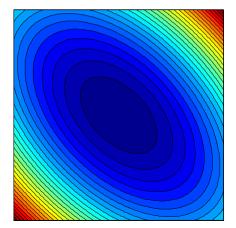
Parallel Coordinate Optimization

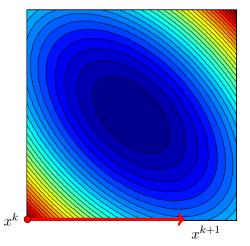
Julie Nutini

MLRG - Spring Term March 6th, 2018

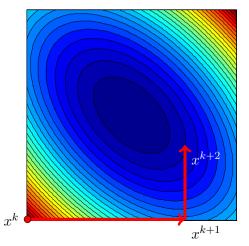
- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



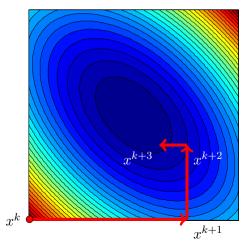
- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



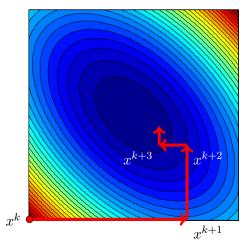
- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



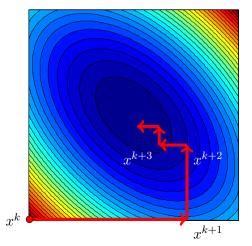
- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



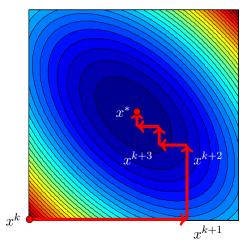
- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



- Contours of a function $F : \mathbb{R}^2 \to \mathbb{R}$.
- **Goal**: Find the minimizer of *F*.



Coordinate Descent

• Update a single coordinate at each iteration,

$$x_i^{k+1} \leftarrow x_i^k - \alpha_k \nabla f_i(x^k)$$

- Easy to implement, low memory requirements, cheap iteration costs.
- Suitable for large-scale optimization (dimension *n* is large):
 - Certain smooth (unconstrained) problems.
 - Non-smooth problems with *separable* constraints/regularizers.
 - e.g., ℓ_1 -regularization, bound constraints
- * Faster than gradient descent if iterations n times cheaper.
- \rightarrow Adaptable to distributed settings.
- \rightarrow For truly huge-scale problems, it is absolutely necessary to parallelize.

Problem

Consider the optimization problem

$$\min_{x \in \mathbb{R}^n} F(x) := f(x) + g(x),$$

where

- *f* is loss function convex (smooth or nonsmooth)
- g is regularizer convex (smooth or nonsmooth), separable

Regularizer Examples

$$g(x) = \sum_{i=1}^{n} g_i(x_i), \quad x = (x_1, x_2, \dots, x_n)^T$$

• No regularizer:
$$g_i(x_i) \equiv 0$$

- Weighted L1-norm: $g_i(x_i) = \lambda_i |x_i|$ $(\lambda_i > 0) \leftarrow \text{e.g., LASSO}$
- Weighted L2-norm: $g_i(x_i) = \lambda_i(x_i)^2$ $(\lambda_i > 0)$
- Box constraints: $g_i(x_i) = \begin{cases} 0, & x_i \in X_i, \\ +\infty, & \text{otherwise.} \end{cases} \leftarrow \text{e.g., SVM dual}$

Loss Examples

Name	f(x)	References
Quadratic loss	$\frac{1}{2} Ax - y _2^2 = \frac{1}{2}\sum_{j=1}^m (A_{j:x} - y_j)^2$	Bradley et al., 2011,
Logistic loss	$\sum_{j=1}^{m} \log(1 + \exp(-y_j A_{j:} x))$	Richtárik & Takáč, 2011b, 2013a,
Square hinge loss	$\frac{1}{2}(\max\{0, 1 - y_j A_{j:x}\})^2)$	Takáč et al., 2013
		1
L-infinity	$ Ax - y _{\infty} = \max_{1 \le j \le m} A_{j:}x - y_j $	
L1-regression	$ Ax - y _1 = \sum_{j=1}^m A_{j:}x - y_j $	Fercoq & Richtárik, 2013
Exponential loss	$\log\left(\frac{1}{m}\sum_{j=1}^{m}\exp(y_jA_j:x)\right)$	

