Stochastic subgradient methods
Based on material by Mark Schmidt

Julieta Martinez
University of British Columbia

October 06, 2015
We are interested in a typical machine learning problem:

\[
\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda \cdot r(x)
\]

data fitting term + regularizer

Last time, we talked about gradient methods, which work when \(D \) is large.

Today we will talk about stochastic subgradient methods, which work when \(N \) is large.
We are interested in a typical machine learning problem

\[
\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda \cdot r(x)
\]

data fitting term + regularizer

Last time, we talked about gradient methods, which work when \(D \) is large

Today we will talk about stochastic subgradient methods, which work when \(N \) is large
Introduction

- We are interested in a typical machine learning problem

\[
\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda \cdot r(x)
\]

data fitting term + regularizer

- Last time, we talked about gradient methods, which work when \(D \) is large

- Today we will talk about stochastic subgradient methods, which work when \(N \) is large
We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$.

A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

Computing the exact gradient is $O(N)$.

We can get convergence with constant α_t or using line-search.

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample $i_t \sim \{1, 2, \ldots, N\}$

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

Note that this gives an unbiased estimate of the gradient;

$$E\left[f'_{i_t}(x)\right] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$$

The iteration cost no longer depends on N.

Convergence requires $\alpha_t \to 0$.

Julieta Martinez

Subgradient methods
We want to minimize a function \(f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i) \).

A deterministic gradient method computes the gradient exactly

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)
\]

Computing the exact gradient is \(O(N) \).

We can get convergence with constant \(\alpha_t \) or using line-search.

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample \(i_t \sim \{1, 2, \ldots, N\} \)

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)
\]

Note that this gives an unbiased estimate of the gradient;

\[
\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).
\]

The iteration cost no longer depends on \(N \).

Convergence requires \(\alpha_t \to 0 \).
We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$.

A deterministic gradient method computes the gradient exactly:

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

Computing the exact gradient is $O(N)$.

We can get convergence with constant α_t or using line-search.

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample $i_t \sim \{1, 2, \ldots, N\}$.

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

Note that this gives an unbiased estimate of the gradient;

$$\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$$

The iteration cost no longer depends on N.

Convergence requires $\alpha_t \to 0$.
We want to minimize a function \(f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i) \)

- A **deterministic** gradient method computes the gradient exactly

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)
\]

- Computing the exact gradient is \(O(N) \)
- We can get convergence with constant \(\alpha_t \) or using line-search

- A **stochastic** gradient method [Robbins and Monro, 1951] estimates the gradient from a sample \(i_t \sim \{1, 2, \ldots, N\} \)

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)
\]

- Note that this gives an **unbiased** estimate of the gradient;
 \[
 \mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).
 \]
- The iteration cost no longer depends on \(N \)
- Convergence requires \(\alpha_t \to 0 \)
We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$.

A deterministic gradient method computes the gradient exactly:

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

- Computing the exact gradient is $\mathcal{O}(N)$.
- We can get convergence with constant α_t or using line-search.

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample $i_t \sim \{1, 2, \ldots, N\}$:

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

- Note that this gives an unbiased estimate of the gradient;
- $\mathbb{E}[f_{i_t}'(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x)$.
- The iteration cost no longer depends on N.
- Convergence requires $\alpha_t \to 0$.

Julieta Martinez

Subgradient methods
We want to minimize a function \(f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i) \).

A deterministic gradient method computes the gradient exactly:

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)
\]

Computing the exact gradient is \(\mathcal{O}(N) \).

We can get convergence with constant \(\alpha_t \) or using line-search.

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample \(i_t \sim \{1, 2, \ldots, N\} \):

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)
\]

Note that this gives an unbiased estimate of the gradient:
\[
\mathbb{E}\left[f'_{i_t}(x)\right] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).
\]

The iteration cost no longer depends on \(N \).

Convergence requires \(\alpha_t \to 0 \).
We want to minimize a function \(f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i) \).

A deterministic gradient method computes the gradient exactly:

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)
\]

Computing the exact gradient is \(\mathcal{O}(N) \).

We can get convergence with constant \(\alpha_t \) or using line-search.

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample \(i_t \sim \{1, 2, \ldots, N\} \)

\[
x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)
\]

Note that this gives an unbiased estimate of the gradient; \(\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x) \).

