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What are counterfactuals and how do we calculate counterfactual
probabilities?

1. An example from Pearl’s Causality book, chapter 7, with the
characters changed.

2. An example from Balke and Pearl (1994) Probabilistic evaluation of
counterfactual queries (characters changed again)

3. Johansson et al (2016) Learning representations for counterfactual
inference
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Example from Pearl’s book
Suppose that we have:

◮ a cat, Oscar

◮ another cat: Bastet

◮ a bird feeder outside that we assume is always populated
with birds unless at least one cat is outside

◮ and a window.

3 / 52



If the door is open the cats will always go outside. The door is normally
closed but if the temperature outside goes above 20C, 
 someone will open
it. There are always birds at the feeder unless there is at least one cat
outside in which case they will all leave the feeder. We have the following
propositions:

◮ T = The temperature is above 20C.

◮ D = Someone opens the door.

◮ O = Oscar goes outside.

◮ B = Bastet goes outside.

◮ L = All the birds leave the feeding station.
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Some sentences:

1. Prediction If Bastet did not go outside then there are birds at the
feeding station.

¬B ⇒ ¬L.

2. Abduction If there are birds at the feeder then no one opened the door.

¬L ⇒ ¬D. (Given D ⇒ O ∧ B, and B ∨ O ⇒ L, then D ⇒ L, so its
contrapositive is true.)

3. Transduction If Oscar went outside then so did Bastet.

O ⇒ B (Given D ⇔ B and D ⇔ O, then O ⇒ D. So O ⇒ B.)

4. Action If no one opened the door and Bastet snuck outside through a window
then all the birds will leave the feeder and Oscar will remain inside.

¬D ⇒ LB & ¬OB

5. Counterfactual If the birds have left the feeder then they still would have left the
feeder even if Bastet had not gone outside.

L ⇒ L
¬B
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Sentences 1 - 3 can be handled by standard logical deduction.

Pearl p.209.:

“The feature that renders S1 - S3 manageable in standard logic is
that they all deal with epistemic inference – that is, inference from
beliefs to beliefs about a static world.”
...

“From our discussion of actions . . . , any such action must violate
some premises, or mechanisms, in the initial theory of the story.
To formally identify what remains invariant under the action, we
must incorporate causal relationships into the theory; logical
relationships alone are not sufficient.”
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Equality to show two-way inference

Pearl uses equality rather than implication in order to permit two-way
inference. The independent variable is given in brackets in the second
column below, to demonstrate the causal asymmetry.

Here is the causal model so far:

Model M

(T )
D = T (D) (Door opens iff temp > 20C.)

O = D (O) (Oscar goes out iff door opens.)

B = D (B) (Bastet goes out iff door opens.)

L = O ∨B (L) (Birds leave iff Oscar or Bastet goes out)
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A submodel

To evaluate S4, (¬D ⇒ LB & ¬OB) we form submodel MB in which the
equation B = D is replaced by B.

If no one opened the door and Bastet snuck outside through a window then
all the birds will leave the feeder and Oscar will remain inside.

Model MB

(T )
D = T (D)
O = D (O)
B (B)
L = O ∨ B (L)

Facts: ¬D

Conclusions: B,L,¬O,¬T,¬D

¬D ⇒ ¬O by contrapositive but L is still true since B ⇒ L.
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Pearl’s view

Pearl, pp. 209-210:

“It is important to note that problematic sentences like S4, whose
antecedent violates one of the basic premises in the story, [in this
case, that Bastet got outside without the door being opened] are
handled naturally in the same deterministic setting in which the
story is told. Traditional logicians and probabilists tend to reject
sentences like S4 as contradictory and insist on reformulating the
problem probabilistically so as to tolerate exceptions to [a] law.
. . . Such reformulations are unnecessary; the structural approach
permits us to process commonplace causal statements in their
natural deterministic habitat without first immersing them in
nondeterministic decor. In this framework, all laws are understood
to represent defeasible default expressions subject to breakdown by
deliberate intervention.”
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Evaluating counterfactuals: step 1
If the birds have left the feeder then they still would have left the feeder
even if Bastet had not gone outside.