Parallel Coordinate Descent

- Embarrassingly parallel if objective is separable.
 - \rightarrow Speedup equal to number of processors, τ .
- For partially-separable objectives:
 - Assign *i*th processor task of updating *i*th component of *x*.
 - Each processor communicates respective x_i^+ to processors that require it.
 - The *i*th processor needs current value of x_j only if $\nabla_i f$ or $\nabla_{ii}^2 f$ depends on x_j .
- \rightarrow Parallel implementations suitable when dependency graph is sparse.

Dependency Graph

• Given a fixed serial ordering of updates, those in red can be done in parallel.

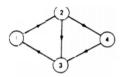


FIG. 1. A dependency graph.

 \rightarrow (i, j) is an arc of the dependency graph iff update function h_j depends on x_i

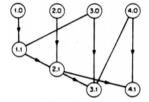


FIG. 2. The data dependencies in a Gauss-Seidel iteration.

Update order: $\{1, 2, 3, 4\}$ $x_1^{k+1} = h_1(x_1^k, x_3^k)$ $x_2^{k+1} = h_2(x_1^{k+1}, x_2^k)$ $x_3^{k+1} = h_3(x_2^{k+1}, x_3^k, x_4^k)$ $x_4^{k+1} = h_4(x_2^{k+1}, x_4^k)$

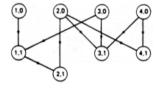


FIG. 3. The data dependencies in a Gauss-Seidel iteration for a different updating order.

Better update order: $\{1, 3, 4, 2\}$

$$\begin{split} & x_1^{k+1} \!= h_1(x_1^k, x_3^k) \\ & x_3^{k+1} \!= h_3(x_2^k, x_3^k, x_4^k) \\ & x_4^{k+1} \!= h_4(x_2^k, x_4^k) \\ & x_2^{k+1} \!= h_2(x_1^{k+1}, x_2^k) \end{split}$$

Parallel Coordinate Descent

- Synchronous parallelism:
 - Divide iterate updates between processors, followed by synchronization step.
 - Very slow for large-scale problems (wait for slowest processor).
- Asynchronous parallelism:
 - Each processor has access to *x*, chooses index *i*, loads components of *x* that are needed to compute the gradient component ∇_if(x), then updates the *i*th component x_i.
 - No attempt to coordinate or synchronize with other processors.
 - Always using 'stale' x: convergence results restrict how stale.
- → Many numerical results actually use asynchronous implementation, ignore synchronization step required by theory.

Totally Asynchronous Algorithm

Definition: An algorithm is totally asynchronous if

1 each index $i \in \{1, 2, ..., n\}$ of x is updated at infinitely many iterations, and

2) if ν_j^k denotes the iteration at which component *j* of the vector \hat{x}^k was last

updated, then $\nu_j^k \to \infty$ as $k \to \infty$ for all j = 1, 2, ..., n.

Algorithm 7 Asynchronous Coordinate Descent for (1) Set $k \leftarrow 0$ and choose $a^0 \in \mathbb{R}^n$; repeat Choose index $i_k \in \{1, 2, ..., n\}$; $x^{k+1} \leftarrow x^k \leftarrow a_k = \alpha_k |\nabla \langle i^k \rangle|_{k_k} e_k$ for some $\alpha_k > 0$; $k \leftarrow k + 1$; until termination test satisfied;

 \rightarrow No condition on how stale \hat{x}_j is, just requires that it will be updated eventually.

Theorem (Bertsekas and Tsitsiklis, 1989)

Suppose a mapping $T(x) := x - \alpha \nabla f(x)$ for some $\alpha > 0$ satisfies

 $\|T(x)-x^*\|_\infty \leq \eta \|x-x^*\|_\infty, \quad \text{for some } \eta \in (0,1).$

Then if we set $\alpha_k \equiv \alpha$ in Algorithm 7, the sequence $\{x^k\}$ converges to x^* .

