(Estimators, On-policy/Off-policy Learning)

Julie Nutini

MLRG - Winter Term 2 January 24th, 2017

 Monte Carlo (MC) methods are learning methods, used for estimating value functions and discovering optimal policies.

- Monte Carlo (MC) methods are learning methods, used for estimating value functions and discovering optimal policies.
- Do not assume complete knowledge of environment.
 → Learn from experience.
- Sample sequences of states, actions and rewards.

- Monte Carlo (MC) methods are learning methods, used for estimating value functions and discovering optimal policies.
- Do not assume complete knowledge of environment.
 → Learn from experience.
- Sample sequences of states, actions and rewards.
 - On-line experience: No model necessary, attains optimality.

- Monte Carlo (MC) methods are learning methods, used for estimating value functions and discovering optimal policies.
- Do not assume complete knowledge of environment.
 - \rightarrow Learn from experience.
- Sample sequences of states, actions and rewards.
 - On-line experience: No model necessary, attains optimality.
 - Simulated experience: No need for full model.
 - Sample according to desired probability distributions.

- Monte Carlo (MC) methods are learning methods, used for estimating value functions and discovering optimal policies.
- Do not assume complete knowledge of environment.
 - \rightarrow Learn from experience.
- Sample sequences of states, actions and rewards.
 - On-line experience: No model necessary, attains optimality.
 - Simulated experience: No need for full model.
 - Sample according to desired probability distributions.
- Solve RL problem by averaging complete sample returns.
 - Episodic tasks ensure well-defined returns are available.

- Monte Carlo (MC) methods are learning methods, used for estimating value functions and discovering optimal policies.
- Do not assume complete knowledge of environment.

 \rightarrow Learn from experience.

- Sample sequences of states, actions and rewards.
 - On-line experience: No model necessary, attains optimality.
 - Simulated experience: No need for full model.
 - Sample according to desired probability distributions.
- Solve RL problem by averaging complete sample returns.
 - Episodic tasks ensure well-defined returns are available.
 - Incremental in an episode-by-episode sense.
 - Update value estimates/policies after completion of episode.

- **Goal**: Learn state-value function $V^{\pi}(s)$ for given policy π .
 - Value of a state is the expected return (expected cumulative future discounted reward) starting from *s*.

- **Goal**: Learn state-value function $V^{\pi}(s)$ for given policy π .
 - Value of a state is the expected return (expected cumulative future discounted reward) starting from *s*.
- **Given**: Some number of episodes under π which contain s.

- **Goal**: Learn state-value function $V^{\pi}(s)$ for given policy π .
 - Value of a state is the expected return (expected cumulative future discounted reward) starting from *s*.
- **Given**: Some number of episodes under π which contain s.
- Idea: Average returns observed after visits to s.
 - \rightarrow Average converges to expected value with \uparrow # returns.
 - (Underlying idea to all Monte Carlo methods.)

- **Goal**: Learn state-value function $V^{\pi}(s)$ for given policy π .
 - Value of a state is the expected return (expected cumulative future discounted reward) starting from *s*.
- **Given**: Some number of episodes under π which contain s.
- Idea: Average returns observed after visits to s.
 - \rightarrow Average converges to expected value with \uparrow # returns.
 - (Underlying idea to all Monte Carlo methods.)
- Each occurrence of state *s* in an episode is called a visit.

- **Goal**: Learn state-value function $V^{\pi}(s)$ for given policy π .
 - Value of a state is the expected return (expected cumulative future discounted reward) starting from *s*.
- **Given**: Some number of episodes under π which contain s.
- Idea: Average returns observed after visits to s.
 - \rightarrow Average converges to expected value with \uparrow # returns.
 - (Underlying idea to all Monte Carlo methods.)
- Each occurrence of state *s* in an episode is called a visit.
 - First-visit MC: Average returns for first time *s* visited in episode.
 - Every-visit MC: Average returns for every time *s* visited in episode.

- **Goal**: Learn state-value function $V^{\pi}(s)$ for given policy π .
 - Value of a state is the expected return (expected cumulative future discounted reward) starting from *s*.
- **Given**: Some number of episodes under π which contain s.
- Idea: Average returns observed after visits to s.
 - \rightarrow Average converges to expected value with \uparrow # returns.
 - (Underlying idea to all Monte Carlo methods.)
- Each occurrence of state *s* in an episode is called a visit.
 - First-visit MC: Average returns for first time *s* visited in episode.
 - Every-visit MC: Average returns for every time *s* visited in episode.
- Both converge asymptotically.