The counterfactual L¬B stands for the value of L in submodel M¬B below.
The value L depends on the value of T , which is not specified in M¬B The
observation L removes the ambiguity: if we see the birds have left the
feeder, we can infer that the temperature rose above 20C and thus the door
was opened. If Bastet had not gone outside then Oscar would have, scaring
the birds away from the feeder. We can derive L¬B as follows.

We add the fact L to the original model and evaluate T . Then we form
submodel M¬B and reevaluate L in M¬B using the value of T found in the
first step.

Model M (Step 1)

(T )
D = T (D) (Door opens iff temp > 20C.)

O = D (B) (Oscar goes out iff door opens.)

B = D (O) (Bastet goes out iff door opens.)

L = O ∨B (L) (Birds leave iff Oscar or Bastet go out)

Facts: L (Birds leave the feeder.)

Conclusions: T,B,O,D, L
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Evaluating counterfactuals: step 2

Step 2
Model M¬B

(T )
D = T (D) (Door opens iff temp > 20C.)

O = D (O) (Oscar goes out iff door opens.)

¬B (B) (Bastet does not go out.)

L = O ∨B (L) (Birds leave iff Oscar or Bastet go out)

Facts: T

Conclusions: T,¬B,O,D, L

Pearl remarks that it is only the value of T which he refers to as a
‘background variable’ that is carried over to Step 2. Everything else must
be re-evaluated.

Pearl’s next step is to combine steps 1 and 2 into one by using an asterisk
to denote variables whose truth value pertains to the hypothetical world
created by the modification – in this case ¬B. So we rewrite S5 as follows:

11 / 52



Combined theory

(T )
D∗ = T D = T (D)
¬B∗ B = D (B)
O∗ = D∗ O = D (O)
L∗ = O∗ ∨B∗ L = O ∨B (L)

Facts: L

Conclusions: T,B,O,D, L,¬B∗, O∗, D∗, L∗

Given L, we have O ∨B. Since at least one of O or B is true, we must have
D and therefore T , which exists in both worlds. Therefore D∗. Therefore
L∗, therefore L∗ in spite of ¬B∗
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Why is S4 ‘action’ and S5 ‘counterfactual’?

◮ In S4, the fact given (no one opened the door) is not affected by the
antecedent (Bastet snuck outside through a window.)

◮ In S5 we were asking if changing B to ¬B would affect the outcome L

vs. ¬L. To determine this we had to calculate the potential impact of
¬B on L and route the impact of ¬B through T .
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Probabilistic evaluation of counterfactuals

Suppose that . . .

1. There is a probability P (T ) = p that the temperature goes above 20C.

2. Bastet has a probability q of sneaking out through a window.

3. Bastet’s inclination to sneak out a window is independent of T .

We want to compute the probability P (¬L¬B|L), the probability that the
birds would not have left the feeder if Bastet had not gone outside, given
that the birds have in fact left the feeder.
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Intuitive calculation

◮ Intuitively, ¬L¬B is true, given ¬B iff the temperature did not go
above 20C. So we want to compute P (¬T |L) = P (¬T∧L)

P (L)
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Intuitive calculation

◮ Intuitively, ¬L¬B is true, given ¬B iff the temperature did not go
above 20C. So we want to compute P (¬T |L) = P (¬T∧L)

P (L)

◮ This comes to the probability that the birds all left under the
circumstances that the temperature did not rise above 20C divided by
the probability that the birds all left.
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A probabilistic causal model

Pearl comments that we can calculate this using a probabilistic causal
model using two background variables T (temperature rises above 20C) and
W (Bastet decides to go out through a window.)

P (t, w) =















pq ⇐⇒t = 1, w = 1,
p(1− q) ⇐⇒t = 1, w = 0,
(1− p)q ⇐⇒t = 0, w = 1,
(1− p)(1− q) ⇐⇒t = 0, w = 0

We need to first compute the posterior probability P (t, w|L). This can
become a problem computationally to compute and store if there are a lot
of background variables. And conditioning on some variable e normally
destroys the mutual independence of the background variables so that we
have to maintain the joint distribution of all the background variables.
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Solution: Balke and Pearl 1994: Twin network graphical model

Two networks: one to represent the actual world and one to represent the
hypothetical world.

