Tree-based Message Passing Algorithms for Loopy Graphs, Bethe-Kikuchi

Nasim Zolaktaf

University of British Columbia

September 2, 2015
Convex conjugate of A:

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{ \mu^T w - A(w) \}$$ \hspace{1cm} (1)

Convex conjugate of A^*:

$$A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \}$$ \hspace{1cm} (2)
Exact Variational Principal

- Convex conjugate of A:
 \[A^*(\mu) = \sup_{w \in \mathcal{W}} \{ \mu^T w - A(w) \} \]
 (1)

- Convex conjugate of A^*:
 \[A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \} \]
 (2)

- $P(X) = \frac{\exp(W^T F(X))}{Z(w)} = \exp(w^T F(X) - A(W))$, where
 \[A(w) = \log(Z(w)) \]
Convex conjugate of A:

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{ \mu^T w - A(w) \}$$

Convex conjugate of A^*:

$$A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \}$$

$P(X) = \frac{\exp(W^T F(X))}{Z(w)} = \exp(w^T F(X) - A(W))$, where

$$A(w) = \log(Z(w))$$

$$A^*(\mu) = -H(p_\mu)$$
Exact Variational Principal

- Convex conjugate of A:
 \[A^*(\mu) = \sup_{w \in \mathcal{W}} \{ \mu^T w - A(w) \} \] \hspace{1cm} (1)

- Convex conjugate of A^*:
 \[A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \} \] \hspace{1cm} (2)

- \[P(X) = \frac{\exp(W^T F(X))}{Z(w)} = \exp(w^T F(X) - A(W)) \]

 where

 \[A(w) = \log(Z(w)) \]:

 \[A^*(\mu) = -H(p_\mu) \] \hspace{1cm} (3)

- Inference as a convex optimization problem:
 \[\log(Z(w)) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \} = \sup_{\mu \in \mathcal{U}} \{ w^T \mu + H(p_\mu) \} \] \hspace{1cm} (4)
Marginal Polytope $\mathcal{M}(G)$

\[\mathcal{M}(G) := \{ \mu \in \mathbb{R}^d | \exists p \text{ with marginals } \mu_s(x_s), \mu_{s,t}(x_s, x_t) \}\]

- Node-based marginal:

\[\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{1}_{s;j}(x_s)\]

- Edge-based marginal:

\[\mu_{s,t}(x_s, x_t) := \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{1}_{st;jk}(x_s, x_t)\]

where:

\[\mu_{s;j} = P[x_s = j] \text{ and } \mu_{st;jk} = P[x_s = j, x_t = k]\]
Locally Consistent Marginal Distribution $\mathbb{L}(G)$

\[
\mathbb{L}(G) := \{ \tau \geq 0 | \text{Condition 7 holds for all nodes and conditions 8 and 9 hold for all edges.} \}
\]

- A set of non-negative node-based functions $\{ \tau_s, s \in V \}$, where:
 \[
 \sum_{x_s} \tau_s(x_s) = 1
 \]

- A set of non-negative edge-based function $\{ \tau_{st}, (s, t) \in E \}$, where:
 \[
 \sum_{x'_t} \tau_{st}(x'_s, x'_t) = \tau_s(x_s)
 \]
 \[
 \sum_{x'_s} \tau_{st}(x'_s, x_t) = \tau_t(x_t)
 \]
For any graph, then $\mathbb{M}(G) \subseteq \mathbb{L}(G)$.

By the junction tree theorem, if G is tree-structured, then $\mathbb{M}(G) = \mathbb{L}(G)$.
$\mathcal{M}(G)$ Versus $\mathcal{L}(G)$

- For any graph, then $\mathcal{M}(G) \subseteq \mathcal{L}(G)$.
- By the junction tree theorem, if G is tree-structured, then $\mathcal{M}(G) = \mathcal{L}(G)$.
By the junction tree theorem, for trees:

\[p_{\mu}(x) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \]
Entropy for Trees

- By the junction tree theorem, for trees:

\[p_\mu(x) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \]

- Exact dual function for trees:

\[H(p_\mu) = -A^*(\mu) = \mathbb{E}_\mu[-log p_\mu(X)] = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \]

\[10 \]

- For each node \(s \in V \), singleton entropy:

\[H_s(\mu_s) := - \sum_{x_s \in \mathcal{X}_s} \mu_s(x_s) \log \mu_s(x_s) \]