Initialize:

```
\pi \leftarrow policy to be evaluated
   V \leftarrow an arbitrary state-value function
   Returns(s) \leftarrow an empty list, for all s \in S
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each state s appearing in the episode:
          R \leftarrow return following the first occurrence of s
          Append R to Returns(s)
           V(s) \leftarrow \operatorname{average}(Returns(s))
```

Initialize:

```
\pi \leftarrow policy to be evaluated
   V \leftarrow an arbitrary state-value function
   Returns(s) \leftarrow an empty list, for all s \in S
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each state s appearing in the episode:
          R \leftarrow return following the first occurrence of s
          Append R to Returns(s)
           V(s) \leftarrow \operatorname{average}(Returns(s))
```

• Each return is an i.i.d. estimate of $V^{\pi}(s)$.

Initialize:

```
\pi \leftarrow policy to be evaluated
   V \leftarrow an arbitrary state-value function
   Returns(s) \leftarrow an empty list, for all s \in S
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each state s appearing in the episode:
          R \leftarrow return following the first occurrence of s
          Append R to Returns(s)
          V(s) \leftarrow \operatorname{average}(Returns(s))
```

- Each return is an i.i.d. estimate of $V^{\pi}(s)$.
- Every average is an unbiased estimate, s.d. of error falls as $1/\sqrt{n}$.

Initialize:

```
\pi \leftarrow policy to be evaluated
   V \leftarrow an arbitrary state-value function
   Returns(s) \leftarrow an empty list, for all s \in S
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each state s appearing in the episode:
          R \leftarrow return following the first occurrence of s
          Append R to Returns(s)
          V(s) \leftarrow \operatorname{average}(Returns(s))
```

- Each return is an i.i.d. estimate of $V^{\pi}(s)$.
- Every average is an unbiased estimate, s.d. of error falls as $1/\sqrt{n}$.
- Sequence of averages converges to expected value of $V^{\pi}(s)$.

• Goal: Card sum greater than dealer without exceeding 21.

- Goal: Card sum greater than dealer without exceeding 21.
- States (200 of them):
 - Current sum (12-21).
 - Dealer's showing card (ace-10).
 - Do I have a useable ace?

- Goal: Card sum greater than dealer without exceeding 21.
- States (200 of them):
 - Current sum (12-21).
 - Dealer's showing card (ace-10).
 - Do I have a useable ace?
- Reward: +1 for winning, 0 for a draw, -1 for losing.
 - All rewards within game are 0, do not discount ($\gamma = 0$).

- Goal: Card sum greater than dealer without exceeding 21.
- States (200 of them):
 - Current sum (12-21).
 - Dealer's showing card (ace-10).
 - Do I have a useable ace?
- **Reward**: +1 for winning, 0 for a draw, -1 for losing.
 - All rewards within game are 0, do not discount ($\gamma = 0$).
- Actions:
 - Stick (stop receiving cards).
 - Hit (receive another card).

- Goal: Card sum greater than dealer without exceeding 21.
- States (200 of them):
 - Current sum (12-21).
 - Dealer's showing card (ace-10).
 - Do I have a useable ace?
- **Reward**: +1 for winning, 0 for a draw, -1 for losing.
 - All rewards within game are 0, do not discount ($\gamma = 0$).
- Actions:
 - Stick (stop receiving cards).
 - Hit (receive another card).
- Policy: Stick if my sum is 20 or 21, otherwise hit.

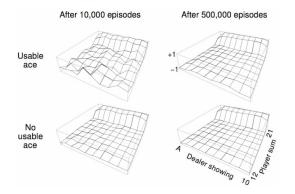
- Goal: Card sum greater than dealer without exceeding 21.
- States (200 of them):
 - Current sum (12-21).
 - Dealer's showing card (ace-10).
 - Do I have a useable ace?
- **Reward**: +1 for winning, 0 for a draw, -1 for losing.
 - All rewards within game are 0, do not discount ($\gamma = 0$).
- Actions:
 - Stick (stop receiving cards).
 - Hit (receive another card).
- **Policy**: Stick if my sum is 20 or 21, otherwise hit.
- \rightarrow Find state-value function for policy by MC approach.

