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Coordinate Descent in 2D
• Contours of a function F : IR2 → IR.
• Goal: Find the minimizer of F .
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Coordinate Descent

• Update a single coordinate at each iteration,

xk+1
i ← xki − αk∇fi(xk)

• Easy to implement, low memory requirements, cheap iteration costs.

• Suitable for large-scale optimization (dimension n is large):
• Certain smooth (unconstrained) problems.
• Non-smooth problems with separable constraints/regularizers.

• e.g., `1-regularization, bound constraints

T Faster than gradient descent if iterations n times cheaper.

→ Adaptable to distributed settings.

→ For truly huge-scale problems, it is absolutely necessary to parallelize.
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Problem

• Consider the optimization problem

min
x∈IRn

F (x) := f(x) + g(x),

where
• f is loss function – convex (smooth or nonsmooth)
• g is regularizer – convex (smooth or nonsmooth), separable
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Regularizer Examples

g(x) =

n∑
i=1

gi(xi), x = (x1, x2, . . . , xn)
T

• No regularizer: gi(xi) ≡ 0

• Weighted L1-norm: gi(xi) = λi|xi| (λi > 0) ← e.g., LASSO

• Weighted L2-norm: gi(xi) = λi(xi)
2 (λi > 0)

• Box constraints: gi(xi) =

0, xi ∈ Xi,

+∞, otherwise.
← e.g., SVM dual
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Loss Examples

Name f(x) References

Quadratic loss 1
2 ||Ax− y||

2
2 =

1
2

∑m
j=1(Aj:x− yj)2 Bradley et al., 2011,

Logistic loss
∑m

j=1 log(1 + exp(−yjAj:x)) Richtárik & Takáč, 2011b, 2013a,

Square hinge loss 1
2(max{0, 1− yjAj:x})2) Takáč et al., 2013

L-infinity ‖Ax− y‖∞ = max1≤j≤m |Aj:x− yj |

L1-regression ‖Ax− y‖1 =
∑m

j=1 |Aj:x− yj | Fercoq & Richtárik, 2013

Exponential loss log
(

1
m

∑m
j=1 exp(yjAj:x)

)
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Parallel Coordinate Descent

• Embarrassingly parallel if objective is separable.

→ Speedup equal to number of processors, τ .

• For partially-separable objectives:
• Assign ith processor task of updating ith component of x.
• Each processor communicates respective x+i to processors that require it.
• The ith processor needs current value of xj only if ∇if or ∇2

iif depends on xj .

→ Parallel implementations suitable when dependency graph is sparse.
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Dependency Graph
• Given a fixed serial ordering of updates, those in red can be done in parallel.

→ (i, j) is an arc of

the dependency graph

iff update function hj

depends on xi

Update order: {1, 2, 3, 4}

xk+1
1 = h1(x

k
1 , x

k
3)

xk+1
2 = h2(x

k+1
1 , xk2)

xk+1
3 = h3(x

k+1
2 , xk3 , x

k
4)

xk+1
4 = h4(x

k+1
2 , xk4)

Better update order: {1, 3, 4, 2}

xk+1
1 = h1(x

k
1 , x

k
3)

xk+1
3 = h3(x

k
2 , x

k
3 , x

k
4)

xk+1
4 = h4(x

k
2 , x

k
4)

xk+1
2 = h2(x

k+1
1 , xk2)
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Parallel Coordinate Descent

• Synchronous parallelism:
• Divide iterate updates between processors, followed by synchronization step.
• Very slow for large-scale problems (wait for slowest processor).

• Asynchronous parallelism:
• Each processor has access to x, chooses index i, loads components of x that

are needed to compute the gradient component ∇if(x), then updates the ith
component xi.
• No attempt to coordinate or synchronize with other processors.
• Always using ‘stale’ x: convergence results restrict how stale.