Partly Asynchronous Algorithm

- No convergence rate for totally asynchronous, given weak assumptions on \hat{x}^k .
- ℓ_{∞} contraction assumption on mapping *T* is quite strong.
- Liu et al. (2015) assume no component of x^k older than nonnegative integer τ
 (maximum delay) at any k.
 - $\tilde{\tau}$ related to number of processors τ (indicator of potential parallelism)
 - If all processors complete updates at approx same rate, $\tilde{\tau} \approx c\tau$ for some positive integer c.
- → Linear convergence if "essential strong convexity" holds.
- \rightarrow Sublinear convergence for general convex functions.
- \rightarrow Near-linear speedup if number of processors is:
 - $O(n^{1/2})$ in unconstrained optimization.
 - $O(n^{1/4})$ in the separable-constrained case.

Question

Under what structural assumptions does parallelization lead to acceleration?

Convergence of Randomized Coordinate Descent

• In \mathbb{R}^n , randomized coordinate descent with uniform selection requires:

 $O(\mathbf{n} \times \xi(\epsilon))$ iterations

- Strong convex $F: \xi(\epsilon) = \log\left(\frac{1}{\epsilon}\right)$
- Smooth, or simple nonsmooth F: $\xi(\epsilon) = \frac{1}{\epsilon}$
- 'Difficult' nonsmooth $F: \xi(\epsilon) = \frac{1}{\epsilon^2}$
- \rightarrow When dealing with big data, we only care about *n*.

The Parallelization Dream

Serial

 $O(n \times \xi(\epsilon))$ iterations $\Rightarrow O\left(\frac{n}{\tau} \times \xi(\epsilon)\right)$ iterations

(τ coordinates per iteration)

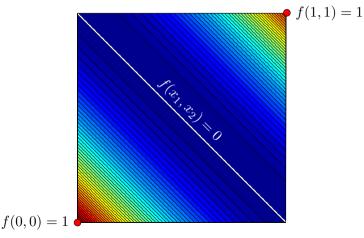
Parallel

• What do we actually get?

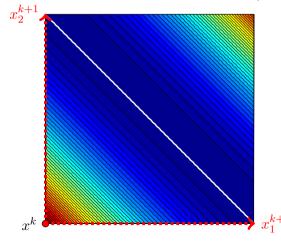
$$O\left(\frac{n\beta}{\tau} \times \xi(\epsilon)\right)$$

- Want $\beta = O(1)$.
 - $\rightarrow\,$ Depends on extent to which we can add up individual updates.
 - \rightarrow Properties of *F*, select of coordinates at each iteration.

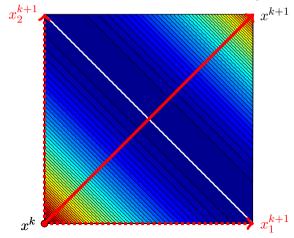
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- Just compute for more/all coordinates and then add up the updates.



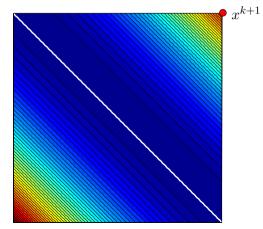
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- Just compute for more/all coordinates and then add up the updates.



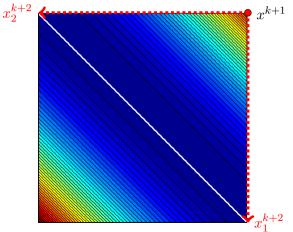
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- Just compute for more/all coordinates and then add up the updates.



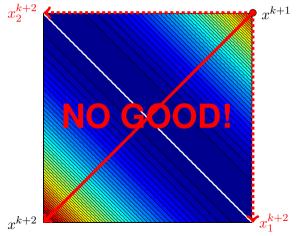
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- Just compute for more/all coordinates and then add up the updates.



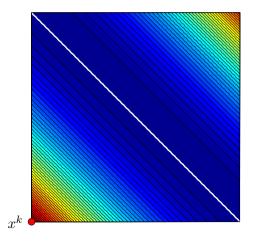
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- Just compute for more/all coordinates and then add up the updates.



- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- Just compute for more/all coordinates and then add up the updates.