Blackjack Value Functions

- Simulate many blackjack games using policy π .
- Average returns following each state (first-visit MC).

Blackjack Value Functions

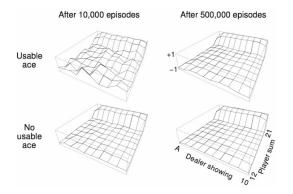
- Simulate many blackjack games using policy π .
- Average returns following each state (first-visit MC).



• Higher number of games (episodes), better approximation.

Blackjack Value Functions

- Simulate many blackjack games using policy π .
- Average returns following each state (first-visit MC).



- Higher number of games (episodes), better approximation.
- Estimates for states with useable ace less certain.

- Dynamic programming (DP): full knowledge of environment.
 - e.g., blackjack, naturally formulated as episodic finite MDP

- Dynamic programming (DP): full knowledge of environment.
 - e.g., blackjack, naturally formulated as episodic finite MDP
 - Player's sum is 14, chooses to stick.
 - What is expected reward as function of dealer's hand?

- Dynamic programming (DP): full knowledge of environment.
 - e.g., blackjack, naturally formulated as episodic finite MDP
 - Player's sum is 14, chooses to stick.
 - What is expected reward as function of dealer's hand?
 - Requires all expected rewards and transition probabilities to be computed prior to applying DP

- Dynamic programming (DP): full knowledge of environment.
 - e.g., blackjack, naturally formulated as episodic finite MDP
 - Player's sum is 14, chooses to stick.
 - What is expected reward as function of dealer's hand?
 - Requires all expected rewards and transition probabilities to be computed prior to applying DP→ complex, error-prone.

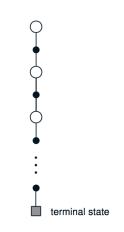
- Dynamic programming (DP): full knowledge of environment.
 - e.g., blackjack, naturally formulated as episodic finite MDP
 - Player's sum is 14, chooses to stick.
 - What is expected reward as function of dealer's hand?
 - Requires all expected rewards and transition probabilities to be computed prior to applying DP→ complex, error-prone.
- \rightarrow Generating sample games easy.
 - MC methods can be better, even when complete knowledge of environment's dynamics is known.

Backup Diagram for Monte Carlo

• Shows all transitions, leaf nodes from root node whose rewards and estimated values contribute to update.

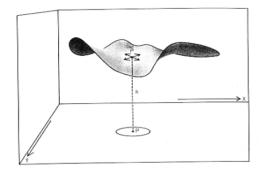
Backup Diagram for Monte Carlo

- Shows all transitions, leaf nodes from root node whose rewards and estimated values contribute to update.
- Entire episode.
 - Rather than one-step transitions.
- Only one choice at each state.
 - DP explores all possible transitions.
- MC does not bootstrap.
 - Independent estimates for each state.
- Time required to estimate one state independent of total number of states.

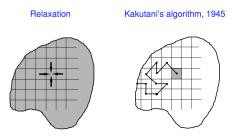


The Power of Monte Carlo

- E.g., elastic membrane (Dirichlet Problem)
 - How do we compute the shape of the surface?
 - \rightarrow Geometry of wire frame is known.

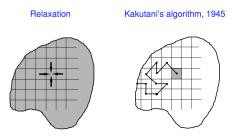


The Power of Monte Carlo



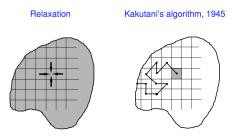
 Height at any point is average of heights in small circle around point.

The Power of Monte Carlo



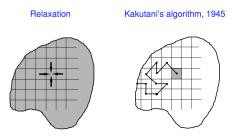
- Height at any point is average of heights in small circle around point.
 - Solve by iterating, adjust towards average of neighbours.

The Power of Monte Carlo



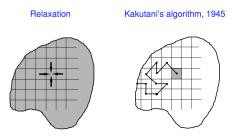
- Height at any point is average of heights in small circle around point.
 - Solve by iterating, adjust towards average of neighbours.
- 2 Expected value of height at boundary approximates height of surface at starting point.

