
Reinforcement learning and control as probabilistic
inference: tutorial and Review

Paper by Sergey Levine, 2018

October 21, 2018

UBC MLRG 2018

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 1 / 33



Goals

“In this article, we will discuss how a generalization of the reinforcement learning
... is equivalent to exact probabilistic inference in the case of deterministic
dynamics, and variational inference in the case of stochastic dynamics.”

Previous work

Kalman duality, max entropy RL, KL divergence control, stochastic optimal
control

Big idea: learning via probabalistic graphical models (PGM)

tl;dr

Bayesian version of Q-learning, policy gradient, etc is like changing max’s to
soft-max’s.

The devil is in the details. Different implementations can give you different
variances.

You get to control p(a|s) but you do NOT get to control p(st+1|st, at).

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 2 / 33



Outline

Background and notation

Graphical models

I Policy search as probabilistic inference

I Deterministic vs stochastic case

Variational inference and stochastic dynamics

I Maximum entropy reinforcement learning with fixed dynamics

I Structured variational inference

Approximate inference with function approximation

I Maximum entropy policy gradients

I Maximum entropy actor-critic algorithms

I Soft Q-learning

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 3 / 33



Background and notation

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 4 / 33



Notation

s ∈ S states, a ∈ A actions

environment has Markov property

p(st+1|s1, a1, ..., st, at) = p(st+1|st, at)

I Deterministic: st+1 fixed given st, at.

I Stochastic: use transition probability.

Trajectory τ = {st, at : t = 1, ..., T}

Reward function: r(st, at)

(Usual) Q function and value function

Qτ (st, at) =

T∑
t=1

Eτ [r(st, at)], V τ (st) = max
at∈A

Qτ (st, at)

(no discounts)

Goal: Find the optimal policy p(at|st, ??)

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 5 / 33



Example: mountain car

States: position, velocity

Actions: Move forward with force f , backward with force −f

Reward: If car reaches flag, r(st, at) = 1 and terminate. Else, r(st, at) = 0.

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 6 / 33



System model

Focus on discrete time

Note no p(at|st) ( assume random / uniform).

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 7 / 33



Policy search as probabilistic inference

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 8 / 33



Policy

Optimality: Ot = {event that at time t, policy was optimal}

Model
p(Ot = 1|st, aT ) = exp(r(st, at))

Optimal policy π(at|st) = p(at|st, Ot:T = 1)

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 9 / 33



Inference

Goal: learn this trajectory via inference (e.g. sun-product inference alg., HMMs,
Viterbi, forward-backward algos)

Forward message: Play a game, calculate

p(OT |sT , aT ) = exp(r(sT , aT ))

Backward messages: from t = T, ..., 1

p(Ot:T |st)︸ ︷︷ ︸
βt(st)

=

∫
A
p(Ot:T |st, aT )︸ ︷︷ ︸

βt(st,at)

p(at|st)︸ ︷︷ ︸
1/|A|

dat

p(Ot:T |st, at)︸ ︷︷ ︸
βt(st,at)

=

∫
S
p(Ot+1:T |st+1)︸ ︷︷ ︸

βt+1(st+1)

p(st+1|st, at)︸ ︷︷ ︸
sample

p(Ot|st, at)︸ ︷︷ ︸
exp(r(st,at))

dst+1

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 10 / 33



Inference

Compute policy (no θ)

π(at|st) := p(at|st, Ot:T ) =
p(st, at|Ot:T )
p(st|Ot:T )

Bayes
=

p(Ot:T |st, at)
1/|A|︷ ︸︸ ︷

p(at|st) p(st)
p(Ot:T |st)p(st)

∝ p(Ot:T |st, at)
p(Ot:T |st)

=
βt(st, at)

βt(st)

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 11 / 33



Generalized Q-learning

Q(st, at) := log(βt(st, at)), V (st) := log(βt(st))

Then

V (st) = log

∫
A
exp(Q(st, at))dat (softmax)

≈ max
at

Q(st, at)

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 12 / 33



Generalized Q-learning (Deterministic)

Q(st, at) := log(βt(st, at)), V (st) := log(βt(st)) ≈ max
at

Q(st, at)

Recall

βt(st, at) =

∫
S
βt+1(st+1)p(st+1|st, at) exp(r(st, at))dst+1

= Est+1|st,at [βt(st) exp(r(st, at))]

If dynamics are deterministic, expectation goes away

βt(st, at) = βt+1(st+1) exp(r(st, at))

Q(st, at) = V (st+1) + r(st, at)

which is how Q-learning works

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 13 / 33



Generalized Q-learning (Deterministic)

Q(st, at) := log(βt(st, at)), V (st) := log(βt(st)) ≈ max
at

Q(st, at)

βt(st, at) = Est+1|st,at [βt+1(st+1) exp(r(st, at))]

If dynamics are stochastic

Q(st, at) = r(st, at) + log
(
Est+1|st,at [exp(V (st+1))]

)
≈ r(st, at) + max

st+1|st,at
V (st+1)

“This creates risk seeking behavior: if an agent behaves according to this
Q-function, it might take actions that have extremely high risk, so long as
they have some non-zero probability of a high reward. Clearly, this behavior
is not desirable in many cases, and the standard PGM described in this
section is often not well suited to stochastic dynamics.”