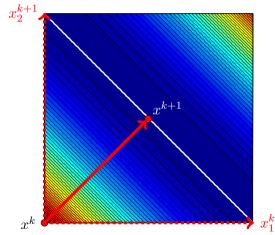


- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- What about averaging the updates??

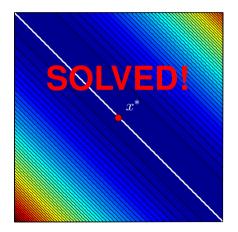


- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- What about averaging the updates?? x_{2}^{k+1} x^k

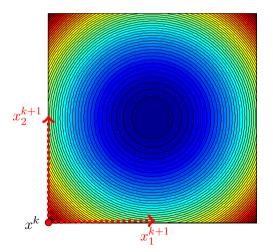
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- What about averaging the updates??



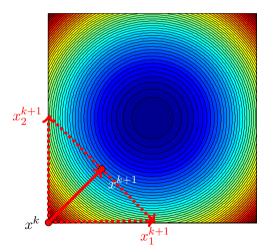
- Consider the function $f(x_1, x_2) = (x_1 + x_2 1)^2$
- What about averaging the updates??



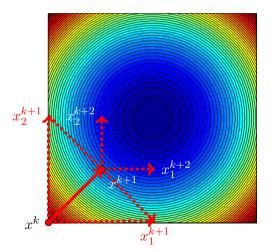
- Consider the function $f(x_1, x_2) = (x_1 1)^2 + (x_2 1)^2$
- What about averaging the updates?? COULD BE TOO CONSERVATIVE...



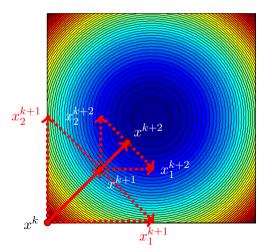
- Consider the function $f(x_1, x_2) = (x_1 1)^2 + (x_2 1)^2$
- What about averaging the updates?? COULD BE TOO CONSERVATIVE...



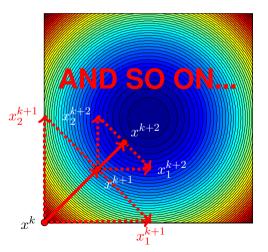
- Consider the function $f(x_1, x_2) = (x_1 1)^2 + (x_2 1)^2$
- What about averaging the updates?? COULD BE TOO CONSERVATIVE...



- Consider the function $f(x_1, x_2) = (x_1 1)^2 + (x_2 1)^2$
- What about averaging the updates?? COULD BE TOO CONSERVATIVE...



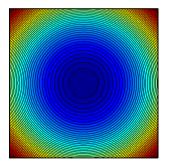
- Consider the function $f(x_1, x_2) = (x_1 1)^2 + (x_2 1)^2$
- What about averaging the updates?? COULD BE TOO CONSERVATIVE...



Averaging may be too conservative...

• Consider the function $f(x) = (x_1 - 1)^2 + (x_2 - 1)^2 + \dots + (x_n - 1)^2$.

• Evaluate at
$$x_0 = 0$$
, $f(x_0) = n$.



We want

$$f(x^k) = n\left(1 - \frac{1}{n}\right)^{2k} \leq \epsilon.$$

• With averaging, we get

 $k \geq \frac{n}{2} \log\left(\frac{n}{\epsilon}\right) \rightarrow \text{Factor of } n \text{ is bad!}$

• We wanted
$$O\left(\frac{n\beta}{\tau} \times \xi(\epsilon)\right)$$

What to do?

• We can write the coordinate descent update as follows,

$$x^+ \leftarrow x + \frac{1}{\beta} \sum_{i=1}^n h_i e_i,$$

where

- *h_i* is the update to coordinate *i*
- *e_i* is the *i*th unit coordinate vector
- Averaging: $\beta = n$
- Summation: $\beta = 1$
- \rightarrow When can we safely use $\beta \approx 1$?

When can we use small β ?