The iteration cost no longer depends on \(N \).

Convergence requires \(\alpha_t \to 0 \).
We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$

A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

Computing the exact gradient is $O(N)$

We can get convergence with constant α_t or using line-search

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample $i_t \sim \{1, 2, \ldots, N\}$

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

Note that this gives an unbiased estimate of the gradient; $\mathbb{E} [f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x)$.

The iteration cost no longer depends on N

Convergence requires $\alpha_t \to 0$
We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$

A deterministic gradient method computes the gradient exactly

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f(x_t) = x_t - \alpha_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x_i)$$

Computing the exact gradient is $O(N)$

We can get convergence with constant α_t or using line-search

A stochastic gradient method [Robbins and Monro, 1951] estimates the gradient from a sample $i_t \sim \{1, 2, \ldots, N\}$

$$x_{t+1} = x_t - \alpha_t \cdot \nabla f_i(x_t) = x_t - \alpha_t \cdot \frac{1}{n} \nabla f_{i_t}(x_i)$$

Note that this gives an unbiased estimate of the gradient;

$$\mathbb{E}[f'_{i_t}(x)] = \frac{1}{N} \sum_{i=1}^{N} i(x) = \nabla f(x).$$

The iteration cost no longer depends on N

Convergence requires $\alpha_t \to 0$
We want to minimize a function $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_i)$

Deterministic gradient methods

Stochastic gradient methods [Robbins and Monro, 1951]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 - \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are **unimprovable** if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 - \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

- Stochastic methods have a lower iteration cost, but a lower convergence rate
- Sublinear rate even under strong convexity
- Bounds are **unimprovable** if only unbiased gradients are available
- Momentum/acceleration does not improve convergence
- For convergence, momentum must go to zero [Tseng, 1998]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 - \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
 - Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 - \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
 - Bounds are unimprovable if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 - \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are **unimprovable** if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 - \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

▶ Stochastic methods have a lower iteration cost, but a lower convergence rate
 ▶ Sublinear rate even under strong convexity
▶ Bounds are unimprovable if only unbiased gradients are available
 ▶ Momentum/acceleration does not improve convergence
 ▶ For convergence, momentum must go to zero [Tseng, 1998]
Convergence

Stochastic methods are N times faster per iteration but, what about convergence?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/t^2)$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O((1 − \sqrt{u/L})^t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

- Stochastic methods have a lower iteration cost, but a lower convergence rate
 - Sublinear rate even under strong convexity
- Bounds are **unimprovable** if only unbiased gradients are available
 - Momentum/acceleration does not improve convergence
 - For convergence, momentum must go to zero [Tseng, 1998]
Figure: Convergence rates in the strongly convex case

- Stochastic methods are better for low-accuracy/time situations
- It can be hard to know when the crossing will happen
Figure: Convergence rates in the strongly convex case

- Stochastic methods are better for low-accuracy/time situations
- It can be hard to know when the crossing will happen
Figure: Convergence rates in the strongly convex case

- Stochastic methods are better for low-accuracy/time situations
- It can be hard to know when the crossing will happen
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[
f(x) = \sum_{i=1}^{N} \max_x \{0, 1 - b_i (x^T a_i)\} + \lambda \|x\|^2
\]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods
- Stochastic methods are a free, \(N\) times faster, lunch
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2 \]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods.
- Stochastic methods are a free, \(N\) times faster, lunch.
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine:

\[f(x) = \sum_{i=1}^{N} \max_x \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2 \]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems
- Deterministic methods are not faster than stochastic methods.
- Stochastic methods are a free, \(N\) times faster, lunch.

Subgradient methods
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2 \]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods
- Stochastic methods are a free, \(N\) times faster, lunch
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[
f(x) = \sum_{i=1}^{N} \max_x \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2
\]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods.
- Stochastic methods are a free, \(N\) times faster, lunch.
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[
f(x) = \sum_{i=1}^{N} \max_x \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2
\]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(\mathcal{O}(1/\sqrt{t}))</td>
<td>(\mathcal{O}(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(\mathcal{O}(1/t))</td>
<td>(\mathcal{O}(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods
- Stochastic methods are a free, \(N\) times faster, lunch
The convergence rates look quite different when the function is non-smooth

E.g., consider the binary support vector machine

\[f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2 \]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods
- Stochastic methods are a free, \(N\) times faster, lunch
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2 \]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/\sqrt{t})$</td>
<td>$O(1/\sqrt{t})$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O(1/t)$</td>
<td>$O(1/t)$</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods
- Stochastic methods are a free, N times faster, lunch
The convergence rates look quite different when the function is non-smooth.

