Optimization for decoding

Speaker: Issam Laradiji

Problem Statement

® Consider the problem of decoding for markov random fields (MRF)
o Determine the assignment of n random variables X7,...X,

xi ={0,1,...,k—1}

Thymine (Yellow) =T Guanine (Green) = G
Adenine (Blue) = A Cytosine (Red) = C

Problem Statement

® Consider the problem of decoding for markov random fields (MRF)
o Determine the assignment of n random variables X1,... X,

xi ={0,1,...,k—1}

® The maximum a posteriori (MAP) - or the most likely labeling

argmax Pw(x) = argmax w! F(x)

Problem Statement

® Consider the problem of decoding for markov random fields (MRF)
o Determine the assignment of n random variables X1, ... X,

xi ={0,1,...,k—1}
® The maximum a posteriori (MAP) - or the most likely labeling
argmax Pw(x) = argmax w! F(x)

® No computation of entropy required

Problem Statement

® Consider the problem of decoding for markov random fields (MRF)
o Determine the assignment of n random variables X1, ... X,

xi ={0,1,...,k—1}
® The maximum a posteriori (MAP) - or the most likely labeling
argmax Pw(x) = argmax w! F(x)

® No computation of entropy required

sup {w’ u+ H(p,)}
peM

Problem Statement

® Consider the problem of decoding for markov random fields (MRF)
o Determine the assignment of n random variables X1, ... X,

xi ={0,1,...,k—1}
® The maximum a posteriori (MAP) - or the most likely labeling
argmax Pw(x) = argmax w! F(x)

® No computation of entropy required

sup {w? pn+ Hp,)}
peM

Problem Statement

® For pairwise UGM the decoding problem is integer-quadratic programming,

arg max p,(x)=arg max w! F(x)
x€{0,1}F x€{0,1}k

® Because

w!'F(x) =Y wexs+ Y wsxsx;
seV (s,1)EE

® Integer Programming is NP-hard
® Cast (relax) it to have linear constraints

Problem Statement

® Quadratic unconstrained binary optimization (QUBO)

arg max p,(x)=arg max w! F(x)
x€{0,1}* x€{0,1}k

® Quadratic programming,
arg max p,(x)=arg max w! F(x)

x€[0,1]k x€(0,1)k

— New, fractional
vertices

Quadratic programming to linear programming

® Quadratic programming,

arg max p,(x)=arg max w! F(x)
x€[0,1]% x€[0,1]*

® Achieve atighter bound by converting it to a linear program (best paper
award)

arg max wTF(x)zarg max wTu
x€{0,1}% pHeEM(G)

M(G) = {pe R |[FJw e R? s.t. u=Epy) [F(X)]}

Proof for equivalence

max Y pow! F(x) = max w! F(x)

Original formulation

mpax Y px) w!lF(x) = max wTZ p(x)F(x)
= max w!E[F(x)]

= max wTup
p

= max LUT[J Desired formulation
HEM(G)

1 <— Assignment for X,

. |

i Marginal polytope 0

(I) (Wainwright & Jordan, '03) (I) <— Assignment for X,
- I / I | «— Assignment for X,

0 (l) <— Edge assignment for

0 -

| H =10 X\ X3

0 0

0 1/ - 0 | «— Edge assignment for

0 (' + i ' X, X

0 2 (v + ‘“) 0 2

| valid marginal probabilities 0

0 0 | «<— Edge assignment for

0 X, = | 0 X,Xs

|

| 0] i L0) X,=0
=1 Km0 A

Marginal Polytope: the set of mean vectors that can arise from some joint distribution H

The dimensionof M s 2|V + 22|E|

Linear programming global constraint

® Global constraint: The edge marginals in ff must arise from a common joint
distribution

max wTu
HEM(G)

® Number of constraints is exponential in the number of edges

® Therefore we relax the linear program to achieve a polynomial time
approximation

First-order relaxation

® Pairwise relaxation (Assume dependency between pairs only)

LOCAL(G) =

2

{peR?

