 / 30

Loss Function

I x̃ is reconstructed from z where |z | � |x̃ |
I How much information is lost when we go from x to z to x̃?

I Measure this with reconstruction log-likelihood: log pφ(x |z)

I Measures how effectively the decoder has learned to
reconstruct x given the latent representation z

9 / 30

Loss Function

I x̃ is reconstructed from z where |z | � |x̃ |
I How much information is lost when we go from x to z to x̃?

I Measure this with reconstruction log-likelihood: log pφ(x |z)

I Measures how effectively the decoder has learned to
reconstruct x given the latent representation z

9 / 30

Loss Function

I x̃ is reconstructed from z where |z | � |x̃ |
I How much information is lost when we go from x to z to x̃?

I Measure this with reconstruction log-likelihood: log pφ(x |z)

I Measures how effectively the decoder has learned to
reconstruct x given the latent representation z

9 / 30

Loss Function

I Loss function is negative reconstruction log-likelihood +
regularizer

I Loss decomposes into term for each datapoint:

L(θ, φ) =
N∑
i=1

li (θ, φ)

I Loss for datapoint xi :

li (θ, φ) = −Ez∼qθ(z|xi)
[

log pφ(xi |z)
]

+ KL
(
qθ(z |xi)||p(z)

)

10 / 30

Loss Function

I Loss function is negative reconstruction log-likelihood +
regularizer

I Loss decomposes into term for each datapoint:

L(θ, φ) =
N∑
i=1

li (θ, φ)

I Loss for datapoint xi :

li (θ, φ) = −Ez∼qθ(z|xi)
[

log pφ(xi |z)
]

+ KL
(
qθ(z |xi)||p(z)

)

10 / 30

Loss Function

I Loss function is negative reconstruction log-likelihood +
regularizer

I Loss decomposes into term for each datapoint:

L(θ, φ) =
N∑
i=1

li (θ, φ)

I Loss for datapoint xi :

li (θ, φ) = −Ez∼qθ(z|xi)
[

log pφ(xi |z)
]

+ KL
(
qθ(z |xi)||p(z)

)

10 / 30

Loss Function

I Negative reconstruction log-likelihood:

−Ez∼qθ(z|xi)
[

log pφ(xi |z)
]

I Encourages decoder to learn to reconstruct the data

I Expectation taken over distribution of latent representations

11 / 30

Loss Function

I Negative reconstruction log-likelihood:

−Ez∼qθ(z|xi)
[

log pφ(xi |z)
]

I Encourages decoder to learn to reconstruct the data

I Expectation taken over distribution of latent representations

11 / 30

Loss Function

I Negative reconstruction log-likelihood:

−Ez∼qθ(z|xi)
[

log pφ(xi |z)
]

I Encourages decoder to learn to reconstruct the data

I Expectation taken over distribution of latent representations

11 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]

I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]
I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]
I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]
I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]
I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]
I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

Loss Function

I KL Divergence as regularizer:

KL
(
qθ(z |xi)||p(z)

)
= Ez∼qθ(z|xi)

[
log qθ(z |xi)− log p(z)

]
I Measures information lost when using qθ to represent p

I We will use p(z) = N (0, I)

I Encourages encoder to produce z ’s that are close to standard
normal distribution

I Encoder learns a meaningful representation of MNIST digits

I Representation for images of the same digit are close together
in latent space

I Otherwise could “memorize” the data and map each observed
datapoint to a distinct region of space

12 / 30

MNIST latent variable space

13 / 30

Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε
I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s

14 / 30

Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε
I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s

14 / 30

Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε

I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s

14 / 30

Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε
I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s

14 / 30

Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε
I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s

14 / 30

Reparameterization trick

I We want to use gradient descent to learn the model’s
parameters

I Given z drawn from qθ(z |x), how do we take derivatives of (a
function of) z w.r.t. θ?