• Three models for f with small β :

Smooth partially separable f [Richtárik & Takáč, 2011b]

$$\begin{aligned} f(x + te_i) &\leq f(x) + \nabla f(x)^T (te_i) + \frac{L_i}{2} t^2 \\ f(x) &= \sum_{J \in \mathcal{J}} f_J(x), \quad f_J \text{ depends on } x_i \text{ for } i \in J \text{ only} \end{aligned}$$

$$\omega := \max_{J \in \mathcal{J}} |J|$$

 $L = \operatorname{diag}(A^{T}A)$ $\sigma := \lambda_{max}(L^{-1/2}A^{T}AL^{-1/2})$

2 Nonsmooth max-type f [Fercoq & Richtárik, 2013] $f(x) = \max_{z \in Q} \{z^T A x - g(z)\}$ $\omega := \max_{1 \le j \le m} |\{i : A_{ji} \ne 0\}|$

8 f with 'bounded Hessian' [Bradley et al., 2011, Richtárik & Takáč, 2013a]

$$f(x+h) \le f(x) + \nabla f(x)^T h + \frac{1}{2} h^T A^T A h$$

 $\rightarrow \omega$ is the degree of partial separability, σ is spectral radius.

Parallel Coordinate Descent Method

Algorithm 1 Parallel Coordinate Descent Method 1 (PCDM1)

1: Choose initial point $x_0 \in \mathbf{R}^N$ 2: for k = 0, 1, 2, ... do 3: Randomly generate a set of blocks $S_k \subseteq \{1, 2, ..., n\}$ 4: $x_{k+1} \leftarrow x_k + (h(x_k))_{[S_k]}$ 5: end for

- At iteration k, select a random set S_k .
- S_k is a realization of a random set-valued mapping (or sampling) \hat{S} .
- Update h_i depends on F, x and on law describing \hat{S} .
- \rightarrow Continuously interpolates between serial coordinate descent and gradient.
 - Manipulates n and $\mathbb{E}[|\hat{S}|]$.

ESO: Expected Separable Overapproximation

• We say that f admits a (β, ω) -ESO with respect to (uniform) sampling \hat{S} if for all $x, h \in {\rm I\!R}^n$

$$(f, \hat{S}) \sim ESO(\beta, w) \iff \mathbb{E}\left[f(x + h_{[\hat{S}]})\right] \leq f(x) + \frac{\mathbb{E}[|\hat{S}|]}{n} \left(\nabla f(x)^T h + \frac{\beta}{2} ||h||_w^2\right)$$

where

- $h_{[\hat{S}]} = \sum_{i \in \hat{S}} h_i e_i$, and $\|h\|_w^2 := \sum_{i=1}^n w_i (h_i)^2$
- We note that $\nabla f(x)^T h + \frac{\beta}{2} ||h||_w^2$ is separable in h.
 - Minimize with respect to h in parallel \rightarrow yields update

$$x^+ \to x + \frac{1}{\beta} \sum_{i \in \hat{S}} \frac{1}{w_i} \nabla_i f(x) e_i$$

- Compute updates for $i \in \hat{S}$ only.
- \rightarrow Separable quadratic overapproximation of $\mathbb{E}[f]$ evaluated at update.

Convergence Rate for Convex f

• If $(f, \hat{S}) \sim ESO(\beta, w)$, then [Richtárik & Takáč, 2011b]

$$k \ge \left(\frac{\beta n}{\mathbb{E}[|\hat{S}|]}\right) \left(\frac{2R_w^2(x^0, x^*)}{\epsilon}\right) \log\left(\frac{F(x^0) - F^*}{\epsilon \rho}\right),$$

which implies that

$$P(F(x^k) - F^* \le \epsilon) \ge 1 - \rho.$$

- *c*: error tolerance
- *n*: # coordinates
- $\mathbb{E}[|\hat{S}|]$: average # updated coordinates per iteration
- β: step size parameter

Convergence Rate for Strongly Convex f

• If $(f, \hat{S}) \sim ESO(\beta, w)$, then [Richtárik & Takáč, 2011b]

$$k \ge \left(\frac{n}{\mathbb{E}[|\hat{S}|]}\right) \left(\frac{\beta + \mu_g(w)}{\mu_f(w) + \mu_g(w)}\right) \log\left(\frac{F(x^0) - F^*}{\epsilon\rho}\right),$$

which implies that

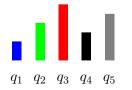
$$P(F(x^k) - F^* \le \epsilon) \ge 1 - \rho.$$

- $\mu_f(w)$: strong convexity constant of loss f
- $\mu_g(w)$: strong convexity constant of regularizer g
- \rightarrow If $\mu_g(w)$ is large, then the slowdown effect of β is eliminated.