Z .Um(wz,xj) .Uz(xZ) Vig € B, x;

sz pij(xs, zj) = pi(x;) Vij € B,z

Z T; pi(z;) =1

pi(zi) >0, pij(x;,z;) >0

max w U~ max

HeM(G)

©eLOCAL(G)

~”~

First-order relaxation

LOCAL(G) =

7

uERd

2w Mij (Ti,)
>, Mij (Tis T5)

pi(zi) 20, pij(zi,z5) >0

= i (2;)
5 (z;)

vertices

Vij € E, x;
Vij € E,CBJ'
VieV

=~ New, fractional

\

Vs

Higher order relaxations

® Edge marginals are consistent on larger subsets

2o, Mig (i, Tj) = paei) Vo) € B,
in ,uz-j(:cz-,a:j) = ,uj(xj) Vij € F, Z;
TRI(G)Z{/,LZO dr >0, Zmz_,ui(xi)zl VieV > .
Tz'j(iL'i,CCj) = mj(:ci,xj) Vij € E, Ti, Tj
L ka Tijk(a:i, Zj, :Ek) = Tz'j(zl}i, .’Ilj), V’i,j, k

® Constraints grow exponentially in the size of the clusters considered

= New, fractional
b vertices

Cutting-plane algorithm

® Few carefully chosen constraints would suffice
o Aninteger solution is a MAP assignment

® Solve pairwise LP then find valid constraints to add to the relaxation

u‘ NE ME
O ,u*

w w

) (b) (c)

u €

(a

Cutting-plane algorithm

[M‘
® *
"

wE
O u
(a) (b)

o

(c) (d)

max 0 -
K Useless

constraint

€

Invalid
constraint

Cutting-plane algorithm

® Add valid cycle constraints - cycle of the graph should be consistent with some
joint distribution

ZXC\M Tc(Xc) = uij(xi,xj) V’ij - C, Tiy T j

CYCLE(C) ={ peR? | 3rc >0,
=1 =7 T tolxe) =1

"We use C to refer to both a set of edges (e.g., with notation ij € C'), and the variables involved in these
edges. The notation x¢ refers to an assignment to all of the variables in the cycle C, and C\{i, j} refers to

the set of variables in C' except for 7 or j. Also, ZXC‘\, 7c(xc) means the sum over all assignments xc; ;
N1y

to the variables in C\{i,j} of 7¢(xc\i j, @i, @), where x; and x; are instantiated outside of the sum.

Cutting-plane algorithm

1. Solve the LP relaxation (in Iteration 1, use the pairwise relaxation).

2. Construct the projection graph G, and pseudomarginals p. using Eqgs. 3.9-3.11.
3. Run SeperateCycles(G,, p..) to see if there are any violated cycle inequalities.
4. Add all cycle inequalities returned by Step 3 to the LP relaxation.

5. Return to Step 1, but now solve using the tighter relaxation.

2. Construct the projection graph G and pseudomarginals p. using Eqgs. 3.9-3.11.

Ve = U T, E, C {(7Tq ﬂ-;) | (7’,]) € E,q< |7Ti|,’f‘ < |7Tj|}' 7T7(,1 - Xi — {07]‘}

ieV
fm (Tm) = > i (i) Vm =} € Vx
SiEXi 1Ty (8i)=Tm
U _ — (9 T
pr (T,) = Z i (i, S5) Vmn =(m;, ;) € Er.

Si€EXi: W?(Sz’)=$m,
sjEX; 7} (85)=2n

Linear transformation

o /—\
[

{0142y {0.2{1} {1,240}

{0,1,2,3} {0}{1,2,38} {140,2,3} {2}{0,1,3} {3}{0,1,2} {0,142,3} {0,2}{1,3} {0,3}1,2}

Figure 3-2: Illustration of the projection for one edge ij € E where x; = {0,1,2} and
x; = {0,1,2,3}. The projection graph (shown on right), has 3 partitions for ¢ and 7 for j.

3. Run SeperateCycles(G, p.) to see if there are any violated cycle inequalities.

Algorithm SeparateCycles(Gr, pt,)
// Initialize the auxilliary graph used in the shortest path computation.
let G' = (V', E’), where

V' = Uiev, {i1,i2}

E = U(i,j)GEn {(ila '1:2)’ ('l:17j2), ('I:2aj1)1 (j2a .72)} /)
41

// Setup the edge weights.
for each edge ij € Ex Not cut <«— Cut edges
w(i1, j2) = pf5(0,0) + puf5(1,1) // Cut

w(iz, j1) = uE(0,0) + uf(1,1) // Cu \ , ¢
w(it, j1) = pf5(0,1) + p7;(1,0) // Not cut
1 w(iz, j2) = pf;(0,1) + p7;(1,0) // Not cut

13 // Run the shortest path algorithm, once for each node.