E.g., consider the binary support vector machine

\[f(x) = \sum_{i=1}^{N} \max_{x} \{0, 1 - b_i(x^T a_i)\} + \lambda \|x\|^2 \]

Rates for subgradient methods in non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{t}))</td>
<td>(O(1/\sqrt{t}))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/t))</td>
<td>(O(1/t))</td>
</tr>
</tbody>
</table>

Other black-box methods such as cutting plane are not faster.

Take-away point: for non-smooth problems

- Deterministic methods are not faster than stochastic methods
- Stochastic methods are a free, \(N\) times faster, lunch
For differentiable convex functions, we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall x, y. \]

- At differentiable \(x \), the only subgradient is \(\nabla f(x) \)
- At non-differentiable \(x \), we have a set of subgradients, called the subdifferential, \(\partial f(x) \)
- Notice that if \(\vec{0} \in \partial f(x) \), then \(x \) is a global minimizer
For differentiable convex functions, we have

\[f(y) \geq f(x) + \nabla f(x)^T(y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T(y - x), \forall x, y. \]

- At differentiable \(x \), the only subgradient is \(\nabla f(x) \)
- At non-differentiable \(x \), we have a set of subgradients, called the subdifferential, \(\partial f(x) \)
- Notice that if \(\vec{0} \in \partial f(x) \), then \(x \) is a global minimizer
For differentiable convex functions, we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a **subgradient** of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall x, y. \]

At differentiable \(x \), the only subgradient is \(\nabla f(x) \)

- At non-differentiable \(x \), we have a set of subgradients, called the **subdifferential**, \(\partial f(x) \)
- Notice that if \(\vec{0} \in \partial f(x) \), then \(x \) is a global minimizer
For differentiable convex functions, we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall x, y. \]

At differentiable \(x \), the only subgradient is \(\nabla f(x) \)

At non-differentiable \(x \), we have a set of subgradients, called the subdifferential, \(\partial f(x) \)

Notice that if \(\vec{0} \in \partial f(x) \), then \(x \) is a global minimizer
For differentiable convex functions, we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall x, y. \]

- At differentiable \(x \), the only subgradient is \(\nabla f(x) \)
- At non-differentiable \(x \), we have a set of subgradients, called the subdifferential, \(\partial f(x) \)
- Notice that if \(\mathbf{0} \in \partial f(x) \), then \(x \) is a global minimizer
A vector d is a **subgradient** of a convex function f at x if

$$f(y) \geq f(x) + d^\top(y - x), \forall x, y.$$
Example

A vector d is a **subgradient** of a convex function f at x if

$$f(y) \geq f(x) + d^\top (y - x), \forall x, y.$$
A vector d is a subgradient of a convex function f at x if

$$f(y) \geq f(x) + d^\top(y - x), \forall x, y.$$
Example

A vector d is a subgradient of a convex function f at x if

$$f(y) \geq f(x) + d^\top(y - x), \forall x, y.$$
Example

A vector d is a **subgradient** of a convex function f at x if

$$f(y) \geq f(x) + d^\top (y - x), \forall x, y.$$
A vector d is a subgradient of a convex function f at x if

$$f(y) \geq f(x) + d^T(y - x), \forall x, y.$$
Example

A vector d is a subgradient of a convex function f at x if

$$f(y) \geq f(x) + d^T(y - x), \forall x, y.$$
Example

A vector d is a subgradient of a convex function f at x if

$$f(y) \geq f(x) + d^\top (y - x), \forall x, y.$$
Example

A vector d is a **subgradient** of a convex function f at x if

$$f(y) \geq f(x) + d^\top(y - x), \forall x, y.$$
Another example

Consider the absolute value function: $|x|$

$$\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}$$
Another example

Consider the absolute value function: $|x|

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$
Another example

Consider the absolute value function: $|x|

$$\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}$$
Another example

Consider the absolute value function: $|x|

\[\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases} \]
Another example

Consider the absolute value function: $|x|

$$\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}$$
Another example

Consider the absolute value function: $|x|

\[\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}\]
Another example

Consider the absolute value function: $|x|

$$\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}$$
Subdifferential of \max function