The Power of Monte Carlo



- Height at any point is average of heights in small circle around point.
 - Solve by iterating, adjust towards average of neighbours.
- 2 Expected value of height at boundary approximates height of surface at starting point.
 - Take random walk until reach boundary.
 - Average boundary heights of many walks.

The Power of Monte Carlo



- Height at any point is average of heights in small circle around point.
 - Solve by iterating, adjust towards average of neighbours.
- 2 Expected value of height at boundary approximates height of surface at starting point.
 - Take random walk until reach boundary.
 - Average boundary heights of many walks.
 - \rightarrow Local consistency.

- MC is most useful when a model is not available.
 - With model, state values are sufficient to determine policy.
 - Choose action that leads to best reward/next state.

- MC is most useful when a model is not available.
 - With model, state values are sufficient to determine policy.
 - Choose action that leads to best reward/next state.
 - Without model, need to also estimate action values.

- MC is most useful when a model is not available.
 - With model, state values are sufficient to determine policy.
 - Choose action that leads to best reward/next state.
 - Without model, need to also estimate action values.
 - \rightarrow We want to learn Q^* .

- MC is most useful when a model is not available.
 - With model, state values are sufficient to determine policy.
 - Choose action that leads to best reward/next state.
 - Without model, need to also estimate action values.
 - \rightarrow We want to learn Q^* .
- Policy evaluation problem for action values:
 - Estimate *Q*^π(*s*, *a*), the expected return starting from state *s*, taking action *a*, then following policy *π*.

• Average returns following first visit to *s* in each episode where *a* was selected.

- Average returns following first visit to *s* in each episode where *a* was selected.
- Converges asymptotically *if* every state-action pair visited.

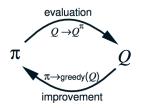
- Average returns following first visit to *s* in each episode where *a* was selected.
- Converges asymptotically *if* every state-action pair visited.
 - Many relevant state-action pairs may never be visited.
 - E.g., π is deterministic, observe returns from only one action from each state → no returns to average.

- Average returns following first visit to *s* in each episode where *a* was selected.
- Converges asymptotically *if* every state-action pair visited.
 - Many relevant state-action pairs may never be visited.
 - E.g., π is deterministic, observe returns from only one action from each state → no returns to average.
- Need to maintain exploration.
 - **Exploring starts**: Every state-action pair has non-zero probability of being starting pair.

- Average returns following first visit to *s* in each episode where *a* was selected.
- Converges asymptotically *if* every state-action pair visited.
 - Many relevant state-action pairs may never be visited.
 - E.g., π is deterministic, observe returns from only one action from each state → no returns to average.
- Need to maintain exploration.
 - **Exploring starts**: Every state-action pair has non-zero probability of being starting pair.
 - Alternative: Only consider policies that are stochastic with nonzero probability of selecting all actions (later).

Monte Carlo Control

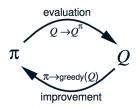
• Using MC estimation to approximate optimal policies.



$$\pi_0 \xrightarrow{E} Q^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} Q^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi^* \xrightarrow{E} Q^*$$

Monte Carlo Control

• Using MC estimation to approximate optimal policies.

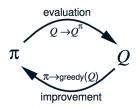


$$\pi_0 \xrightarrow{E} Q^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} Q^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi^* \xrightarrow{E} Q^*$$

- Policy evaluation (E):
 - Complete policy evaluation using MC methods.

Monte Carlo Control

• Using MC estimation to approximate optimal policies.



$$\pi_0 \xrightarrow{E} Q^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} Q^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi^* \xrightarrow{E} Q^*$$

- Policy evaluation (E):
 - Complete policy evaluation using MC methods.
- Policy improvement (I):
 - Greedify policy wrt current action-value function,

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a).$$

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \operatorname*{argmax}_a Q^{\pi_k}(s, a))$$

$$Q^{\pi_{k}}(s, \pi_{k+1}(s)) = Q^{\pi_{k}}(s, \operatorname*{argmax}_{a} Q^{\pi_{k}}(s, a))$$

= $\max_{a} Q^{\pi_{k}}(s, a)$

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \operatorname*{argmax}_a Q^{\pi_k}(s, a))$$