14 for each node i € V;

15 // Find shortest path P; from i; to i3 on graph G’ with weights w
16 P; = ShortestPath(i1, iz, G', w)

© O N R W N e

-
=]

18 // Make sure that this is a simple cycle in G.
19 if 35 # ¢ such that j,,j> € P;
20 Discard P;.

22 return {P; : w(P;) < 1}

Figure 3-4: Given the projection graph Gr = (Vz, Ex) and edge pseudomarginals p, find
the most violated cycle inequality.

3. Run SeperateCycles(G;,) to see if there are any violated cycle inequalities.

Figure 3-5: Illustration of graph used in shortest path algorithm for finding the most violated
cycle inequality. The dashed edges denote cut edges (i.e., if used in the shortest path, they
are assigned to F'), while the solid edges denote edges that are not cut. The algorithm
is as follows: To find the most violated cycle inequality on a cycle involving node j, find
the shortest path from j; to jo in the graph (edge weights are discussed in Section 3.4.2).
To find the most violated cycle inequality overall, considering all cycles, repeat this for
every node (e.g., also look for the shortest path from ki to k2). The red and blue paths
demonstrate two different cycle inequalities. The red path, from k; to ks, denotes the cycle
inequality C' = {ki,ij,jk}, F = {jk}. The blue path, from j; to ja, denotes the cycle
inequality C' = {ji,ik,kj}, F = C, i.e. all three edges are cut. Since the paths begin in the
top component and end in the bottom component, each path must have an odd number of
cut edges. Thus, |F| is always odd, as required to obtain a valid inequality.

Cutting-plane algorithm

1. Solve the LP relaxation (in Iteration 1, use the pairwise relaxation).

2. Construct the projection graph G, and pseudomarginals p. using Eqgs. 3.9-3.11.
3. Run SeperateCycles(G,, p..) to see if there are any violated cycle inequalities.
4. Add all cycle inequalities returned by Step 3 to the LP relaxation.

5. Return to Step 1, but now solve using the tighter relaxation.

Semidefinite programming

® Some NP-hard combinatorial optimization problems have convex relaxations
that are semidefinite programs.

® SDP relaxation is very tight in practice

SDP : minimize Ce X
s.t. A;je X =b ,i=1,...,m,

X =0,

Semidefinite programming

SDP : minimize C e X LP: minimize c-x
s.t. Ao X =0b ,i=1,...,m, s.t. a;-r="b;, 1=1,...,m
X =0, x € R
aj; 0 0 cic O 0
A; = O afz O , t=1,...,m, and C= | . 6‘2 X
0 0 ... am 0 0 ... c

Linear Programming

Maxcut problem

® Determine a subset S of the nodes N for which the sum of the weights of the
edges that cross from S to its complement S is maximized

n
> wii(1 — zizy)

MAXCUT : maximize, %
i=1j=1

(3

s.t. z;je{-1,1}, j=1,...,n

\

n n

MAXCUT : maximizey, 1Y > wij—WeY
i=1j=1

s.t. Yi=1, j=1,...,n

Maxcut problem

® Remove Rank-1restriction Y = xx

n n
MAXCUT : maximizey,, 7> > wij—WeY

s.t. Yi;=1, j=1,...,n

¢ To SDP formulation

n n

RELAX : maximizey i Z Z W5 — WeY
1=1j5=1
s.t. Yij=1, j=1,...,n
Y = 0.

Summary

Classic decoding using Quadratic programming with integer constraints
o Can be relaxed to Quadratic programming with linear constraints (polynomial time for pairwise)

Quadratic programming to linear programming (tighter)

o Relaxation based on local consistency of mean vectors
o Higher-order relaxation leads to an NP-hard optimization problem

Cutting-plane algorithm for tight solutions that is computationally tractable
o Find and add violated constraints to the optimization

NP-hard optimization problems like MAXCUT have convex relaxations that are
semidefinite programs, which are very tight in practice.

Thank you!