- $|x|$ is a special case of the max function
- Given two convex functions $f_1(x)$ and $f_2(x)$, the subdifferential of $\max(f_1(x), f_2(x))$ is given by
 \[
 \partial \max(f_1(x), f_2(x)) = \begin{cases}
 \nabla f_1(x) & f_1(x) > f_2(x) \\
 \nabla f_2(x) & f_1(x) < f_2(x) \\
 \theta \nabla f_2(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x)
 \end{cases}
 \]
- I.e., any convex combination of the gradients of the argmax
Subdifferential of \(\text{max} \) function

- \(|x| \) is a special case of the max function
- Given two convex functions \(f_1(x) \) and \(f_2(x) \), the subdifferential of \(\text{max}(f_1(x), f_2(x)) \) is given by

\[
\partial \text{max} (f_1(x), f_2(x)) = \begin{cases}
\nabla f_1(x) & f_1(x) > f_2(x) \\
\nabla f_2(x) & f_1(x) < f_2(x) \\
\theta \nabla f_2(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x)
\end{cases}
\]

- i.e., any convex combination of the gradients of the \(\text{argmax} \)
Subdifferential of \max function

- $|x|$ is a special case of the max function
- Given two convex functions $f_1(x)$ and $f_2(x)$, the subdifferential of $\max(f_1(x), f_2(x))$ is given by

$$
\partial \max(f_1(x), f_2(x)) = \begin{cases}
\nabla f_1(x) & f_1(x) > f_2(x) \\
\nabla f_2(x) & f_1(x) < f_2(x) \\
\theta \nabla f_2(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x)
\end{cases}
$$

- I.e., any convex combination of the gradients of the $\arg\max$

Julieta Martinez

Subgradient methods
The subgradient method

- The basic subgradient method:
 \[x^{t+1} = x^t - \alpha_t d_t, \]

 for some \(d_t \in \partial f(x^t) \)

- The steepest descent \(d_t \) is \(\operatorname{argmin}_{d \in \partial f(x)} \{ \| d \| \} \)
 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
The subgradient method

- The basic subgradient method:
 \[x^{t+1} = x^t - \alpha_t d_t, \]
 for some \(d_t \in \partial f(x^t) \)
- The steepest descent \(d_t \) is \(\text{argmin}_{d \in \partial f(x)} \|d\| \)
 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
The subgradient method

- The basic **subgradient** method:
 \[x^{t+1} = x^t - \alpha_t d_t, \]
 for some \(d_t \in \partial f(x^t) \)

- The **steepest descent** \(d_t \) is \(\text{argmin}_{d \in \partial f(x)} \{ \| d \| \} \)
 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
The subgradient method

- The basic subgradient method:

 \[x^{t+1} = x^t - \alpha_t d_t, \]

 for some \(d_t \in \partial f(x^t) \)

- The steepest descent \(d_t \) is \(\arg\min_{d \in \partial f(x)} \|d\| \)

 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
The subgradient method

- The basic subgradient method:
 \[x^{t+1} = x^t - \alpha_t d_t, \]
 for some \(d_t \in \partial f(x^t) \)

- The steepest descent \(d_t \) is \(\text{argmin}_{d \in \partial f(x)} \{ \| d \| \} \)
 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
 - If \(d_t \neq \text{argmin}_{d \in \partial f(x)} \| d \| \), the objective may increase
 - But \(\| x^{t+1} - x^* \| \leq \| x^t - x^* \| \) for small enough \(\alpha \)
 - Again, for convergence, we require \(\alpha \to 0 \)

- The basic stochastic subgradient method
 \[x^{t+1} = x^t - \alpha_t d_{it} \]
 for some \(d_{it} \in \partial f_{it}(x^t), i_t \sim \{1, 2, \ldots, N\} \)
The subgradient method

- The basic subgradient method:
 \[x^{t+1} = x^t - \alpha_t d_t, \]
 for some \(d_t \in \partial f(x^t) \)