- Uniform sampling: $P(\hat{S} = \{i\}) = \frac{1}{n}$
- τ -nice sampling: $P(\hat{S} = S) = \begin{cases} \frac{1}{\binom{n}{\tau}}, & |S| = \tau \\ 0, & \text{otherwise} \end{cases}$ for shared memory systems
 - At each iteration:
 - \rightarrow Choose set of *i*, each subset of τ coordinates chosen with the same probability.
 - \rightarrow Assign each *i* to a dedicated processor.
 - \rightarrow Compute and apply the update.
 - $\rightarrow\,$ All blocks are the same size τ (otherwise, probability is 0).

- Doubly uniform (DU) sampling: $P(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$
 - Generates all sets of equal cardinality with equal probability.
 - Can model unreliable processors/machines.

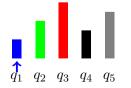
• Let
$$q_{\tau} = P(|\hat{S}| = \tau)$$
, with $n = 5$ coordinates.

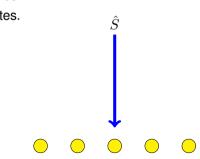


 \hat{S}

- Doubly uniform (DU) sampling: $P(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$
 - Generates all sets of equal cardinality with equal probability.
 - Can model unreliable processors/machines.

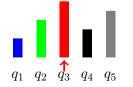
• Let
$$q_{\tau} = P(|\hat{S}| = \tau)$$
, with $n = 5$ coordinates.

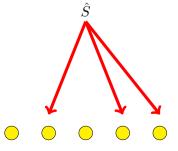




- Doubly uniform (DU) sampling: $P(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$
 - Generates all sets of equal cardinality with equal probability.
 - Can model unreliable processors/machines.

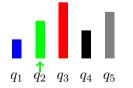
• Let
$$q_{\tau} = P(|\hat{S}| = \tau)$$
, with $n = 5$ coordinates.

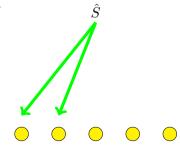




- Doubly uniform (DU) sampling: $P(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$
 - Generates all sets of equal cardinality with equal probability.
 - Can model unreliable processors/machines.

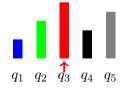
• Let
$$q_{\tau} = P(|\hat{S}| = \tau)$$
, with $n = 5$ coordinates.

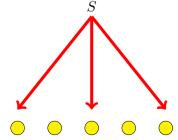




- Doubly uniform (DU) sampling: $P(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$
 - Generates all sets of equal cardinality with equal probability.
 - Can model unreliable processors/machines.

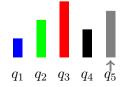
• Let
$$q_{\tau} = P(|\hat{S}| = \tau)$$
, with $n = 5$ coordinates.

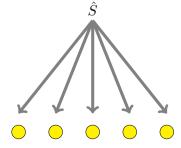




- Doubly uniform (DU) sampling: $P(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$
 - Generates all sets of equal cardinality with equal probability.
 - Can model unreliable processors/machines.

• Let
$$q_{\tau} = P(|\hat{S}| = \tau)$$
, with $n = 5$ coordinates.





- Binomial sampling: consider independent equally unreliable processors.
 - Each of τ processors available with probability p_b , busy with probability $1 p_b$.
 - # available processors (number of blocks that can be updated in parallel) at each iteration is a binomial random variable with parameters τ and p_b .
 - Use explicit or implicit selection.

