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Exact Variational Principal

Convex conjugate of A:

A∗(µ) = supw∈W{µTw − A(w)} (1)

Convex conjugate of A∗:

A(w) = supµ∈U{wTµ− A∗(µ)} (2)

P(X ) = exp(WTF (X ))
Z(w) = exp(wTF (X )− A(W )), where

A(w) = log(Z (w)):
A∗(µ) = −H(pµ) (3)

Inference as a convex optimization problem:

log(Z(w)) = supµ∈U{wTµ− A∗(µ)} = supµ∈U{wTµ+ H(pµ)} (4)
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Marginal Polytope M(G )

M(G ) := {µ ∈ Rd |∃p with marginals µs(xs), µs,t(xs , xt)} (5)

Node-based marginal:

µs(xs) :=
∑
j∈Xs

µs;jIs;j(xs)

Edge-based marginal:

µs,t(xs , xt) :=
∑

(j ,k)∈Xs×Xt

µst;jkIst;jk(xs , xt)

where:
µs;j = P[xs = j ] and µst;jk = P[xs = j , xt = k]
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Locally Consistent Marginal Distribution L(G )

L(G ) := {τ ≥ 0|Condition 7 holds for all nodes

and conditions 8 and 9 hold for all edges.}
(6)

A set of non-negative node-based functions {τs , s ∈ V }, where .∑
xs

τs(xs) = 1 (7)

A set of non-negative edge-based function {τs,t , (s, t) ∈ E}, where:∑
x ′t

τst(xs , x
′
t) = τs(xs) (8)

∑
x ′s

τst(x
′
s , xt) = τt(xt) (9)

Nasim Zolaktaf (UBC) Bethe-Kikuchi September 2, 2015 4 / 13



M(G ) Versus L(G )

For any graph, then M(G ) ⊆ L(G ).

By the junction tree theorem, if G is tree-structured, then

M(G ) = L(G ).
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Entropy for Trees

By the junction tree theorem, for trees:

pµ(x) :=
∏
s∈V

µs(xs)
∏

(s,t)∈E

µst(xs , xt)

µs(xs)µt(xt)

Exact dual function for trees:

H(pµ) = −A∗(µ) = E
µ
[−logpµ(X )] =

∑
s∈v

Hs(µs)−
∑

(s,t)∈E

Ist(µst)

(10)
For each node s ∈ V , singleton entropy:

Hs(µs) := −
∑
xs∈Xs

µs(xs)logµs(xs)

For each edge (s, t) ∈ E , mutual information:

Ist(µst) :=
∑

(xs ,xt)∈(Xs ,Xt)

µst(xs , xt)log
µst(xs , xt)

µs(xs)µt(xt)
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Bethe Entropy Approximation

The Bethe approximation to the entropy of an MRF with cycles
simply assumes that Equation 10 is valid for a graph with cycles,
which yields the Bethe entropy approximation:

− A∗(τ) ≈ HBethe(τ) :=
∑
s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst) (11)
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Bethe Variational Problem (BVP)

BVP requires two ingrediants:

The set L(G ) is a convex outer bound on the marginal polytope M(G ).
The Bethe entropy in Equation 11 is an approximation of the exact
dual function A∗(τ).

Exact variational principle (Equation 2):

A(w) = supµ∈U{< θ, τ > −A∗(µ)}

Bethe variational problem (BVP):

maxτ∈L(G){<θ,τ>+
∑

s∈v Hs(µs)−
∑

(s,t)∈E Ist(µst)} (12)
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Solving BVP

Solve BVP with the sum-product algorithm.

Lagrangian corresponding BVP:

L(τ, λ; θ) :=< θ, τ > +HBethe(τ) +
∑
s∈V

λssCss(τ)

+
∑

(s,t)∈E

[
∑
xs

λts(xs)Cts(xs ; τ) +
∑
xt

λst(xt)Cst(xt ; τ)]
(13)

where Css(τ) := 1−
∑

xs
τs(xs) and

Cts(xs ; τ) := τs(xs)−
∑

xt τst(xs , xt).
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Sum-product algorithm for BVP

BVP message update with the sum-product algorithm:

Mt,s(xs) ∝
∑
xt

{exp(θst(xs , xt) + θt(xt))
∏

u∈N(t)/s

Mut(x
′
t)} (14)
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Kikuchi

Obtain hypergraph with the Kikuchi clustering method.

Hypertree-based approximation to entropy:

Happ(τ) =
∑
g∈E

c(g)Hg (τg ) (15)

Happ = [H1245+H2356+H4578+H5689]− [H25+H45+H56+H58]+H5

Nasim Zolaktaf (UBC) Bethe-Kikuchi September 2, 2015 11 / 13



Kikuchi

Obtain hypergraph with the Kikuchi clustering method.

Hypertree-based approximation to entropy:

Happ(τ) =
∑
g∈E

c(g)Hg (τg ) (15)

Happ = [H1245+H2356+H4578+H5689]− [H25+H45+H56+H58]+H5

Nasim Zolaktaf (UBC) Bethe-Kikuchi September 2, 2015 11 / 13



Kikuchi

Use a generalization of L(G ) (Equation 6) for hypertrees, which is
based on marginalization of each hyperedge and any pair of
hyperedges.

Hypertree-based generalization of BVP in Equation 12:

maxτ∈Lt(G){< θ, τ > +Happ(τ)} (16)
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Parent-to-child Belief Propogation for Kikuchi

τh(xh) ∝ [
∏

g∈D+(h)

ψg (xg ; θ)][
∏

g∈D+(h)

∏
f ∈Par(g)\D+(h)

Mf→g (xg )] (17)
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