Stochastic subgradient methods Based on material by Mark Schmidt

Julieta Martinez

University of British Columbia

October 06, 2015

Introduction

We are interested in a typical machine learning problem

$$\min_{x \in \mathbb{R}^{D}} \frac{1}{N} \sum_{i=1}^{N} L(x, a_{i}, b_{i}) + \lambda \cdot r(x)$$

data fitting term + regularizer

- Last time, we talked about gradient methods, which work when D is large
- ► Today we will talk about stochastic subgradient methods, which work when *N* is large

Introduction

We are interested in a typical machine learning problem

$$\min_{x \in \mathbb{R}^{D}} \frac{1}{N} \sum_{i=1}^{N} L(x, a_{i}, b_{i}) + \lambda \cdot r(x)$$

data fitting term + regularizer

- Last time, we talked about gradient methods, which work when D is large
- ► Today we will talk about stochastic subgradient methods, which work when *N* is large

Introduction

We are interested in a typical machine learning problem

$$\min_{x \in \mathbb{R}^{D}} \frac{1}{N} \sum_{i=1}^{N} L(x, a_{i}, b_{i}) + \lambda \cdot r(x)$$

data fitting term + regularizer

- Last time, we talked about gradient methods, which work when D is large
- ► Today we will talk about stochastic subgradient methods, which work when *N* is large

• We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$

A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^N \nabla f_i(x_i)$$

- ▶ Computing the exact gradient is O(N)
- We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1,2,..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an **unbiased** estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

• Computing the exact gradient is $\mathcal{O}(N)$

- We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1,2,..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an **unbiased** estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an unbiased estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- \blacktriangleright We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an unbiased estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- \blacktriangleright We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an unbiased estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- \blacktriangleright We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an unbiased estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- \blacktriangleright We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

Note that this gives an unbiased estimate of the gradient;

 E[f'_{it}(x)] = 1/N ∑^N_{i=1} i(x) = ∇f(x).

 The iteration cost no longer depends on N

• Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- \blacktriangleright We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- Note that this gives an unbiased estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} {}_i(x) = \nabla f(x).$
- The iteration cost no longer depends on N

• Convergence requires $\alpha_t
ightarrow 0$

• We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$

A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$
- \blacktriangleright We can get convergence with constant α_t or using line-search
- ► A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample i_t ~ {1, 2, ..., N}

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- ▶ Note that this gives an unbiased estimate of the gradient; $\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$
- The iteration cost no longer depends on N
- Convergence requires $\alpha_t \rightarrow 0$

- We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$
- Deterministic gradient methods

Stochastic gradient methods [Robbins and Monro, 1951]

Assumption		
	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]

Stochastic methods are N times faster per iteration but, what about convergence?

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

 Stochastic methods have a lower iteration cost, but a lower convergence rate

- Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/t^2)$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}((1-\sqrt{u/L})^t)$	$\mathcal{O}(1/t)$

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - ▶ For convergence, momentum must go to zero [Tseng, 1998]

Convergence rates

Figure : Convergence rates in the strongly convex case

Stochastic methods are better for low-accuracy/time situations
It can be hard to know when the crossing will happen

Convergence rates

Figure : Convergence rates in the strongly convex case

Stochastic methods are better for low-accuracy/time situations

It can be hard to know when the crossing will happen

Julieta Martinez

Convergence rates S

Figure : Convergence rates in the strongly convex case

- Stochastic methods are better for low-accuracy/time situations
- It can be hard to know when the crossing will happen

Julieta Martinez

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption		Stochastic
	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, N times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption		Stochastic
	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, N times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption		Stochastic
	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, *N* times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption		Stochastic
	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, *N* times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
 Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, N times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, N times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, N times faster, lunch

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods

- The convergence rates look quite different when the function is non-smooth
- E.g., consider the binary support vector machine

$$f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^{\mathsf{T}}a_i)\} + \lambda \|x\|^2$$