I We can reparameterize: z = µ+ σ � ε
I ε ∼ N (0, I), and � is element-wise product

I Can take derivatives of (functions of) z w.r.t. µ and σ

I Output of qθ(z |x) is vector of µ’s and vector of σ’s

14 / 30

Summary

I Deep Learning objective is to minimize the loss function:

L(θ, φ) =
N∑
i=1

(
− Ez∼qθ(z|xi)

[
log pφ(xi |z)

]
+ KL

(
qθ(z |xi)||p(z)

))

15 / 30

Probabilistic Model Perspective

16 / 30

Probabilistic Model Perspective

I Data x and latent variables z

I Joint pdf of the model: p(x , z) = p(x |z)p(z)

I Decomposes into likelihood: p(x |z), and prior: p(z)

I Generative process:
Draw latent variables zi ∼ p(z)
Draw datapoint xi ∼ p(x |z)

I Graphical model:

17 / 30

Probabilistic Model Perspective

I Data x and latent variables z

I Joint pdf of the model: p(x , z) = p(x |z)p(z)

I Decomposes into likelihood: p(x |z), and prior: p(z)

I Generative process:
Draw latent variables zi ∼ p(z)
Draw datapoint xi ∼ p(x |z)

I Graphical model:

17 / 30

Probabilistic Model Perspective

I Data x and latent variables z

I Joint pdf of the model: p(x , z) = p(x |z)p(z)

I Decomposes into likelihood: p(x |z), and prior: p(z)

I Generative process:
Draw latent variables zi ∼ p(z)
Draw datapoint xi ∼ p(x |z)

I Graphical model:

17 / 30

Probabilistic Model Perspective

I Data x and latent variables z

I Joint pdf of the model: p(x , z) = p(x |z)p(z)

I Decomposes into likelihood: p(x |z), and prior: p(z)

I Generative process:
Draw latent variables zi ∼ p(z)
Draw datapoint xi ∼ p(x |z)

I Graphical model:

17 / 30

Probabilistic Model Perspective

I Data x and latent variables z

I Joint pdf of the model: p(x , z) = p(x |z)p(z)

I Decomposes into likelihood: p(x |z), and prior: p(z)

I Generative process:
Draw latent variables zi ∼ p(z)
Draw datapoint xi ∼ p(x |z)

I Graphical model:

17 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable

18 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable

18 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable

18 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable

18 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable

18 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /

I Intractable

18 / 30

Probabilistic Model Perspective

I Suppose we want to do inference in this model

I We would like to infer good values of z , given observed data

I Then we could use them to generate real-looking MNIST
digits

I We want to calculate the posterior:

p(z |x) =
p(x |z)p(z)

p(x)

I Need to calculate evidence: p(x) =
∫
p(x |z)p(z)dz

I Integral over all configurations of latent variables /
I Intractable

18 / 30

Probabilistic Model Perspective

I Variational inference to the rescue!

I Let’s approximate the true posterior p(z |x) with the ‘best’
distribution from some family qλ(z |x)

I Which choice of λ gives the ‘best’ qλ(z |x)?

I KL divergence measures information lost when using qλ to
approximate p

I Choose λ to minimize KL
(
qλ(z |x)||p(z |x)

)
= KL

(
qλ||p

)

19 / 30

Probabilistic Model Perspective

I Variational inference to the rescue!

I Let’s approximate the true posterior p(z |x) with the ‘best’
distribution from some family qλ(z |x)

I Which choice of λ gives the ‘best’ qλ(z |x)?

I KL divergence measures information lost when using qλ to
approximate p

I Choose λ to minimize KL
(
qλ(z |x)||p(z |x)

)
= KL

(
qλ||p

)

19 / 30

Probabilistic Model Perspective

I Variational inference to the rescue!

I Let’s approximate the true posterior p(z |x) with the ‘best’
distribution from some family qλ(z |x)

I Which choice of λ gives the ‘best’ qλ(z |x)?

I KL divergence measures information lost when using qλ to
approximate p

I Choose λ to minimize KL
(
qλ(z |x)||p(z |x)

)
= KL

(
qλ||p

)

19 / 30

Probabilistic Model Perspective

I Variational inference to the rescue!

I Let’s approximate the true posterior p(z |x) with the ‘best’
distribution from some family qλ(z |x)

I Which choice of λ gives the ‘best’ qλ(z |x)?

I KL divergence measures information lost when using qλ to
approximate p

I Choose λ to minimize KL
(
qλ(z |x)||p(z |x)

)
= KL

(
qλ||p

)

19 / 30

Probabilistic Model Perspective

I Variational inference to the rescue!