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 14 / 33



Inference → optimization

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 15 / 33



The best trajectory ever

p(τ |O1:T = 1) ∝ p(τ,O1:T )

= p(s1)

T∏
t=1

p(Ot = 1|st, at)p(st+1|st, at)

= p(s1)
T∏
t=1

exp(r(st, at))p(st+1|st, at)

=

(
p(s1)

T∏
t=1

p(st+1|st, at)

)
︸ ︷︷ ︸

trajectory

(
T∑
t=1

exp(r(st, at))

)
︸ ︷︷ ︸
reward for that trajectory

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 16 / 33



Exact inference

The best trajectory ever (notation p(τ) = p(τ |O1:T = 1))

p(τ) ∝

(
p(s1)

T∏
t=1

p(st+1|st, at)

)(
T∑
t=1

exp(r(st, at))

)

What we actually learned

p̂(τ) ∝

(
p(s1)

T∏
t=1

p(st+1|st, at, O1:T )

)(
T∏
t=1

π(at|st)

)

where π(at|st) = p(at|st, O1:T = 1) 6= p(at|st) Exact inference

p(τ) = p̂(τ) ⇐⇒ DKL(p̂(τ)||p(τ)) = 0

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 17 / 33



Deterministic inference

DKL(p̂(τ)||p(τ)) = −Eτ∼p̂[log(p(τ))− log(p̂(τ))]

= −Eτ∼p̂[(log(p(s1) +
T∑
t=1

(log(p(st+1|st, at) + r(st, at))

−(log(p(s1) +
T∑
t=1

(log(

=p(st+1|st,at)︷ ︸︸ ︷
p(st+1|st, at, O1:T )+ log(π(at|st)))]

= −Eτ∼p̂

[
T∑
t=1

r(st, at)− log(π(at|st))

]

=

T∑
t=1

(Est,at∼p̂[log(π(at|st))− r(st, at)])

=

T∑
t=1

− Est∼p̂[H(π(at|st))]︸ ︷︷ ︸
Expected conditional entropy

−Est,at∼p̂[r(st, at)]︸ ︷︷ ︸
expected reward



Paper by Sergey Levine, 2018 RL + Inference Oct 2018 18 / 33



Deterministic inference

−DKL(p̂(τ)||p(τ)) =
T∑
t=1

Est∼p̂[H(π(at|st))]︸ ︷︷ ︸
Expected conditional entropy

+Est,at∼p̂[r(st, at)]︸ ︷︷ ︸
expected reward

“ Therefore, minimizing the KL-divergence corresponds to maximizing the
expected reward and the expected conditional entropy, in contrast to the
standard control objective in Equation (1), which only maximizes reward.
Hence, this type of control objective is sometimes referred to as maximum
entropy reinforcement learning or maximum entropy control.”

“ However, that in the case of stochastic dynamics, the solution is not quite
so simple. ...[T]his objective is difficult to optimize in a model-free setting.
...[I]t also results in an optimistic policy that assumes a degree of control
over the dynamics that is unrealistic in most control problems. ”

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 19 / 33



Variational inference and stochastic dynamics

Maximum entropy reinforcement learning with fixed dynamics

Previously, in stochastic settings, we implicitly optimized
p(st+1|st, at, O1:T ), which is unrealistic

That is, our policy always assumed state transitions would be optimal, so
“risky is ok”.

tl;dr: Let’s replace what we previously did with

p(st+1|st, at, O1:T )→ p(st+1|st, at)

and just optimize.

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 20 / 33



Stochastic case: min. KL div. without optimism

Then we recover a familiar equation

−DKL(p̂(τ)||p(τ)) =

T∑
t=1

Est,at∼p̂[r(st, at) +H(π(at|st))]

and

Eat|st∼p̂[r(st, at) +H(π(at|st))] + Eat|st∼p̂Est+1∼p̂[V (st+1)]

= −DKL

(
π(at|st)||

exp(Q(st, at))

exp(V (st))

)
+ V (st)

with
Q(st, at) := r(st, at) + Est+1∼p[V (st+1)]← not risky!

(use whiteboard to fill in details)

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 21 / 33



At iteration t, want to minimize

Eat|st∼p̂[r(st, at) +H(π(at|st))] + Eat|st∼p̂Est+1∼p̂[V (st+1)]

= −DKL

(
π(at|st)||

exp(Q(st, at))

exp(V (st))

)
+ V (st)

Therefore

π(at|st) =

{
exp(r(sT , aT )− V (sT )) if t = T

exp(Q(st, at)− V (st)) else.

Also, if we choose

V (st) = log

∫
A
exp(Q(st, at))dat,

then we recover the standard Q-learning with max → softmax.

