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Introduction

* Online learning: Make a sequence of accurate
predictions given knowledge of the correct
answer to previous prediction tasks and
possibly additional available information.

* Applications: Online advertisement
placement, web ranking, spam filtering, online
shortest paths, portfolio selection,
recommender systems



Notation

Xt  Decision/point chosen on timestamp t

}C Bounded convex, decision set

ft € F : IC+— R Bounded convex function

available at timestamp t
1 Number of iterations

_,4 Online algorithm



Protocol
Fort=1:T

1. Learner chooses Xt
2. Environment / Adversary chooses f;
3. Learner suffers loss ft(Xt)

Aim: To minimize cumulative loss across rounds
measured using regret

regret(A) = sup {Z fr(x¢) mmz ft(x)}

{fla aft}cf ]\ xek t=1 ]\
Chosen by our Chosen by the
online algorithm offline

algorithm



Learning from expert advice

* Need to make a decision (eg: whether to
invest or not), helped by N experts who make
oredictions

* Decide which expert to follow at each step

* Receive feedback for each expert



Learning from expert advice

Algorithm 1 Hedge

1. Initialize: Vi € [N], Wi(i) =1

2: fort=1to T do

3. Pick iy ~p Wi, ie., iy = i with probability p:(i) = "1'{1(; ) -
Zj t(7)

4:  Observe loss (¢ (it).
5. Update weights Wi (i) = Wy(i)e==%0)
6: end for

Theorem 1.5. Let (7 denote the N-dimensional vector of square losses,
ie., (2(i) = (,(i)%, and let € < % The Hedge algorithm satisfies for any
expert i* € [N]:

T T

. c In N
Zp;rft <> () + gijﬁf +
t=1 t=1 '




Asymptotic Regret Bounds

Theorem 3.2. Any algorithm for online convex optimization incurs
Q(DGVT) regret in the worst case. This is true even if the cost func-
tions are generated from a fixed stationary distribution.

* Achieved by first order methods like online gradient
descent and second order methods like online newton

a-strongly convex | F-smooth
| el 2
= logT VT

8}

 Smoothness doesn’t help (unlike in offline gradient
descent), strong convexity does

1 - Hazan, 2007; 2 - Zinkevich, 2003



Follow the leader

Idea: Use loss information in previous iterations to choose point in
current iteration.

Follow-The-Leader (FTL)

t—1
\V/tj W = argmin E f? (W) (break ties arbitrarily)
wes T

Special case: Obtains log(T) regret with quadratic functions (shooting game)
Problem: Predictions are not stable and may fluctuate drastically

Example 2.2 (Failure of FTL). Let S=[—1,1] R and consider
the sequence of linear functions such that f;(w) = 24w where

—0.5 ift=1
2y =41 if ¢ 1s even
—1 ift>1 AN t1is odd

Then, the predictions of FTL will be to set w; = 1 for t odd and wy = —1
for t even. The cumulative loss of the F'TL algorithm will therefore be T
while the cumulative loss of the fixed solution «w = 0 € .S is 0. Thus, the

regret of FTL is 7' !




Follow the regularized leader

e |Idea: Add regularization to make prediction more stable.

Algorithm 10 Regularized Follow The Leader

1: Input: 1 > 0, strongly convex regularization function R. and a
convex compact set K.

2: Let x1 = arg mingex {R(x)}.

3: fort =1to T do

4:  Predict xq.

5. Observe the payoff function f; and let V; = V fe(x;).

6:  Update

[
Xey] = argmin< n Z VSTX + R(x) (5.1)
xe s—1
@;EXJ

7: end for




Follow the regularized leader

Theorem b.1. The RFTL algorithm 10 attains for every u € K the
following bound on the regret:
L , 1
regrety < V] (e —u) <20 [[Ve]li + EDR
t=1 t

Local norm of gradient at t

Can be upper bounded Diameter of the decision

set relative to R

Special Cases: |
* Online Gradient Descent with L2 regularization i.e. R(X) = éHxHi

* Hedge with negative entropy regularization i.e. R(X) = X log X



Online gradient descent

Algorithm 6 ONLINE GRADIENT DESCENT

() {

- end for

1: Input: convex set K, T', x1 € K, step sizes {n;}
2: fort=1to 1 do

3:  Play x; and observe cost fi(x¢).

4 Update and project:

Vi1 = Xt — 'Utvft(Xt)

Xe1 =11 :
t+1 )C[Ytﬂ]

/

/ Decrease as 1 / sqrt(t)

Projection



Online gradient descent

Theorem 3.1. ONLINE GRADIENT DESCENT with step sizes {1 =
D
GVt’

t =1,....,,T} guarantees the following for all 1" > 1.

T T
oTetm = — Il Y < 3GDVT
regrety ;.ft(xt) }glé%; fi(x") < VT

Theorem 3.3. For a-strongly convex loss functions, ONLINE (GRADI-

ENT DESCENT with step sizes 1 = % achieves the following guarantee,
for all T"> 1
G2
regrety < (1+1logT).

o



Online to Batch reduction

Suppose we have a batch of data, can we OGD to look one point
at a time and get a rate as good as SGD ?

Algorithm 7 Stochastic Gradient Descent
1: Input: f.K, T, x1 € K, step sizes {n:}
2: fort=1to 1" do
3. Let V; < O(x;) and define: fi(x) £ (V;, )
4 Update and project:

Yir1 =Xt — 7715@15
Xe1 =11
t+1 K[Y?H—l]

. end for

ot

6: return Xp = %Zi_l Xy

Use linearized functions with noisy gradient as input and return
the average point over the iterations



Online to Batch reduction

Regret bound:

E[f(x7)] < min f(x") 4 JT

* For general convex function, achieves 1/sqrt(T) rate
* For strongly convex functions, online to batch conversion can
give a log(T)/T rate later improved to 1/T ( Hazan’14)



ADAGRAD

* Different regularizations in RTFL lead to
different algorithms. Can we learn an optimal
regularization to use ?

Algorithm 16 AdaGrad

1: Input: parameters 7,0 > 0,x; € K.

2: Initialize: Sg = Gg = 01,

3: fort=1to 1 do

4:  Predict x¢, suffer loss fi(x¢).

5:  Update: Sy < S;_1 + ViV, G; = S,/?

—1
yVir1 — X — Gy Ve
o i 2
X1 < argmin ||y — x|/,
xck

6: end for




ADAGRAD

Vx e K. V?R(x) =V e HE{X eR™  Tr(X)<1, X =0}

Theorem 5.9. Let {x;} be defined by Algorithm 16 with parameters
PR
0 = 1,1 = 5. where
D = maxmax |u — x
uck HEH ” ! ”H
Then for for any x* € I,

HeH ;

regret(AdaGrad) < 2D - \/ min » || Ve|[37 (5.6)

regret(AdaGrad) < 2DTr(Gr)



Variants

* Follow the perturbed leader (FPL) — form of
randomized regularization

* Bandit feedback (observe loss only for the
selected point) — can be analyzed using OCO
by estimating the gradient at each point

* Use Frank Wolfe when projection is expensive