ESO Theory

1 Smooth partially separable *f* [Richtárik & Takáč, 2011b]

$$f(x + te_i) \le f(x) + \nabla f(x)^T (te_i) + \frac{L_i}{2} t^2$$

$$f(x) = \sum_{J \in \mathcal{J}} f_J(x), \quad f_J \text{ depends on } x_i \text{ for } i \in J \text{ only}$$

$$\omega := \max_{J \in \mathcal{J}} |J|$$

Theorem: If \hat{S} is doubly uniform, then

$$\mathbb{E}\left[f(x+h_{[\hat{S}]})\right] \leq f(x) + \frac{\mathbb{E}[|\hat{S}|]}{n} \left(\nabla f(x)^T h + \frac{\beta}{2} ||h||_w^2\right),$$

where

$$\beta = 1 + \frac{(\omega - 1) \left(\frac{\mathbb{E}[|\hat{S}|^2]}{\mathbb{E}[|\hat{S}|]} - 1\right)}{n - 1}, \quad w_i = L_i. \quad i = 1, 2, \dots, n$$

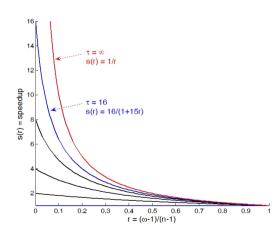
 $\rightarrow \beta$ is small if ω is small (i.e., more separable)

ESO Theory

sampling \hat{S}	$\mathbf{E}[\hat{S}]$	β	w	ESO monotonic?	Follows from
uniform	$\mathbf{E}[\hat{S}]$	1	$\nu \odot L$	No	Thm 12
nonoverlapping uniform	$\frac{n}{l}$	1	$\gamma \odot L$	Yes	Thm 13
doubly uniform	$\mathbf{E}[\hat{S}]$	$1 + \frac{(\omega - 1) \left(\frac{\mathbf{E}[\hat{S} ^2]}{\mathbf{E}[\hat{S}]} - 1 \right)}{\max(1, n - 1)}$	L	No	Thm 15
τ -uniform	τ	$\min\{\omega, \tau\}$	L	Yes	Thm 12
τ -nice	τ	$1 + \frac{(\omega - 1)(\tau - 1)}{\max(1, n - 1)}$	L	No	Thm 14/15
(au, p_b) -binomial	$ au p_b$	$1 + \frac{p_b(\omega-1)(\tau-1)}{\max(1,n-1)}$	L	No	Thm 15
serial	1	1	L	Yes	Thm 13/14/15
fully parallel	n	ω	L	Yes	Thm 13/14/15

→ (Richtárik & Takáč, 2013) "Parallel Coordinate Descent Methods for Big Data Optimization".

Theoretical Speedup

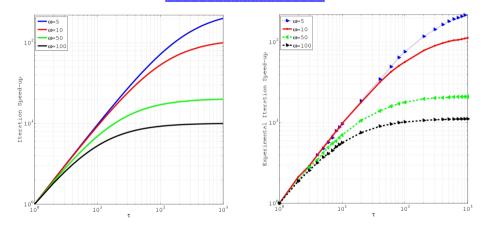


$$s(r) = \frac{\tau}{1 + r(\tau - 1)},$$

$$r = (\omega - 1)/(n - 1)$$

- ω often a constant that depends on n.
- r is a measure of 'density'.
 - → MUCH OF BIG DATA IS HERE!

Theory vs Practice



• $\tau = \#$ processors vs. theoretical (left) and experimental (right) speed-up for n = 1000 coordinates

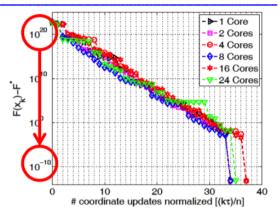
Experiment

• 1 billion-by-2 billion LASSO problem [Richtárik & Takáč, 2012]

$$f(x) = \frac{1}{2} ||Ax - b||_2^2, \quad g(x) = ||x||_1$$

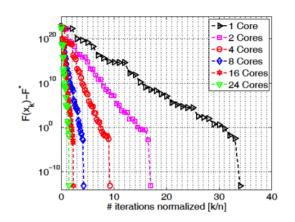
- A has 2×10^9 rows and $n = 10^9$ columns.
- $||x^*||_0 = 10^5$
- $||A_{:,i}||_0 = 20$ (column)
- $\max_{j} \|A_{j,:}\|_0 = 35$ (row) $\Rightarrow \omega = 35$ (degree of partial separability of f).
- Used approximation of τ -nice sampling \hat{S} (independent sampling, $\tau << n$).
- Asynchronous implementation.
 - → Older information used to update coordinates, but observed slow down is limited.