Assumption	Deterministic	Stochastic
Convex	$\mathcal{O}(1/\sqrt{t})$	$\mathcal{O}(1/\sqrt{t})$
Strongly	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t)$

- Other black-box methods such as cutting plane are not faster
- Take-away point: for non-smooth problems
 - Deterministic methods are not faster than stochastic methods
 - Stochastic methods are a free, N times faster, lunch

► For differentiable convex functions, we have

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x), \forall x, y.$$

A vector d is a subgradient of a convex function f at x if $f(y) \ge f(x) + d^{\intercal}(y - x), \forall x, y.$

- At differentiable x, the only subgradient is $\nabla f(x)$
- ► At non-differentiable x, we have a set of subgradients, called the subdifferential, ∂f(x)
- Notice that if $\vec{\mathbf{0}} \in \partial f(x)$, then x is a global minimizer

► For differentiable convex functions, we have

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x), \forall x, y.$$

A vector d is a subgradient of a convex function f at x if $f(y) \ge f(x) + d^{\intercal}(y - x), \forall x, y.$

- At differentiable x, the only subgradient is $\nabla f(x)$
- At non-differentiable x, we have a set of subgradients, called the subdifferential, ∂f(x)
- Notice that if $\vec{\mathbf{0}} \in \partial f(x)$, then x is a global minimizer
► For differentiable convex functions, we have

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x), \forall x, y.$$

- At differentiable x, the only subgradient is $\nabla f(x)$
- At non-differentiable x, we have a set of subgradients, called the subdifferential, ∂f(x)
- Notice that if $\vec{\mathbf{0}} \in \partial f(x)$, then x is a global minimizer

► For differentiable convex functions, we have

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x), \forall x, y.$$

- At differentiable x, the only subgradient is $\nabla f(x)$
- At non-differentiable x, we have a set of subgradients, called the subdifferential, ∂f(x)
- Notice that if $\vec{\mathbf{0}} \in \partial f(x)$, then x is a global minimizer

► For differentiable convex functions, we have

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x), \forall x, y.$$

- At differentiable x, the only subgradient is $\nabla f(x)$
- At non-differentiable x, we have a set of subgradients, called the subdifferential, ∂f(x)
- ▶ Notice that if $\vec{0} \in \partial f(x)$, then x is a global minimizer

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1,1] & x = 0 \end{cases}$$

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1,1] & x = 0 \end{cases}$$

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1, 1] & x = 0 \end{cases}$$

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$

Consider the absolute value function: |x|

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$

Julieta Martinez

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$

$$\partial |x| = egin{cases} 1 & x > 0 \ -1 & x < 0 \ [-1,1] & x = 0 \end{cases}$$

Subdifferential of max function

• |x| is a special case of the max function

▶ Given two convex functions f₁(x) and f₂(x), the subdifferential of max(f₁(x), f₂(x)) is given by

$$\partial \max(f_1(x), f_2(x)) = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_1(x) < f_2(x) \\ \theta \nabla f_2(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

I.e., any convex combination of the gradients of the argmax

Subdifferential of max function

- |x| is a special case of the max function
- ► Given two convex functions f₁(x) and f₂(x), the subdifferential of max(f₁(x), f₂(x)) is given by

$$\partial \max(f_1(x), f_2(x)) = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_1(x) < f_2(x) \\ \theta \nabla f_2(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

I.e., any convex combination of the gradients of the argmax

Subdifferential of max function

- |x| is a special case of the max function
- ► Given two convex functions f₁(x) and f₂(x), the subdifferential of max(f₁(x), f₂(x)) is given by

$$\partial \max(f_1(x), f_2(x)) = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_1(x) < f_2(x) \\ \theta \nabla f_2(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