TW

D D∗

B O B∗ O∗

L L∗

Since we are conditioning on Bastet not going outside, there is no path
from D∗ to B∗.
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A different example

We now look at a different example from Balke and Pearl that illustrates
the calculations in more detail.

◮ There is a crow that sometimes comes to the yard to look for worms

but only if it is raining.

◮ Bastet goes outside if the crow is out there but otherwise almost never
goes outside if it is raining.

◮ Oscar likes going outside as much as possible even if it is raining but,
strangely, is afraid of the crow, so avoids going outside if the crow is
there.

◮ If Bastet and Oscar are both outside, one will likely chase the other
away. There is also a slight chance that if both are inside, one will
chase the other.
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Variables for this example

We have the following variables:

◮ C The crow is outside or not outside.

◮ B Bastet is outside or not outside.

◮ O Oscar is outside or not outside.

◮ W One of the cats chases the other away.

c ∈

{

c0 ≡ The crow is not outside.
c1 ≡ The crow is outside.

}

b ∈

{

b0 ≡ Bastet is not outside.
b1 ≡ Bastet is outside.

}

o ∈

{

o0 ≡ Oscar is not outside.
o1 ≡ Oscar is outside.

}

w ∈

{

w0 ≡ There is no cat chase.
w1 ≡ There is a cat chase.

}
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A conversation by observers

Imagine the following conversation by observers who notice that Bastet is
inside even though it is raining.

A: The crow must not be outside, or Bastet would be there
instead of inside.

B: That must mean that Oscar is outside!

A: If Bastet were outside, then Bastet and Oscar would surely
chase each other.

B: No. If Bastet was there, then Oscar would not be there,
because the crow would have been outside.

A: True. But if Bastet were outside even though the crow was
not, then Bastet and Oscar would be chasing each other.

B: I agree.
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Balke & Pearl p. 232

‘In the fourth sentence, B tries to explain away A’s conclusion by
claiming that Bastet’s presence would be evidence that the crow
was outside which would imply that Oscar was not outside. B,
though, analyzes A’s counterfactual statement as an indicative
sentence by imagining that she had observed Bastet’s presence
outside; this allows A to use the observation for abductive
reasoning. But A’s subjunctive (counterfactual) statement should
be interpreted as leaving everything in the past as it was [e.g. that
Bastet is inside] (including conclusions obtained from abductive
reasoning from real observations [e.g. that the crow must be outside
and therefore Oscar must be inside]) while forcing variables to
their counterfactual values. This is the gist of A’s last statement.
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Unknown factors

Suppose that we have the following probabilities:

p(b1|c1) = 0.9

p(b0|c0) = 0.9

We observe that neither Bastet nor the crow is outside and ask whether
Bastet would be there if the crow were there: p(b∗1|ĉ

∗
1, c0, b0). The answer

depends on what causes Bastet not to go outside even when the crow is
there.

We model the influence of A on B by a function: b = Fb(a, ǫb) where ǫ

represents all the unknown factors that could influence B as quantified by
the prior distribution P (ǫb). For example, possible components of ǫb could
be Bastet being sick or Bastet being sulky about never being able to catch
the crow.
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Response function variables

Each value in ǫb’s domain specifies a response function that maps each
value of A to some value in B’s domain.

rb : domain(ǫb) → N:

rb(ǫb) =















0 if Fb(a0, ǫb) = 0 & Fb(a1, ǫb) = 0 (b = b0 regardless of a)
1 if Fb(a0, ǫb) = 0 & Fb(a1, ǫb) = 1 (b = b1⇐⇒ a = a1)
2 if Fb(a0, ǫb) = 1 & Fb(a1, ǫb) = 0 (b has opposite value of a)
3 if Fb(a0, ǫb) = 1 & Fb(a1, ǫb) = 1 (b = b1 regardless of a)

rb is a random variable that can take on as many values as there are
functions between a and b. Balke and Pearl call this a response function
variable.
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Response functions for this example