→ Many numerical results actually use asynchronous implementation, ignore

synchronization step required by theory.
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Totally Asynchronous Algorithm
Definition: An algorithm is totally asynchronous if

1 each index i ∈ {1, 2, . . . , n} of x is updated at infinitely many iterations, and

2 if νkj denotes the iteration at which component j of the vector x̂k was last

updated, then νkj →∞ as k →∞ for all j = 1, 2, . . . , n.

→ No condition on how stale x̂j is, just requires that it will be updated eventually.

Theorem (Bertsekas and Tsitsiklis, 1989)

Suppose a mapping T (x) := x− α∇f(x) for some α > 0 satisfies

‖T (x)− x∗‖∞ ≤ η‖x− x∗‖∞, for some η ∈ (0, 1).

Then if we set αk ≡ α in Algorithm 7, the sequence {xk} converges to x∗. 10 / 38



Partly Asynchronous Algorithm

• No convergence rate for totally asynchronous, given weak assumptions on x̂k.

• `∞ contraction assumption on mapping T is quite strong.

• Liu et al. (2015) assume no component of x̂k older than nonnegative integer τ̃
(maximum delay) at any k.
• τ̃ related to number of processors τ (indicator of potential parallelism)
• If all processors complete updates at approx same rate, τ̃ ≈ cτ for some positive

integer c.

→ Linear convergence if “essential strong convexity” holds.

→ Sublinear convergence for general convex functions.
→ Near-linear speedup if number of processors is:

• O(n1/2) in unconstrained optimization.
• O(n1/4) in the separable-constrained case.
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Question

Under what structural assumptions does

parallelization lead to acceleration?
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Convergence of Randomized Coordinate Descent

• In IRn, randomized coordinate descent with uniform selection requires:

O(n× ξ(ε)) iterations

• Strong convex F : ξ(ε) = log
(
1
ε

)
• Smooth, or simple nonsmooth F : ξ(ε) = 1

ε

• ‘Difficult’ nonsmooth F : ξ(ε) = 1
ε2

→ When dealing with big data, we only care about n.
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The Parallelization Dream

Serial Parallel

(1 coordinate per iteration) (τ coordinates per iteration)

O(n× ξ(ε)) iterations ⇒ O
(
n
τ × ξ(ε)

)
iterations

• What do we actually get?

O

(
nβ

τ
× ξ(ε)

)
• Want β = O(1).

→ Depends on extent to which we can add up individual updates.
→ Properties of F , select of coordinates at each iteration.
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Naive Parallelization
• Consider the function f(x1, x2) = (x1 + x2 − 1)2

• Just compute for more/all coordinates and then add up the updates.

f(x
1 , x

2 ) =
0

f(1, 1) = 1

f(0, 0) = 1
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Naive Parallelization
• Consider the function f(x1, x2) = (x1 + x2 − 1)2

• Just compute for more/all coordinates and then add up the updates.

xk+1xk+2
2

xk+2
1xk+2

NO GOOD!
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Naive Parallelization
• Consider the function f(x1, x2) = (x1 − 1)2 + (x2 − 1)2

• What about averaging the updates?? COULD BE TOO CONSERVATIVE...

xk

xk+1
2

xk+1
1

xk+1

xk+2
2

xk+2
1

xk+2

AND SO ON...
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Averaging may be too conservative...

• Consider the function f(x) = (x1 − 1)2 + (x2 − 1)2 + · · ·+ (xn − 1)2.

• Evaluate at x0 = 0, f(x0) = n.

• We want

f(xk) = n

(
1− 1

n

)2k

≤ ε.

• With averaging, we get

k ≥ n

2
log
(n
ε

)
→ Factor of n is bad!

• We wanted O
(
nβ
τ × ξ(ε)

)
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What to do?

• We can write the coordinate descent update as follows,

x+ ← x+
1

β

n∑
i=1

hiei,

where
• hi is the update to coordinate i
• ei is the ith unit coordinate vector

• Averaging: β = n

• Summation: β = 1

→ When can we safely use β ≈ 1?
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When can we use small β?