- For each edge \((s, t) \in E\), mutual information:

\[I_{st}(\mu_{st}) := \sum_{(x_s, x_t) \in (\mathcal{X}_s, \mathcal{X}_t)} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \]
The Bethe approximation to the entropy of an MRF with cycles simply assumes that Equation 10 is valid for a graph with cycles, which yields the Bethe entropy approximation:

\[-A^*(\tau) \approx H_{\text{Bethe}}(\tau) := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \quad (11)\]
Bethe Variational Problem (BVP)

- BVP requires two ingredients:
 - The set $\mathbb{L}(G)$ is a convex outer bound on the marginal polytope $\mathbb{M}(G)$.
 - The Bethe entropy in Equation 11 is an approximation of the exact dual function $A^*(\tau)$.

Bethe Variational Problem (BVP)

- BVP requires two ingredients:
 - The set $\mathbb{L}(G)$ is a convex outer bound on the marginal polytope $\mathbb{M}(G)$.
 - The Bethe entropy in Equation 11 is an approximation of the exact dual function $A^*(\tau)$.

- Exact variational principle (Equation 2):
 \[
 A(w) = \sup_{\mu \in \mathcal{U}} \{ <\theta, \tau> - A^*(\mu) \}
 \]

- Bethe variational problem (BVP):
 \[
 \max_{\tau \in \mathbb{L}(G)} \{ <\theta, \tau> + \sum_{s \in \mathcal{V}} H_s(\mu_s) - \sum_{(s,t) \in \mathcal{E}} l_{st}(\mu_{st}) \} \tag{12}
 \]
Solving BVP

- Solve BVP with the sum-product algorithm.
- Lagrangian corresponding BVP:

\[\mathcal{L}(\tau, \lambda; \theta) := < \theta, \tau > + H_{\text{Bethe}}(\tau) + \sum_{s \in V} \lambda_{ss} C_{ss}(\tau) \]

\[+ \sum_{(s,t) \in E} \left[\sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s; \tau) + \sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t; \tau) \right] \]

where \(C_{ss}(\tau) := 1 - \sum_{x_s} \tau_s(x_s) \) and \(C_{ts}(x_s; \tau) := \tau_s(x_s) - \sum_{x_t} \tau_{st}(x_s, x_t) \).

Nasim Zolaktaf (UBC)
Bethe-Kikuchi
September 2, 2015
BVP message update with the sum-product algorithm:

\[M_{t,s}(x_s) \propto \sum_{x_t} \{ \exp(\theta_{st}(x_s, x_t) + \theta_t(x_t)) \prod_{u \in N(t)/s} M_{ut}(x'_t) \} \quad (14) \]
Obtain hypergraph with the Kikuchi clustering method.
Obtain hypergraph with the Kikuchi clustering method.

Hypertree-based approximation to entropy:

\[H_{app}(\tau) = \sum_{g \in E} c(g)H_g(\tau_g) \]

\[H_{app} = [H_{1245} + H_{2356} + H_{4578} + H_{5689}] - [H_{25} + H_{45} + H_{56} + H_{58}] + H_5 \]
Use a generalization of $\mathbb{L}(G)$ (Equation 6) for hypertrees, which is based on marginalization of each hyperedge and any pair of hyperedges.

Hypertree-based generalization of BVP in Equation 12:

$$\max_{\tau \in \mathbb{L}_t(G)} \{ <\theta, \tau > + H_{app}(\tau) \}$$ (16)
Parent-to-child Belief Propagation for Kikuchi

\[\tau_{1245} \propto \psi_{12} \psi_{14} \psi_{25} \psi_{45} \psi_1 \psi_2 \psi_4 \psi_5 \times M_{(2356)} \rightarrow (25) M_{(4578)} \rightarrow (45) M_{(56)} \rightarrow 5 M_{(58)} \rightarrow 5 \]

Illustration of relevant regions for parent-to-child message-passing in a Kikuchi approximation. Message-passing for hyperedge \((1245)\). Set of descendants \(D^+\{(1245)\}\) is shown within a dotted ellipse. Relevant parents for \(\tau_{1245}\) consists of the set \\{\(2356\), \(4578\), \(56\), \(58\)\}.

\[
\tau_h(x_h) \propto \left[\prod_{g \in D^+(h)} \psi_g(x_g; \theta) \right] \left[\prod_{g \in D^+(h)} \prod_{f \in \text{Par}(g) \backslash D^+(h)} M_{f \rightarrow g}(x_g) \right] \tag{17}
\]