- The steepest descent \(d_t \) is \(\arg\min_{d \in \partial f(x)} \{ \|d\| \} \)
 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
 - If \(d_t \neq \arg\min_{d \in \partial f(x)} \{ \|d\| \} \), the objective may increase
 - But \(\|x^{t+1} - x^*\| \leq \|x^t - x^*\| \) for small enough \(\alpha \)

- Again, for convergence, we require \(\alpha \to 0 \)

- The basic stochastic subgradient method
 \[x^{t+1} = x^t - \alpha_t d_{i_t} \]
 for some \(d_{i_t} \in \partial f_{i_t}(x^t) \), \(i_t \sim \{1, 2, \ldots, N\} \)
The subgradient method

- The basic subgradient method:

 \[x^{t+1} = x^t - \alpha_t d_t, \]

 for some \(d_t \in \partial f(x^t) \)

- The steepest descent \(d_t \) is \(\text{argmin}_{d \in \partial f(x)} \{ \| d \| \} \)

 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
 - If \(d_t \neq \text{argmin}_{d \in \partial f(x)} \| d \| \), the objective may increase
 - But \(\| x^{t+1} - x^* \| \leq \| x^t - x^* \| \) for small enough \(\alpha \)
 - Again, for convergence, we require \(\alpha \rightarrow 0 \)

- The basic stochastic subgradient method

 \[x^{t+1} = x^t - \alpha_t d_{i_t} \]

 for some \(d_{i_t} \in \partial f_{i_t}(x^t), \ i_t \sim \{1, 2, \ldots, N\} \)
The subgradient method

- The basic subgradient method:
 \[x^{t+1} = x^t - \alpha_t d_t, \]
 for some \(d_t \in \partial f(x^t) \)

- The steepest descent \(d_t \) is \(\text{argmin}_{d \in \partial f(x)} \{ \|d\| \} \)
 - Easy to see in the 1d case
 - Easy to find for \(\ell_1 \) regularization, but hard in general
 - If \(d_t \neq \text{argmin}_{d \in \partial f(x)} \|d\| \), the objective may increase
 - But \(\|x^{t+1} - x^*\| \leq \|x^t - x^*\| \) for small enough \(\alpha \)
 - Again, for convergence, we require \(\alpha \to 0 \)

- The basic stochastic subgradient method
 \[x^{t+1} = x^t - \alpha_t d_{it} \]
 for some \(d_{it} \in \partial f_{it}(x^t), \ i_t \sim \{1, 2, \ldots, N\} \)
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]

\[x^{t+1} = x^t - \alpha \nabla f_{it}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives

- Do not do this! Why?
 - Initial steps will be huge \((\mu_1 = 1/N \text{ or } 1/\sqrt{N})\)
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]

\[x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (\(1/t \) get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]
\[x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives

- Do not do this! Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (\(1/t \) get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

 \[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]

 \[x^{t+1} = x^t - \alpha \nabla f_i(x^t). \]

 - \(O(1/t) \) for smooth objectives
 - \(O(\log(t)/t) \) for non-smooth objectives

- Do not do this! Why?

 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice

 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

 \[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]

\[x^{t+1} = x^t - \alpha \nabla f_i(x^t). \]

- \(O(1/t)\) for smooth objectives
- \(O(\log(t)/t)\) for non-smooth objectives
- **Do not do this!** Why?
 - Initial steps will be huge \((\mu_1 = 1/N\) or \(1/\sqrt{N}\))
 - Later steps are tiny \((1/t\) get small very quickly\)
 - Convergence rate is not robust to mis-specification of \(\mu\)
 - Non-adaptive (very worst-case behaviour)
- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t}, \quad x^{t+1} = x^t - \alpha_t \nabla f_i(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives

- **Do not do this!** Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (\(1/t \) get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t}, \quad x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(\mathcal{O}(1/t) \) for smooth objectives
- \(\mathcal{O}(\log(t)/t) \) for non-smooth objectives

- Do not do this! Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]
\[x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives
- Do not do this! Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]

\[x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives

- **Do not do this!** Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny (1/t get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_{t+1}} \]

\[x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives

- **Do not do this!** Why?
 - Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
 - Later steps are tiny \((1/t \) get small very quickly)
 - Convergence rate is not robust to mis-specification of \(\mu \)
 - Non-adaptive (very worst-case behaviour)

- What people do in practice
 - Use smaller initial steps, then go to zero more slowly
 - Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
The stochastic subgradient method in practice

- Theory says we should do

\[i_t \sim \{1, 2, \ldots, N\}, \quad \alpha_t = \frac{1}{\mu_t} \]

\[x^{t+1} = x^t - \alpha \nabla f_{i_t}(x^t). \]

- \(O(1/t) \) for smooth objectives
- \(O(\log(t)/t) \) for non-smooth objectives

Do not do this! Why?