I Let’s approximate the true posterior p(z |x) with the ‘best’
distribution from some family qλ(z |x)

I Which choice of λ gives the ‘best’ qλ(z |x)?

I KL divergence measures information lost when using qλ to
approximate p

I Choose λ to minimize KL
(
qλ(z |x)||p(z |x)

)
= KL

(
qλ||p

)

19 / 30

Probabilistic Model Perspective

I

KL
(
qλ||p

)
:= Ez∼qλ

[
log qλ(z |x)− log p(z |x)

]
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

I Still contains p(x) term! So cannot compute directly

I But p(x) does not depend on λ, so still hope

20 / 30

Probabilistic Model Perspective

I

KL
(
qλ||p

)
:= Ez∼qλ

[
log qλ(z |x)− log p(z |x)

]
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

I Still contains p(x) term! So cannot compute directly

I But p(x) does not depend on λ, so still hope

20 / 30

Probabilistic Model Perspective

I

KL
(
qλ||p

)
:= Ez∼qλ

[
log qλ(z |x)− log p(z |x)

]
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

I Still contains p(x) term! So cannot compute directly

I But p(x) does not depend on λ, so still hope

20 / 30

Probabilistic Model Perspective

I Define Evidence Lower BOund:

ELBO(λ) := Ez∼qλ
[

log p(x , z)
]
− Ez∼qλ

[
log qλ(z |x)

]

I Then

KL
(
qλ||p

)
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

= −ELBO(λ) + log p(x)

I So minimizing KL
(
qλ||p

)
w.r.t. λ is equivalent to maximizing

ELBO(λ)

21 / 30

Probabilistic Model Perspective

I Define Evidence Lower BOund:

ELBO(λ) := Ez∼qλ
[

log p(x , z)
]
− Ez∼qλ

[
log qλ(z |x)

]
I Then

KL
(
qλ||p

)
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

= −ELBO(λ) + log p(x)

I So minimizing KL
(
qλ||p

)
w.r.t. λ is equivalent to maximizing

ELBO(λ)

21 / 30

Probabilistic Model Perspective

I Define Evidence Lower BOund:

ELBO(λ) := Ez∼qλ
[

log p(x , z)
]
− Ez∼qλ

[
log qλ(z |x)

]
I Then

KL
(
qλ||p

)
= Ez∼qλ

[
log qλ(z |x)

]
− Ez∼qλ

[
log p(x , z)

]
+ log p(x)

= −ELBO(λ) + log p(x)

I So minimizing KL
(
qλ||p

)
w.r.t. λ is equivalent to maximizing

ELBO(λ)

21 / 30

Probabilistic Model Perspective

I Since no two datapoints share latent variables, we can write:

ELBO(λ) =
N∑
i=1

ELBOi (λ)

I Where

ELBOi (λ) = Ez∼qλ(z|xi)
[

log p(xi , z)
]
− Ez∼qλ(z|xi)

[
log qλ(z |xi)

]

22 / 30

Probabilistic Model Perspective

I Since no two datapoints share latent variables, we can write:

ELBO(λ) =
N∑
i=1

ELBOi (λ)

I Where

ELBOi (λ) = Ez∼qλ(z|xi)
[

log p(xi , z)
]
− Ez∼qλ(z|xi)

[
log qλ(z |xi)

]

22 / 30

Probabilistic Model Perspective

I We can rewrite the term ELBOi (λ):

ELBOi (λ) = Ez∼qλ(z|xi)
[

log p(xi , z)
]
− Ez∼qλ(z|xi)

[
log qλ(z |xi)

]
= Ez∼qλ(z|xi)

[
log p(xi |z) + log p(z)

]
− Ez∼qλ(z|xi)

[
log qλ(z |xi)

]
= Ez∼qλ(z|xi)

[
log p(xi |z)

]
− Ez∼qλ(z|xi)

[
log qλ(z |xi)− log p(z)

]
= Ez∼qλ(z|xi)

[
log p(xi |z)

]
− KL

(
qλ(z |xi)||p(z)

)

23 / 30

Probabilistic Model Perspective

I How do we relate λ to φ and θ seen earlier?