• Three models for f with small β:
1 Smooth partially separable f [Richtárik & Takáč, 2011b]

f(x+ tei) ≤ f(x) +∇f(x)T (tei) +
Li
2
t2

f(x) =
∑
J∈J

fJ(x), fJ depends on xi for i ∈ J only
ω := maxJ∈J |J |

2 Nonsmooth max-type f [Fercoq & Richtárik, 2013]
f(x) = maxz∈Q{zTAx− g(z)} ω := max1≤j≤m |{i : Aji 6= 0}|

3 f with ‘bounded Hessian’ [Bradley et al., 2011, Richtárik & Takáč, 2013a]

f(x+ h) ≤ f(x) +∇f(x)Th+
1

2
hTATAh

L = diag(ATA)

σ := λmax(L
−1/2ATAL−1/2)

→ ω is the degree of partial separability, σ is spectral radius.
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Parallel Coordinate Descent Method

• At iteration k, select a random set Sk.

• Sk is a realization of a random set-valued mapping (or sampling) Ŝ.

• Update hi depends on F , x and on law describing Ŝ.

→ Continuously interpolates between serial coordinate descent and gradient.
• Manipulates n and E[|Ŝ|].
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ESO: Expected Separable Overapproximation

• We say that f admits a (β, ω)-ESO with respect to (uniform) sampling Ŝ if for

all x, h ∈ IRn

(f, Ŝ) ∼ ESO(β,w) ⇐⇒ E
[
f(x+ h[Ŝ])

]
≤ f(x)+E[|Ŝ|]

n

(
∇f(x)Th+

β

2
||h||2w

)
where
• h[Ŝ] =

∑
i∈Ŝ hiei, and ‖h‖2w :=

∑n
i=1 wi(hi)

2

• We note that ∇f(x)Th+ β
2 ||h||

2
w is separable in h.

• Minimize with respect to h in parallel→ yields update

x+ → x+
1

β

∑
i∈Ŝ

1

wi
∇if(x)ei

• Compute updates for i ∈ Ŝ only.

→ Separable quadratic overapproximation of E[f ] evaluated at update.
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Convergence Rate for Convex f

• If (f, Ŝ) ∼ ESO(β,w), then [Richtárik & Takáč, 2011b]

k ≥

(
βn

E[|Ŝ|]

)(
2R2

w(x
0, x∗)

ε

)
log

(
F (x0)− F ∗

ερ

)
,

which implies that

P (F (xk)− F ∗ ≤ ε) ≥ 1− ρ.

• ε: error tolerance
• n: # coordinates
• E[|Ŝ|]: average # updated coordinates per iteration
• β: step size parameter
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Convergence Rate for Strongly Convex f

• If (f, Ŝ) ∼ ESO(β,w), then [Richtárik & Takáč, 2011b]

k ≥

(
n

E[|Ŝ|]

)(
β + µg(w)

µf (w) + µg(w)

)
log

(
F (x0)− F ∗

ερ

)
,

which implies that

P (F (xk)− F ∗ ≤ ε) ≥ 1− ρ.

• µf (w): strong convexity constant of loss f
• µg(w): strong convexity constant of regularizer g

→ If µg(w) is large, then the slowdown effect of β is eliminated.
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What if problem is only partially separable?

• Uniform sampling: P (Ŝ = {i}) = 1
n

• τ -nice sampling: P (Ŝ = S) =


1

(nτ)
, |S| = τ

0, otherwise
← for shared memory systems

• At each iteration:

→ Choose set of i, each subset of τ coordinates chosen with the same probability.
→ Assign each i to a dedicated processor.
→ Compute and apply the update.

→ All blocks are the same size τ (otherwise, probability is 0).
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What if problem is only partially separable?

• Doubly uniform (DU) sampling: P (Ŝ = S) =
q|S|

( n|S|)

• Generates all sets of equal cardinality with equal probability.
• Can model unreliable processors/machines.
• Let qτ = P (|Ŝ| = τ), with n = 5 coordinates.

q1 q2 q3 q4 q5

Ŝ
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q|S|

( n|S|)

• Generates all sets of equal cardinality with equal probability.
• Can model unreliable processors/machines.
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What if problem is only partially separable?