- Initial steps will be huge (\(\mu_1 = 1/N \) or \(1/\sqrt{N} \))
- Later steps are tiny (1/t get small very quickly)
- Convergence rate is not robust to mis-specification of \(\mu \)
- Non-adaptive (very worst-case behaviour)

What people do in practice

- Use smaller initial steps, then go to zero more slowly
- Take a weighted average of the iterations or gradients

\[\bar{x}_t = \sum_{i=1}^{t} w_t x_t, \quad \bar{d}_t = \sum_{i=1}^{t} \delta_t d_t. \]
There is work that supports using large steps and averaging

- [Moulines and Bach, 2011], [Lacoste-Julien et al., 2012]
 - Averaging later iterations achieves $O(1)$ in non-smooth case
 - Averaging by iteration number achieves the same
- [Nesterov, 2009], [Xiao, 2009]
 - Gradient averaging improves constants (‘dual averaging’)
 - Finds non-zero variables with sparse regularizers
- [Moulines and Bach, 2011]
 - $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$
- [Nedić and Bertsekas, 2001]
 - Constant step size ($\alpha_t = \alpha$) achieves rate of

 $$
 \mathbb{E}[f(x^t)] - f(x^*) \leq (1 - 2\mu\alpha)^t \left(f(x^0) - f(x^*) \right) + O(\alpha)
 $$

- [Polyak and Juditsky, 1992]
 - In the smooth case, iterate averaging is asymptotically optimal
 - Achieves same rate as optimal Stochastic Newton method
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate

But, it has been shown that

- [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small

- Newton-line AdaGrad method [Duchi et al., 2011]

$$ x^{t+1} = x^t + \alpha D \nabla f_{i_t}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^{t} \| \nabla f_{i_k}(x^t) \|} $$

- improves regret bounds, but not optimization error
- Newton-like method [Bach and Moulines, 2013] achieves $O(1/t)$ without strong-convexity (but with extra self-concordance assumption)
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate

But, it has been shown that

- [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]

\[
x^{t+1} = x^t + \alpha D \nabla f_t(x^t), \quad \text{with} \quad D_{jj} = \sqrt{\sum_{k=1}^t \| \nabla_j f_{ik}(x^t) \|}
\]

- Improves regret bounds, but not optimization error
- Newton-like method [Bach and Moulines, 2013] achieves $O(1/t)$ without strong-convexity (but with extra self-concordance assumption)
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate

But, it has been shown that

- [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small

- Newton-line AdaGrad method [Duchi et al., 2011]

\[
x^{t+1} = x^t + \alpha D \nabla f_i(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^t \|\nabla_j f_{ik}(x^t)\|}
\]

- Improves regret bounds, but not optimization error
- Newton-like method [Bach and Moulines, 2013] achieves $O(1/t)$ without strong-convexity (but with extra self-concordance assumption)
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate

But, it has been shown that

- [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small

Newton-line AdaGrad method [Duchi et al., 2011]

$$x^{t+1} = x^t + \alpha D \nabla f_{i_t}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^{t} \| \nabla_j f_{i_k}(x^t) \|}$$

- Improves regret bounds, but not optimization error
- Newton-like method [Bach and Moulines, 2013] achieves $\mathcal{O}(1/t)$ without strong-convexity (but with extra self-concordance assumption)
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate.

But, it has been shown that

- [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ.
 - It improves performance at start if noise is small.

- Newton-line AdaGrad method [Duchi et al., 2011]

 $$x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \| \nabla j f_{ik}(x^t) \|}$$

 - Improves regret bounds, but not optimization error.
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate

- But, it has been shown that
 - [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small
 - Newton-line AdaGrad method [Duchi et al., 2011]
 \[x^{t+1} = x^t + \alpha D \nabla f_{it}(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \| \nabla_j f_{ik}(x^t) \|} \]
 - improves regret bounds, but not optimization error
 - Newton-like method [Bach and Moulines, 2013] achieves $O(1/t)$ without strong-convexity (but with extra self-concordance assumption)
What about accelerated/Newton-like stochastic methods?