I We can parameterize approximate posterior qθ(z |x , λ) by a
network that takes data x and outputs parameters λ

I Parameterize the likelihood p(x |z) with a network that takes
latent variables and outputs parameters to the data
distribution pφ(x |z)

I So we can re-write

ELBOi (θ, φ) = Ez∼qθ(z|xi)
[

log pφ(xi |z)
]
− KL

(
qθ(z |xi)||p(z)

)

24 / 30

Probabilistic Model Perspective

I How do we relate λ to φ and θ seen earlier?

I We can parameterize approximate posterior qθ(z |x , λ) by a
network that takes data x and outputs parameters λ

I Parameterize the likelihood p(x |z) with a network that takes
latent variables and outputs parameters to the data
distribution pφ(x |z)

I So we can re-write

ELBOi (θ, φ) = Ez∼qθ(z|xi)
[

log pφ(xi |z)
]
− KL

(
qθ(z |xi)||p(z)

)

24 / 30

Probabilistic Model Perspective

I How do we relate λ to φ and θ seen earlier?

I We can parameterize approximate posterior qθ(z |x , λ) by a
network that takes data x and outputs parameters λ

I Parameterize the likelihood p(x |z) with a network that takes
latent variables and outputs parameters to the data
distribution pφ(x |z)

I So we can re-write

ELBOi (θ, φ) = Ez∼qθ(z|xi)
[

log pφ(xi |z)
]
− KL

(
qθ(z |xi)||p(z)

)

24 / 30

Probabilistic Model Perspective

I How do we relate λ to φ and θ seen earlier?

I We can parameterize approximate posterior qθ(z |x , λ) by a
network that takes data x and outputs parameters λ

I Parameterize the likelihood p(x |z) with a network that takes
latent variables and outputs parameters to the data
distribution pφ(x |z)

I So we can re-write

ELBOi (θ, φ) = Ez∼qθ(z|xi)
[

log pφ(xi |z)
]
− KL

(
qθ(z |xi)||p(z)

)

24 / 30

Probabilistic Model Objective

I Recall the Deep Learning objective derived earlier. We want
to minimize:

L(θ, φ) =
N∑
i=1

(
− Ez∼qθ(z|xi)

[
log pφ(xi |z)

]
+ KL

(
qθ(z |xi)||p(z)

))

I The objective just derived for the Probabilistic Model was to
maximize:

ELBO(θ, φ) =
N∑
i=1

(
Ez∼qθ(z|xi)

[
log pφ(xi |z)

]
− KL

(
qθ(z |xi)||p(z)

))
I They are equivalent!

25 / 30

Probabilistic Model Objective

I Recall the Deep Learning objective derived earlier. We want
to minimize:

L(θ, φ) =
N∑
i=1

(
− Ez∼qθ(z|xi)

[
log pφ(xi |z)

]
+ KL

(
qθ(z |xi)||p(z)

))

I The objective just derived for the Probabilistic Model was to
maximize:

ELBO(θ, φ) =
N∑
i=1

(
Ez∼qθ(z|xi)

[
log pφ(xi |z)

]
− KL

(
qθ(z |xi)||p(z)

))
I They are equivalent!

25 / 30

Applications - Image generation

A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. arXiv
preprint arXiv :1602.02644, 2016.

26 / 30

Applications - Caption generation

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for deep learning of
images, labels and captions. In NIPS, 2016.

27 / 30

Applications - Semi-/Un-supervised document classification

Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick. Improved variational autoencoders for text modeling
using dilated convolutions. In Proceedings of The 34rd International Conference on Machine Learning, 2017.

28 / 30

Applications - Pixel art videogame characters

https://mlexplained.wordpress.com/category/generative-models/vae/.

29 / 30

Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?

30 / 30

Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?

30 / 30

Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?

30 / 30

Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?

30 / 30

Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?

30 / 30

Conclusion

I We derived the same objective from

I 1) A deep learning point of view, and

I 2) A probabilistic models point of view

I Showed they are equivalent

I Saw some applications

I Thank you. Questions?

30 / 30

	Introduction
	Deep Learning Perspective
	Probabilistic Model Perspective
	Applications
	Conclusion