Specifically for this example:

b = fb(c, rb) = hb,rb(c)

Whether Bastet goes outside or not is a function of whether the crow is
there and of the response function that accounts for other factors that can
influence Bastet’s behaviour. We can also think of a function h of c that
returns a value of b given the value of c and the value of the response
variable:

hb,0(c) = b0 Bastet doesn’t go outside

regardless of whether the crow is there.

e.g. Bastet is ill.

hb,1(c) =

{

b0 if c = c0
b1 if c = c1

Bastet goes outside only if the crow is there.

hb,2(c) =

{

b1 if c = c0
b0 if c = c1

Bastet goes outside only if the crow isn’t there.

hb,3(c) = b1 Bastet goes outside regardless.
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An example counterfactual
If we have the prior probability P (rb) we can calculate P (b∗1|ĉ

∗
1, c0, b0): i.e.

‘Given that the crow is not outside and Bastet is not outside, if the crow
were outside, what is the probability that Bastet would be outside?’

We crucially assume that:

‘. . . the disturbance ǫb, and hence the response-function rb, is
unaffected by the actions that force the counterfactual values;
therefore, what we learn about the response-function from the
observed evidence is applicable to the evaluation of belief in the
counterfactual consequent.’

If we observe (c0, b0) (neither Bastet nor the crow is outside), then it must
be that rb ∈ {0, 1}, an event with prior probability P (rb = 0) + P (rb = 1).
This updates the posterior probability of rb as follows, letting
→

P (rb) = 〈P (rb = 0), P (rb = 1), P (rb = 2), P (rb = 3)〉:

→

P (rb) =
→

P (rb|c0, b0)

=

〈

P (rb = 0)

P (rb = 0) + P (rb) = 1
,

P (rb = 1)

P (rb = 0) + P (rb) = 1
, 0, 0

〉
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Calculating this counterfactual

From the definition of rb(ǫb) above, if C were forced to c1 (the crow is
outside), then B would have been b1 (Bastet would have also been outside
iff rb ∈ {1, 3}, whose probability is P ′(rb = 1) + P ′(rb = 3) = P ′(rb = 1).
(P ′(rb = 3) must be zero since we have determined that rb ∈ {0, 1}.) This
gives the solution to the counterfactual query:

P (b∗1|ĉ
∗
1, c0, b0) = P ′(rb = 1) = P (rb=1)

P (rb=0)+P (rb=1)

The probability of external influence 1 that causes Bastet to go outside if
the crow is there divided by the probability of external influence 1 plus
exernal influence 0, the latter causing Bastet to stay inside regardless.
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Representation with a DAG

We can represent the causal influences over a set of variables in this
example through a DAG. If the set of variables is {X1, X2, . . . Xn}, for each
xi there is a functional mapping xi = fi(pa(xi), ǫi), where pa(xi) is the
value of Xi’s parents in the graph and there is a prior probability
distribution P (ǫi) for each ‘disturbance’ ǫi.

A counterfactual query will be of the form: ‘What is P (c∗|â
∗, obs), where c∗

is a set of counterfactual values for C ⊂ X, â∗ is a set of forced values in
the counterfactual antecedent and obs represents observed evidence.

For our example, we assume that Bastet is not outside (b = b0) and want to
ask ‘what is P (c∗1 |̂b

∗
1 , b0)?’ Or further, what is the probability that the cats

will chase each other under those conditions?
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A possible causal theory with response variables

Suppose that we have the following of what Balke and Pearl call a ‘causal
theory’:

c = fc(rc) = hc,rc() (crow’s presence depends only on rc)
b = fb(c, rb) = hc,rb(c) (Bastet’s presence depends on rb, crow)
o = fo(c, ro) = hc,rc(c) (Oscar’s presence depends on ro, crow)
w = fw(b, o, rw) = hw,rw (b, o) (chase depends on rw, Bastet and Oscar)

P (rc) =

{

0.40 if rc = 0
0.60 if rc = 1

(60% chance crow is there)