Experiment: Coordinate Updates



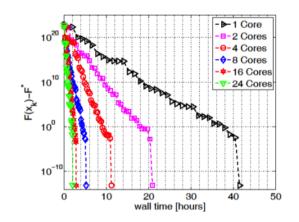
- For each *τ*, serial and parallel CD need approximately same number of coordinate updates.
- Method identifies active set.

Experiment: Iterations



• Doubling τ roughly translates to halving the number of iterations.

Experiment: Wall Time



• Doubling τ roughly translates to halving the wall time.

Citation	Algorithm	Paper	
(Bradley et al, 2011)	Shotgun	Parallel coordinate descent for <i>L</i> 1-regularized loss minimization. <i>ICML</i> , 2011 (arXiv: 1105.5379)	
(Richtárik & Takáč, 2011)	SCD	Efficient serial and parallel coordinate descent methods for huge-scale truss topology design Operations Research Proceedings, 27-32, 2012 (Opt Online 08/2011)	
(Richtárik & Takáč, 2012)	PCDM	Parallel coordinate descent methods for big data optimization. Mathematical Programming, 2015 (arXiv:1212.0873)	
(Fercoq & Richtárik, 2013)	SPCDM	Smooth minimization of nonsmooth functions with parallel coordinate descent method. 2013 (arXiv:1309.5885)	
(Richtárik & Takáč, 2013a)	HYDRA	Distributed coordinate descent method for learning with big data. 2013 (arXiv:1310.2059)	
(Liu et al., 2013)	AsySCD	An asynchronous parallel stochastic coordinate descent algorithm. <i>ICML</i> 2014 (arXiv: 1311.1873)	
(Fercoq & Richtárik, 2013)	APPROX	Accelerated, parallel and proximal coordinate descent. 2013 (arXiv:1312.5799)	
(Yang, 2013)	DisDCA	Trading computation for communication: distributed stochastic dual coordinate ascent. NIPS 2013	
(Bian et al, 2013)	PCDN	Parallel coordinate descent Newton method for efficient ℓ_1 -regularized minimization. 2013 (arXiv:1306.4080)	
(Liu & Wright, 2014)	AsySPCD	Asynchronous stochastic coordinate descent: parallelism and convergence properties. <i>SIAM J. Optim.</i> 25(1), 351376, 2015 (arXiv:1403.3862)	
(Mahajan et al, 2014)	DBCD	A distributed block coordinate descent method for training ℓ_1 -regularized linear classifiers. arXiv:1405.4544, 2014	

Citation	Algorithm	Paper		
(Fercoq et al, 2014)	Hydra2	Fast distributed coordinate descent for non-strongly convex losses. <i>MLSP</i> 2014 (arXiv:1405.5300)		
(Mareček, Richtárik and Takáč, 2014)	DBCD	Distributed block coordinate descent for minimizing partially separable functions. Numerical Analysis and Opt., Springer Proc. in Math. and Stat. (arXiv:1406.0238)		
Jaggi, Smith, Takáč et al, 2014)	CoCoA	Communication-efficient distributed dual coordinate ascent. NIPS 2014 (arXiv: 1409.1458)		
Qu, Richtárik & Zhang, 2014)	QUARTZ	Randomized dual coordinate ascent with arbitrary sampling. arXiv:1411.5873, 2014		
a, Smith, Jaggi et al, 2015) CoCoA		Adding vs. averaging in distributed primal-dual optimization. ICML 2015		
Tappenden, Takáč & Richtárik, 2015)	PCDM	On the complexity of parallel coordinate descent. arXiv:1503.03033, 2015		
sieh, Yu & Dhillon, 2015) PASSCoDe		PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent. ICML, 2015		
(Peng et al, 2016) ARock		ARock: an algorithmic framework for asynchronous parallel coordinate updates. SIAM J. Sci. Comput., 2016		
(You et al, 2016) Asy-GCD		Asynchronous parallel greedy coordinate descent. NIPS, 2016		
	÷			

Conclusions

- Coordinate descent scales very well to big data problems of special structure.
 - \rightarrow Requires (partial) separability/sparse dependency graph.
- Care is needed when combining updates (add them up? average?)
- Sampling strategies that take into account unreliable processors.