- Stochasticity in these methods does not improve the convergence rate

But, it has been shown that

- [Ghadimi and Lan, 2010]
 - Acceleration can improve dependence on L and μ
 - It improves performance at start if noise is small

- Newton-line AdaGrad method [Duchi et al., 2011]

\[
x^{t+1} = x^t + \alpha D \nabla f_i(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1} t \| \nabla_j f_i(x^t) \|}
\]

- improves regret bounds, but not optimization error
- Newton-like method [Bach and Moulines, 2013] achieves $\mathcal{O}(1/t)$ without strong-convexity (but with extra self-concordance assumption)
Recap

We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$

- When D is large, we use gradient methods
- When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates

Stochastic methods:
- Are N times faster than deterministic methods
- Do a lot of progress quickly, then stall

In practice:
- Choose smaller step sizes at the beginning
- Averaging the iterations / gradients helps
- Taking a permutation of the data (no longer unbiased gradient) works well too

Next week Mohammed will talk about finite-sum methods
Recap

- **We want to solve problems with BIG data** $X \in \mathbb{R}^{D \times N}$
- **When D is large, we use gradient methods**
 - When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- **Stochastic methods:**
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- **In practice:**
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

- We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$
- When D is large, we use gradient methods
- When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

- We want to solve problems with BIG data \(X \in \mathbb{R}^{D \times N} \)
- When \(D \) is large, we use gradient methods
- When \(N \) is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are \(N \) times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

- We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$
- When D is large, we use gradient methods
- When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

- We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$
- When D is large, we use gradient methods
- When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

- We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$
- When D is large, we use gradient methods
- When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

- We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$
- When D is large, we use gradient methods
- When N is large, we use stochastic gradient methods
 - If the function is non-smooth, stochastic subgradient has great convergence rates
- Stochastic methods:
 - Are N times faster than deterministic methods
 - Do a lot of progress quickly, then stall
- In practice:
 - Choose smaller step sizes at the beginning
 - Averaging the iterations / gradients helps
 - Taking a permutation of the data (no longer unbiased gradient) works well too
- Next week Mohammed will talk about finite-sum methods
Recap

▸ We want to solve problems with BIG data $X \in \mathbb{R}^{D \times N}$

▸ When D is large, we use gradient methods

▸ When N is large, we use stochastic gradient methods
 ▸ If the function is non-smooth, stochastic subgradient has great convergence rates

▸ Stochastic methods:
 ▸ Are N times faster than deterministic methods
 ▸ Do a lot of progress quickly, then stall

▸ In practice:
 ▸ Choose smaller step sizes at the beginning
 ▸ Averaging the iterations/ gradients helps
 ▸ Taking a permutation of the data (no longer unbiased gradient) works well too

▸ Next week Mohammed will talk about finite-sum methods
References

- **Bach, F. and Moulines, E. (2013).**
 Non-strongly-convex smooth stochastic approximation with convergence rate $O(1/n)$.

- **Duchi, J., Hazan, E., and Singer, Y. (2011).**
 Adaptive subgradient methods for online learning and stochastic optimization.

- **Ghadimi, S. and Lan, G. (2010).**
 Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization.
 Optimization Online, July.

- **Lacoste-Julien, S., Schmidt, M., and Bach, F. (2012).**
 A simpler approach to obtaining an $O(1/t)$ convergence rate for the projected stochastic subgradient method.

- **Moulines, E. and Bach, F. R. (2011).**
 Non-asymptotic analysis of stochastic approximation algorithms for machine learning.

- **Nedić, A. and Bertsekas, D. P. (2001).**
 Incremental subgradient methods for nondifferentiable optimization.

- **Nesterov, Y. (2009).**
 Primal-dual subgradient methods for convex problems.

- **Polyak, B. T. and Juditsky, A. B. (1992).**
 Acceleration of stochastic approximation by averaging.

- **Robbins, H. and Monro, S. (1951).**
 A stochastic approximation method.

- **Tseng, P. (1998).**
 An incremental gradient projection method with momentum term and adaptive stepsize rule.

- **Xiao, L. (2009).**
 Dual averaging method for regularized stochastic learning and online optimization.