P (rb) =















0.07 if rb = 0
0.90 if rb = 1
0.03 if rb = 2
0 if rb = 3

(90% chance Bastet there if crow is)

P (ro) =















0.05 if ro = 0
0 if ro = 1
0.85 if ro = 2
0.10 if ro = 3

(85% chance Oscar there if crow isn’t)

P (rw) =















0.05 if rw = 0
0.90 if rw = 8
0.05 if rw = 9
0 otherwise

(90% chance chase if B & O there)
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hc,0() = c0 (if rc = 0 the crow is not there)
hc,1() = c1 (if rc = 1 the crow is there)

hw,0(b, o) = s0 (if rs = 0, there is no chase regardless)

hw,8(b, o) =

{

s0 if (b, o) 6= (b1, o1) no chase unless both B,O outside

s1 if (b, o) = (b1, o1) chase if both B,O outside

hw,9(b, o) =

{

s0 if (b, o) ∈ {(b1, o0), (b0, o1)} no chase if 1 cat present

s1 if (b, o) ∈ {(b0, o0), (b1, o1)} chase if B,O meet in or out
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DAG

rc

C C∗

rb ro

B O
B∗ O∗

W
W ∗

rw

Variables marked with ∗ indicate the counterfactual world and those
without the factual world. The r variables are response functions.
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DAG for counterfactual evaluation

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw

To evaluate P (w∗
1 |̂b

∗
1, b0), instantiate B as b0 and B∗ as b∗1. Sever links

pointing to b∗1
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Evaluating W
∗

Balke and Pearl comment:

If a variable X∗

j in the counterfactual world is not a causal
descendant of any of the variables mentioned in the counterfactual
antecedent â∗, then Xj and X∗

j will always have identical
distributions, because the causal influences that functionally
determine Xj and X∗

j are identical.

To evaluate W ∗, we can start by looking at the graph in the factual world
to see what values of parents of b0 could lead to that value. We consider all
the possible combinations of values of parents of b0. The probability of each
combination is the product of their probabilitites and the total prior
probability of b0 is the sum of probabilities of combinations that result in
B = b0.

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw
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Evaluating W
∗

◮ rc = 0 (0.4) and rb = 0 (0.07) → C = c0 and B = b0 (0.028)

◮ rc = 0 (0.4) and rb = 1 (0.90) → C = c0 and B = b0 (0.36)

◮ rc = 0 (0.4) and rb = 2 (0.03) → C = c0 and B = b1 (0.012)

◮ rc = 1 (0.6) and rb = 0 (0.07) → C = c1 and B = b0 (0.042)

◮ rc = 1 (0.6) and rb = 1 (0.90) → C = c1 and B = b1 (0.54)

◮ rc = 1 (0.6) and rb = 2 (0.03) → C = c1 and B = b0 (0.018)

The prior probability P (B = b0) = 0.028 + 0.36 + 0.042 + 0.018 = 0.448. So
p(C = c0|B = b0) =

0.028+0.36
0.448

= 0.86607

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw
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Evaluating W
∗

Given that C∗ is not a causal descendant of any B variables, we can give
counterfactual C∗ the same probability as C. We can now work down on
the counterfactual side of the DAG and calculate O∗. We calculate the
probability of each possible combination of values of ro and C∗ and
determine for each the value of O∗ that results. We add to get the total
probability of o∗1 .

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw
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Evaluating W
∗

◮ ro = 0 (0.05) and C∗ = c∗0 (0.86607) → O∗ = o∗0 (0.043304)

◮ ro = 0 (0.05) and C∗ = c∗1 (0.13393) → O∗ = o∗0 (0.0066965)

◮ ro = 1 (0) and C∗ = c∗0 (0.86607) → O∗ = o∗0 (0)

◮ ro = 1 (0) and C∗ = c∗1 (0.13393) → O∗ = o∗1 (0)

◮ ro = 2 (0.85) and C∗ = c∗0 (0.86607) → O∗ = o∗1 (0.73616)

◮ ro = 2 (0.85) and C∗ = c∗1 (0.13393) → O∗ = o∗0 (0.1138405)