=
$$\max_a Q^{\pi_k}(s, a)$$

\geq
$$Q^{\pi_k}(s, \pi_k(s)) \quad (\text{`corrected})$$

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \operatorname*{argmax}_a Q^{\pi_k}(s, a))$$

=
$$\max_a Q^{\pi_k}(s, a)$$

\geq
$$Q^{\pi_k}(s, \pi_k(s)) \quad (\text{*corrected})$$

=
$$V^{\pi_k}(s).$$

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \operatorname*{argmax}_a Q^{\pi_k}(s, a))$$

=
$$\max_a Q^{\pi_k}(s, a)$$

\geq
$$Q^{\pi_k}(s, \pi_k(s)) \quad (\text{*corrected})$$

=
$$V^{\pi_k}(s).$$

- By policy improvement theorem, π_{k+1} better than π_k .
- Assures convergence to optimal policy and value function.
 - $\rightarrow\,$ Assumes exploring starts and infinite number of episodes.

Greedified policy meets conditions for policy improvement:

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \operatorname*{argmax}_a Q^{\pi_k}(s, a))$$

=
$$\max_a Q^{\pi_k}(s, a)$$

\geq
$$Q^{\pi_k}(s, \pi_k(s)) \quad (\text{*corrected})$$

=
$$V^{\pi_k}(s).$$

- By policy improvement theorem, π_{k+1} better than π_k .
- Assures convergence to optimal policy and value function.

 \rightarrow Assumes exploring starts and infinite number of episodes.

- To solve the latter:
 - Update only to a given level of performance (approx. Q^{π_k}).

Greedified policy meets conditions for policy improvement:

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \operatorname*{argmax}_a Q^{\pi_k}(s, a))$$

=
$$\max_a Q^{\pi_k}(s, a)$$

\geq
$$Q^{\pi_k}(s, \pi_k(s)) \quad (\text{*corrected})$$

=
$$V^{\pi_k}(s).$$

- By policy improvement theorem, π_{k+1} better than π_k .
- Assures convergence to optimal policy and value function.

 $\rightarrow\,$ Assumes exploring starts and infinite number of episodes.

- To solve the latter:
 - Update only to a given level of performance (approx. Q^{π_k}).
 - Alternate between evaluation & improvement per episode.

Monte Carlo with Exploring Starts

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   \pi(s) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow empty list
Repeat forever:
    (a) Generate an episode using exploring starts and \pi
    (b) For each pair s, a appearing in the episode:
            R \leftarrow return following the first occurrence of s, a
            Append R to Returns(s, a)
            Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
    (c) For each s in the episode:
            \pi(s) \leftarrow \arg \max_a Q(s, a)
```

Monte Carlo with Exploring Starts

```
Initialize, for all s \in S, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   \pi(s) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow empty list
Repeat forever:
    (a) Generate an episode using exploring starts and \pi
   (b) For each pair s, a appearing in the episode:
           R \leftarrow return following the first occurrence of s, a
           Append R to Returns(s, a)
           Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
   (c) For each s in the episode:
           \pi(s) \leftarrow \arg \max_a Q(s, a)
```

• All returns averaged, irrespective of specific policy.

Monte Carlo with Exploring Starts

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   \pi(s) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow empty list
Repeat forever:
    (a) Generate an episode using exploring starts and \pi
    (b) For each pair s, a appearing in the episode:
            R \leftarrow return following the first occurrence of s, a
            Append R to Returns(s, a)
            Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
    (c) For each s in the episode:
            \pi(s) \leftarrow \arg \max_a Q(s, a)
```

- All returns averaged, irrespective of specific policy.
- Convergence to optimal fixed point seems inevitable.
- Open problem: Proving convergence to optimal fixed point.

Example: Blackjack

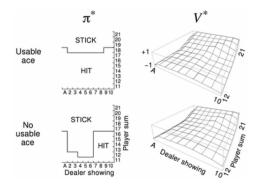
- Applying MC with exploring starts to blackjack problem.
- Use same initial policy.

Example: Blackjack

- Applying MC with exploring starts to blackjack problem.
- Use same initial policy.
- Find optimal policy and state-value function.

Example: Blackjack

- Applying MC with exploring starts to blackjack problem.
- Use same initial policy.
- Find optimal policy and state-value function.