I.e., any convex combination of the gradients of the argmax

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ ||d|| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- ▶ The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ ||d|| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- ▶ The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ ||d|| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- ▶ The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ ||d|| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- ▶ The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ \|d\| \}$
 - Easy to see in the 1d case
 - Easy to find for ℓ_1 regularization, but hard in general
 - ▶ If $d_t \neq argmin_{\{}d \in \partial f(x)\} \|d\|$, the objective may increase
 - ▶ But $||x^{t+1} x^*|| \le ||x^t x^*||$ for small enough α
 - Again, for convergence, we require $\alpha \rightarrow 0$
- The basic stochastic subgradient method

$$x^{t+1} = x^t - \alpha_t d_{it}$$
for some $d_{it} \in \partial f_{it}(x^t)$, $i_t \sim \{1, 2, \dots, N\}$

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

for some $d_t \in \partial f(x^t)$

- The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ \|d\| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general
 - ▶ If $d_t \neq argmin_{\{}d \in \partial f(x)\} \|d\|$, the objective may increase
 - But $||x^{t+1} x^*|| \le ||x^t x^*||$ for small enough α

• Again, for convergence, we require $\alpha \rightarrow 0$

The basic stochastic subgradient method

$$x^{t+1} = x^t - \alpha_t d_{it}$$
for some $d_{it} \in \partial f_{it}(x^t)$, $i_t \sim \{1, 2, \dots, N\}$

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- ▶ The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ \|d\| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general
 - ▶ If $d_t \neq argmin_{d} \in \partial f(x) \|d\|$, the objective may increase
 - But $||x^{t+1} x^*|| \le ||x^t x^*||$ for small enough α
 - Again, for convergence, we require $\alpha \rightarrow 0$
- The basic stochastic subgradient method

$$\begin{aligned} x^{t+1} &= x^t - \alpha_t d_{it} \\ \text{for some } d_{it} \in \partial f_{it}(x^t), \ i_t \sim \{1, 2, \dots, N\} \end{aligned}$$

The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t d_t,$$

- ▶ The steepest descent d_t is $argmin_{d \in \partial f(x)} \{ \|d\| \}$
 - Easy to see in the 1d case
 - \blacktriangleright Easy to find for ℓ_1 regularization, but hard in general
 - ▶ If $d_t \neq argmin_{d} \in \partial f(x) \|d\|$, the objective may increase
 - But $||x^{t+1} x^*|| \le ||x^t x^*||$ for small enough α
 - Again, for convergence, we require $\alpha \rightarrow 0$
- The basic stochastic subgradient method

$$x^{t+1} = x^t - \alpha_t d_{it}$$
for some $d_{it} \in \partial f_{it}(x^t)$, $i_t \sim \{1, 2, \dots, N\}$

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- O(1/t) for smooth objectives
- ▷ O(log(t)/t) for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- \$\mathcal{O}(\log(t)/t)\$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge $(\mu_1 = 1/N \text{ or } 1/\sqrt{N})$
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

Theory says we should do

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives

Do not do this! Why?

- Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
- Later steps are tiny (1/t get small very quickly)
- Convergence rate is not robust to mis-specification of μ
- Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge $(\mu_1 = 1/N \text{ or } 1/\sqrt{N})$
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients
Theory says we should do

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ

Non-adaptive (very worst-case behaviour)

What people do in practice

- Use smaller initial steps, then go to zero more slowly
- Take a weighted average of the iterations or gradients

Theory says we should do

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

Theory says we should do

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

Theory says we should do

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

Theory says we should do

$$i_t \sim \{1, 2, \dots, N\}, \quad \alpha_t = \frac{1}{\mu_t}$$

 $x^{t+1} = x^t - \alpha \nabla f_{it}(x^t).$

- $\mathcal{O}(1/t)$ for smooth objectives
- $\mathcal{O}(\log(t)/t)$ for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge ($\mu_1 = 1/N$ or $1/\sqrt{N}$)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of μ
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

$$\bar{\mathbf{x}}_t = \sum_{i=1}^t w_t \mathbf{x}_t, \qquad \bar{d}_t = \sum_{i=1}^t \delta_t d_t.$$