◮ ro = 3 (0.10) and C∗ = c∗0 (0.86607) → O∗ = o∗1 (0.086607)

◮ ro = 3 (0.10) and C∗ = c∗1 (0.13393) → O∗ = o∗1 (0.013393)

P (O∗ = o∗1) = 0 + 0.73616 + 0.086607 + 0.013393 = 0.83616

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw
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Evaluating W
∗

Given that P (b∗0) = 1, we can now calculate P (W ∗ = 1|b∗0 , O
∗), moving

further down the graph. We look at all the possible combinations of
possible values of parents of W ∗. Since B∗ is set at b∗1, we need not include
it in the set of combinations.
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Evaluating W
∗

◮ rw = 0 (0.05) and O∗ = o∗0 (0.16184) → W ∗ = w∗
0 (0.008092)

◮ rw = 0 (0.05) and O∗ = o∗1 (0.83616) → W ∗ = w∗
0 (0.041808)

◮ rw = 8 (0.90) and O∗ = o∗0 (0.16184) → W ∗ = w∗
0 (0.145656)

◮ rw = 8 (0.90) and O∗ = o∗1 (0.83616) → W ∗ = w∗
1 (0.752544)

◮ rw = 9 (0.05) and O∗ = o∗0 (0.16184) → W ∗ = w∗
0 (0.008092)

◮ rw = 9 (0.05) and O∗ = o∗1 (0.83616) → W ∗ = w∗
1 (0.041808)

So P (W ∗ = 1|b∗0 , O
∗) = 0.75254 + 0.041808 = 0.79435, which to two decimal

places is the value given by Balke and Pearl.
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Johansson et al (2016) Learning representations for counterfactual

inference

Suppose that we have data on 1000 patients who either did or did not
receive some medical treatment and we know some quantity that represents
the results of the treatment such as blood sugar level or blood pressure. For
each patient we know whether or not they received the treatment and what
the result was.

What we do not know is what the characteristics were for each patient on
which the decision to give the treatment or not was based. We also do not
know what the results would have been if the opposite course of action had
been taken for each patient – no treatment for those who received it and
vice versa.
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◮ For each patient x, Y1(x) is the measurable result of x receiving the
treatment and Y0(x) the result of x not receiving the treatment.

◮ For each x we know only one of the two.

◮ For each x the individualized treatment effect ITE = Y1(x)− Y0(x) is a
quantity that would enable us to choose the best choice for each
patient, but we do not know this quantity.

◮ If p(x) is the distribution under which x values occur, the average
treatment effect ATE is defined as ATE=Ex∼p(x)[ITE(x)].

◮ We also define the factual and counterfactual outcomes of the
treatment given to individual x as yF (x) and yCF (x) respectively.
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What they call direct modeling for estimating ITE, works as follows.

◮ We have n samples: {(xi, ti, y
F
i )}ni=1,

◮ where xi is the individual,

◮ ti is the binary value for treatment (1) or no treatment (1)

◮ and yF
i is the factual outcome.
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◮ We can see that yF
i = ti · Y1(xi) + (1− ti) · Y0(xi) where Y0 is the

function applied to x of not giving the treatment and Y1 is giving the
treatment.

◮ Either ti or 1− ti must be zero, so one of the above two terms will be
zero.

◮ If the treatment was given, ti = 1 and the second term drops out;

◮ if not, ti = 0 and the first term drops out.

◮ We want to learn a function h that maps an individual xi paired with
a treatment ti to an outcome yF

i :

h : X × T → Y such that h(xi, ti) ≈ yF
i
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We can then use h to represent the half of the ITE that we don’t know.
If the treatment was given, ti = 1 and ˆITE(x) = yF

i − h(xi, 1− ti). If not,
ti = 0 and ˆITE(x) = h(xi, 1− ti)− yF

i .
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The observed sample is P̂F = {(xi, ti)}
n
i=1: ‘the factual distribution’.

The counterfactual distribution is P̂CF = {(xi, 1− ti)}
n
i=1.