 Randomly select with equal prob. dealer's cards, player's sum and whether or not player has usable ace.

On-Policy Monte Carlo Control

• How to avoid exploring starts?

On-Policy Monte Carlo Control

- How to avoid exploring starts?
- On-policy: Evaluate/improve policy while using for control.
 - Need soft policies: $\pi(s, a) > 0$ for all $s \in S$ and $a \in A(s)$.

On-Policy Monte Carlo Control

- How to avoid exploring starts?
- On-policy: Evaluate/improve policy while using for control.
 - Need soft policies: $\pi(s, a) > 0$ for all $s \in S$ and $a \in A(s)$.
 - E.g., An ε-greedy policy is an example of ε-soft policy,

$$\pi(s,a) \ge rac{\epsilon}{|\mathcal{A}(s)|}, \quad \forall \ s,a, \ \text{and some} \ \epsilon > 0.$$

On-Policy MC Control

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow empty list$ $\pi \leftarrow$ an arbitrary ε -soft policy Repeat forever: (a) Generate an episode using π (b) For each pair s, a appearing in the episode: $R \leftarrow$ return following the first occurrence of s, aAppend R to Returns(s, a) $Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))$ (c) For each s in the episode: $a^* \leftarrow \arg \max_a Q(s, a)$ For all $a \in \mathcal{A}(s)$: $\pi(s,a) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon / |\mathcal{A}(s)| & \text{if } a = a^* \\ \varepsilon / |\mathcal{A}(s)| & \text{if } a \neq a^* \end{cases}$

Encourages exploration of nongreedy actions.

• Suppose episodes are generated from different policy.

- Suppose episodes are generated from different policy.
- Can we learn the value function for a policy given only "off" policy experience?

- Suppose episodes are generated from different policy.
- Can we learn the value function for a policy given only "off" policy experience?
 - **Yes**! Requires that $\pi(s, a) > 0$ implies $\pi'(s, a) > 0$.

- Suppose episodes are generated from different policy.
- Can we learn the value function for a policy given only "off" policy experience?
 - Yes! Requires that $\pi(s, a) > 0$ implies $\pi'(s, a) > 0$.
- We have n_s returns, $R_i(s)$, from state s, with:
 - probability $p_i(s)$ of being generated by π
 - probability $p_i'(s)$ of being generated by π'
- Estimate using weighted importance sampling:

$$V_{\pi}(s) \approx \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}$$

- Suppose episodes are generated from different policy.
- Can we learn the value function for a policy given only "off" policy experience?
 - Yes! Requires that $\pi(s, a) > 0$ implies $\pi'(s, a) > 0$.
- We have n_s returns, $R_i(s)$, from state s, with:
 - probability $p_i(s)$ of being generated by π
 - probability $p_i'(s)$ of being generated by π'
- Estimate using weighted importance sampling:

$$V_{\pi}(s) \approx \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}$$

- Depends on the environmental probabilities $p_i(s)$ and $p'_i(s)$.
 - Normally considered unknown in MC applications.

• However,

$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}$$

• However,

$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}$$

and

$$\frac{p_i(s_t)}{p'_i(s_t)} = \frac{\prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}}{\prod_{k=t}^{T_i(s)-1} \pi'(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}} = \prod_{k=t}^{T_i(s)-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}.$$

• However,

$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}$$

and

$$\frac{p_i(s_t)}{p_i'(s_t)} = \frac{\prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}}{\prod_{k=t}^{T_i(s)-1} \pi'(s_k, a_k) \mathcal{P}_{s_k s_{k+1}^{a_k}}} = \prod_{k=t}^{T_i(s)-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}$$

→ The weights only depend on the two policies!

- Alternative to exploring starts and on-policy.
- **On-policy**: evaluate/improve policy while using for control.
- Off-policy: separates these two functions.

- Alternative to exploring starts and on-policy.
- **On-policy**: evaluate/improve policy while using for control.
- Off-policy: separates these two functions.
 - Behaviour policy: generates behaviour in environment.
 - Continually sample actions, ϵ -soft.