Julieta Martinez

Subgradient methods

There is work that supports using large steps and averaging

- ▶ [Moulines and Bach, 2011], [Lacoste-Julien et al., 2012]
 - \blacktriangleright Averaging later iterations achieves $\mathcal{O}(1\ddot{)}$ in non-smooth case
 - Averaging by iteration number achieves the same
- [Nesterov, 2009], [Xiao, 2009]
 - Gradient averaging improves constants ('dual averaging')
 - Finds non-zero variables with sparse regularizers
- [Moulines and Bach, 2011]

• $\alpha_t = \mathcal{O}(1/t^\beta)$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = \mathcal{O}(1/t)$

[Nedić and Bertsekas, 2001]

• Constant step size $(\alpha_t = \alpha)$ achieves rate of

$$\mathbb{E}\left[f\left(x^{t}\right)\right] - f(x^{*}) \leq (1 - 2\mu\alpha)^{t} \left(f\left(x^{0}\right) - f\left(x^{*}\right)\right) + \mathcal{O}(\alpha)$$

- [Polyak and Juditsky, 1992]
 - In the smooth case, iterate averaging is asymptotically optimal
 - Achieves same rate as optimal Stochastic Newton method

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \|\nabla_j f_{ik}(x^t)\|}$$

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - \blacktriangleright Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^{k} t \|\nabla_j f_{ik}(x^t)\|}$$

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - \blacktriangleright Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^{\infty} t \| \nabla_j f_{ik}(x^t) \|}$$

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - \blacktriangleright Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^{\infty} t \| \nabla_j f_{ik}(x^t) \|}$$

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - \blacktriangleright Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - ▶ Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \|\nabla_j f_{ik}(x^t)\|}$$

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - \blacktriangleright Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \|\nabla_j f_{ik}(x^t)\|}$$

- improves regret bounds, but not optimization error
- Newton-like method [Bach and Moulines, 2013] achieves O(1/t) without strong-convexity (but with extra self-concordance assumption)

- What about accelerated/Newton-like stochastic methods?
 - Stochasticity in these methods does not improve the convergence rate
- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - \blacktriangleright Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \|\nabla_j f_{ik}(x^t)\|}$$

- improves regret bounds, but not optimization error
- ▶ Newton-like method [Bach and Moulines, 2013] achieves O(1/t) without strong-convexity (but with extra self-concordance assumption)

Recan

• We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$

- When D is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- ► In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too

- ▶ We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- ► In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods

- ▶ We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too

- We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too

- ▶ We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too

- We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods

- We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods

- We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too

- We want to solve problems with BIG data $X \in \mathbb{R}^{D imes N}$
- ▶ When *D* is large, we use gradient methods
- ▶ When *N* is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods

	Bach, F. and Moulines, E. (2013). Non-strongly-convex smooth sochastic approximation with convergence rate O(1/n). In Advances in Neural Information Processing Systems, pages 773–781.
	Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online tarning and stochastic optimization. <i>The Journal of Machine Learning Research</i> , 12:2121–2159.
	Ghadimi, S. and Lan, G. (2010). Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization. Optimization Online, July.
	Lacostev-Julien, S., Schmidt, M., and Bach, F. (2012). A simpler approach to obtaining an $O(1/t)$ convergence rate for the projected stochastic subgradient method. arXiv preprint arXiv:1212.2002.
	Moulines, E. and Bach, F. R. (2011). Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pages 451–459.
	Nedić, A. and Bertsekas, D. P. (2001). Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization, 12(1):109-138.
-	Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical programming. 120(1):221–259.
-	Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838-855.
	Robbins, H. and Monro, S. (1951). A stochastic approximation method. <i>The annals of mathematical statistics</i> , pages 400–407.
	Tseng, P. (1998). An incremental gradient (-projection) method with momentum term and adaptive stepsize rule. SIAM Journal on Optimization, 8(2):506-531.
	Xiao, L. (2009). Dual averaging method for regularized stochastic learning and online optimization. In Advances in Neural Information Processing Systems, pages 2116–2124.

Subgradient methods