Crucially, the two distributions may be different – i.e. if the decision how to
treat a given patient was not random, but based on some characteristics of
that patient, t and x will not be independent. And we don’t have the
information about how decisions about treatment assignment were made.
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We have:
PF (x, t) = P (x) · P (t|x)
PCF (x, t) = P (x) · P (¬t|x)

We assume that we have some information about the patients so that we
can given them relevant features, even though we don’t know if these were
the same features that were used to decide on the treatment nor how the
features might have been taken into account.

We want to learn two things:

A representation Φ that maps each patient onto a feature set and a
function h that gives a numerical outcome for each patient feature set
paired with a treatment.
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The represetnatation trades off three objectives:

1. low-error prediction of the observed outcomes over the factual
representation

2. low-error prediction of unobserved counterfactuals by taking into
account relevant factual outcomes

3. the distributions of treatment populations are similar or balanced
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How do we accomplish each?

1. error-minimization over a training set using regularization to avoid
overfitting

2. assign a penalty that encourages counterfactual predictions to be close
to the nearest observed outcome from the respective treated or control
set

3. minimize the discrepancy distance between treated and control
populations
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Patients: X = {xi}
n
i=1

Treatments: T = {ti}
n
i==1

Factual outcomes: Y F = {yF
i }ni=1

We define the nearest oppositely-treated neighbour of patient xi, xj , where
j ∈ {1, . . . b} and tj = 1− ti such that j = argmin d(xi, xj) where d(a, b) is
the distance from a to b in the metric space X .
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We want to minimize the objective BH,α,γ(Φ, h) where H is the hypothesis
space, α, γ > 0 are hyperparameters that control the strength of imbalance
penalties, Φ is the representation that maps each patient onto a feature set
and h is a function h that gives a numerical outcome for each patient
feature set paired with a treatment.

BH,α,γ(Φ, h) is the sum of three quantities:

◮
1
n

∑n

i=1 |h(Φ(xi), ti)− yF
i | – the sum for all the patient-treatment pairs

of the differences between each treatment result that our hypothesis
predicts and the actual treament result

◮ αdiscH(P̂F
Φ , P̂CF

Φ ) – the discrepancy between the factual and
counterfactual distributions, weighted by α

◮
γ

n

∑n

i=1 |h(Φ(xi), 1− ti)− yF
i | – the sum, weighted by γ for all the

patient-treatment pairs of the differences between each treatment
result that our hypothesis predicts and the result of the treatment that
was not chosen for a given patient.
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Once again:

◮ Φ is a representation of X that maps each patient onto a vector of
features

◮ and H represents the set of possible hypothesis functions h each of
which maps each feature vector and treatment choice for a patient onto
a real number that represents the hypothesized results of that
treatment for that patient.

◮ The paper states that if the hypothesis class H is the set of linear
functions, the term discH(P̂F

Φ , P̂CF
Φ ) has closed form ||µ2(P )− µ2(Q)||2

where ||A||2 is the spectral norm of A and µ2(P ) = Ex∼P [xx
T ] is the

variance of the distribution P .

◮ If x is a binary-valued matrix whose rows are patients and columns are
features we have assigned to each patient,then xxT will represent the
degree to which each pair of patients differs with respect to the binary
values we have assigned to them. The more they differ, the lower the
value in the cell of xxT

i,j for patients i and j.
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In the case here of counterfactual inference, P and Q differ only in what
treatment was given.

Let v be a vector that represents the difference, for each patient x, between
the expected results of getting the treatment and the expected results of
not getting the treatment, based on the representation Φ that we have
given each patient. In other words:

v = E(x,t)∼P̂F

Φ
[Φ(x) · t]− E(x,t)∼P̂F

Φ
[Φ(x) · (1− t)]

And let p represent the expected treatment for each patient.
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So discH(P̂F
Φ , P̂CF

Φ ) is the spectral norm of Ex∼P̂F

Φ
[xxT ]− Ex∼P̂CF

Φ
[xxT ],

that difference being the difference between the expected amount by which
each pair of patients differs under the factual distribution and the expected
amount by which each pair of patients differs under the counterfactual
distribution.
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