• Binomial sampling: consider independent equally unreliable processors.
• Each of τ processors available with probability pb, busy with probability 1− pb.
• # available processors (number of blocks that can be updated in parallel) at

each iteration is a binomial random variable with parameters τ and pb.
• Use explicit or implicit selection.
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ESO Theory

1 Smooth partially separable f [Richtárik & Takáč, 2011b]

f(x+ tei) ≤ f(x) +∇f(x)T (tei) +
Li
2
t2

f(x) =
∑
J∈J

fJ(x), fJ depends on xi for i ∈ J only
ω := maxJ∈J |J |

Theorem: If Ŝ is doubly uniform, then

E
[
f(x+ h[Ŝ])

]
≤ f(x) + E[|Ŝ|]

n

(
∇f(x)Th+

β

2
||h||2w

)
,

where

β = 1 +
(ω − 1)

(
E[|Ŝ|2]
E[|Ŝ|]

− 1
)

n− 1
, wi = Li. i = 1, 2, . . . , n

→ β is small if ω is small (i.e., more separable)
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ESO Theory

→ (Richtárik & Takáč, 2013) “Parallel Coordinate Descent Methods for Big Data Optimization”.
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Theoretical Speedup
 

s(r) =
τ

1 + r(τ − 1)
,

r = (ω − 1)/(n− 1)

• ω often a constant that depends on n.

• r is a measure of ‘density’.

→ MUCH OF BIG DATA IS HERE!
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Theory vs Practice
  

• τ = # processors vs. theoretical (left) and experimental (right) speed-up for

n = 1000 coordinates
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Experiment

• 1 billion-by-2 billion LASSO problem [Richtárik & Takáč, 2012]

f(x) =
1

2
‖Ax− b‖22, g(x) = ‖x‖1

• A has 2× 109 rows and n = 109 columns.

• ‖x∗‖0 = 105

• ‖A:,i‖0 = 20 (column)

• maxj ‖Aj,:‖0 = 35 (row)⇒ ω = 35 (degree of partial separability of f ).

• Used approximation of τ -nice sampling Ŝ (independent sampling, τ << n).

• Asynchronous implementation.

→ Older information used to update coordinates, but observed slow down is limited.
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Experiment: Coordinate Updates

• For each τ , serial and parallel CD need approximately same number of

coordinate updates.
• Method identifies active set.
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Experiment: Iterations

• Doubling τ roughly translates to halving the number of iterations.
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Experiment: Wall Time

• Doubling τ roughly translates to halving the wall time.
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(Fercoq & Richtárik, 2013) APPROX Accelerated, parallel and proximal coordinate descent.
2013 (arXiv:1312.5799)

(Yang, 2013) DisDCA Trading computation for communication: distributed stochastic dual coordinate ascent.
NIPS 2013

(Bian et al, 2013) PCDN Parallel coordinate descent Newton method for efficient `1-regularized minimization.
2013 (arXiv:1306.4080)

(Liu & Wright, 2014) AsySPCD Asynchronous stochastic coordinate descent: parallelism and convergence properties.
SIAM J. Optim. 25(1), 351376, 2015 (arXiv:1403.3862)

(Mahajan et al, 2014) DBCD A distributed block coordinate descent method for training `1-regularized linear classifiers.
arXiv:1405.4544, 2014

36 / 38



Citation Algorithm Paper

(Fercoq et al, 2014) Hydra2 Fast distributed coordinate descent for non-strongly convex losses. MLSP
2014 (arXiv:1405.5300)
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Conclusions

• Coordinate descent scales very well to big data problems of special structure.

→ Requires (partial) separability/sparse dependency graph.

• Care is needed when combining updates (add them up? average?)

• Sampling strategies that take into account unreliable processors.
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