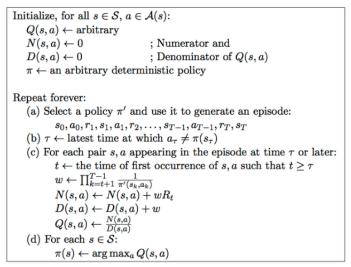
- Alternative to exploring starts and on-policy.
- **On-policy**: evaluate/improve policy while using for control.
- Off-policy: separates these two functions.
 - Behaviour policy: generates behaviour in environment.
 - Continually sample actions, ϵ -soft.
 - Estimation policy: evaluated and improved.
 - Deterministic, greedy.

- Alternative to exploring starts and on-policy.
- **On-policy**: evaluate/improve policy while using for control.
- Off-policy: separates these two functions.
 - Behaviour policy: generates behaviour in environment.
 - Continually sample actions, ϵ -soft.
 - Estimation policy: evaluated and improved.
 - Deterministic, greedy.
 - Two policies may be unrelated.

Off-Policy MC Control

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $N(s, a) \leftarrow 0$; Numerator and $D(s,a) \leftarrow 0$; Denominator of Q(s, a) $\pi \leftarrow$ an arbitrary deterministic policy **Repeat forever:** (a) Select a policy π' and use it to generate an episode: $s_0, a_0, r_1, s_1, a_1, r_2, \ldots, s_{T-1}, a_{T-1}, r_T, s_T$ (b) $\tau \leftarrow$ latest time at which $a_{\tau} \neq \pi(s_{\tau})$ (c) For each pair s, a appearing in the episode at time τ or later: $t \leftarrow$ the time of first occurrence of s, a such that $t \ge \tau$ $w \leftarrow \prod_{k=t+1}^{T-1} \frac{1}{\pi'(s_k, a_k)}$ $N(s,a) \leftarrow N(s,a) + wR_t$ $D(s,a) \leftarrow D(s,a) + w$ $Q(s,a) \leftarrow \frac{N(s,a)}{D(s,a)}$ (d) For each $s \in S$: $\pi(s) \leftarrow \arg \max_a Q(s, a)$

Off-Policy MC Control



- Method learns only from tails of episodes.
 - Potentially cause slow learning.

Example: Blackjack

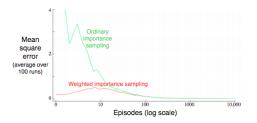
- Estimate value of single state from off-policy data.
 - Dealer is showing 2.
 - Sum of player's cards is 13.
 - Player has usable ace.

Example: Blackjack

- Estimate value of single state from off-policy data.
 - Dealer is showing 2.
 - Sum of player's cards is 13.
 - Player has usable ace.
- Data generated by starting in this state, hit or stick at random with equal probability (behaviour policy).
- Target policy to stick only on sum of 20 or 21.

Example: Blackjack

- Estimate value of single state from off-policy data.
 - Dealer is showing 2.
 - Sum of player's cards is 13.
 - Player has usable ace.
- Data generated by starting in this state, hit or stick at random with equal probability (behaviour policy).
- Target policy to stick only on sum of 20 or 21.



• Optimal value of state under target policy \approx -0.27726.

- MC has several advantages over DP:
 - Can learn directly from interaction with environment.
 - No need for full models.
 - No need to learn about ALL states.
 - Less harm by Markovian violations (no bootstrapping).

- MC has several advantages over DP:
 - Can learn directly from interaction with environment.
 - No need for full models.
 - No need to learn about ALL states.
 - Less harm by Markovian violations (no bootstrapping).
- MC methods provide alternate policy evaluation process.
 - Average many returns that start in a given state.

- MC has several advantages over DP:
 - Can learn directly from interaction with environment.
 - No need for full models.
 - No need to learn about ALL states.
 - Less harm by Markovian violations (no bootstrapping).
- MC methods provide alternate policy evaluation process.
 - Average many returns that start in a given state.
- Control methods and approximating action-value functions.
 - MC intermix policy evaluation and policy improvement.

- MC has several advantages over DP:
 - Can learn directly from interaction with environment.
 - No need for full models.
 - No need to learn about ALL states.
 - Less harm by Markovian violations (no bootstrapping).
- MC methods provide alternate policy evaluation process.
 - Average many returns that start in a given state.
- Control methods and approximating action-value functions.
 - MC intermix policy evaluation and policy improvement.
- One issue to watch for: maintaining sufficient exploration.
 - Exploring starts.
 - On-policy and off-policy methods.