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 22 / 33



Evidence based lower bound (ELBO)

log(p(O1:T )) ≥ Es1:T ,a1:T∼p̂

[
T∑
t=1

r(st, at)− log(p̂(at|st))

]

Proof: whiteboard

“ Intuitively, this means that this objective attempts to find the closest match to
the maximum entropy trajectory distribution, subject to the constraint that the
agent is only allowed to modify the policy, and not the dynamics”

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 23 / 33



Approximate inference with function approximation

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 24 / 33



Maximum entropy policy gradients

Up until now, the “optimal” policy π(at|st) = p(at|st, O1:T ) is an inferred
probability distribution

Now we want to incorporate policy gradient methods, where
π(at|st) = πθ(at|st) and θ is a vector of parameters

Define q distribution such that q(s) = p(s), qθ(a|s) = πθ(a|s).

Maximum entropy objective function

J(θ) =

T∑
t=1

Est,at∼q[r(st, at)−H(qθ(at|st))]

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 25 / 33



Computing the policy gradient

Est,at [fθ(st, at)] =

∫
st,at

fθ(st, at)

t∏
t′=1

qθ(at′ |st′)p(st′ |st′−1, at′−1)︸ ︷︷ ︸
pθ(st,at)

d(st, at)

REINFORCE trick

∇θqθ(at′ |st′) = qθ(at′ |st′)∇θ log(qθ(at′ |st′))

J(θ) =

T∑
t=1

Est,at∼q[r(st, at)−H(qθ(at|st))]

∇θJ
magic
=

T∑
t=1

E

[
∇θ log qθ(at|st)

(
T∑
t′=t

r(st′ , at′)− log qθ(at′ |st′)− 1

)]

bias
=

T∑
t=1

E

[
∇θ log qθ(at|st)

(
T∑
t′=t

r(st′ , at′)− log qθ(at′ |st′)− b(st′)

)]

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 26 / 33



Policy gradient

∇θJ =

T∑
t=1

E
[
∇θ log qθ(at|st)Â(st, at)

]

where

Â(st, at) =

(
T∑
t′=t

r(st′ , at′)− log qθ(at′ |st′)− b(st′)

)
is the advantage at time t.

Any standard advantage estimator, such as the GAE estimator (Schulman et
al., 2016), can be used in place of the standard baselined Monte Carlo
return above. Again, the only necessary modification is to add logqθ(at|st)
to the reward at each time step t′.”

“As with standard policy gradients, a practical implementation of this
method estimates the expectation by sampling trajectories from the current
policy, and may be improved by following the natural gradient direction.”

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 27 / 33



Maximum entropy actor critic

Actor = policy, critic = Value function

Message passing

Est+1:T ,at+1:T |st,at [log p(Ot:T |st:T , at:T )]
= log p(Ot|st, at) +

Est+1|st,at

Eat|st
[

T∑
t′=t+1

log p(Ot′ |st′ , at′)− log q(at′ |st′)

]
︸ ︷︷ ︸

=:V (st)


then

V (st) = Eat|st

Est+1|st,at [V (st+1)] + log p(Ot|st, at)︸ ︷︷ ︸
:=Q(st,at)

− log q(at|st)


Optimal policy

q∗(at|st) =
exp(Q(st, at))

log
∫
A expQ(st, at)dat

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 28 / 33



Maximum entropy actor critic

In general, V (st) and Q(st, at) are not optimal, but correspond to current
policy.

However, at convergence, when q(at|st) = q∗(at|st), then

V (st) = Eat|st [Q(st, at)− log q(at|st)]
greedy policy def

= Eat|st

[
Q(st, at)−Q(st, at) + log

∫
A
expQ(at, st)dat

]
= log

∫
A
expQ(at, st)dat

≈ max
at∈A

Q(at, st)

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 29 / 33



Maximum entropy actor critic

Greedy policy

q∗(at|st) = argmax
q(at|st)

Est [V (st)]

= argmax
q(at|st)

Est [Eat|st [Q(st, at)− log q(at|st)]]︸ ︷︷ ︸
=:J(θ)

Gradient of objective, via REINFORCE + bias

∇θJ(θ) := Est
[
Eat|st [∇ log q(at|st)(Q(st, at)− log q(at|st)− b(st))]

]
Compare with gradient for policy-only update

∇θJ(θ) := Est
[
Eat|st [∇ log q(at|st)(r(st, at)− log q(at|st)− b(st))]

]
“ The modification lies in the use of the backward message Q(st, at) in
place of the Monte Carlo advantage estimate. The algorithm therefore
corresponds to an actor-critic algorithm, which generally provides lower
variance gradient estimates.”

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 30 / 33



Function fitting action-critic

V (st)→ Vψ(st), Q(st, at)→ Qφ(st, at) and ψ, φ are parameters, e.g.
neural network

We try to minimize two objectives

E(φ) = Est,at
[
(r(st, at) + Est+1|st,at [Vψ(st+1)]−Qφ(st, at))2

]
E(ψ) = Est

[
(Eat|st [Qφ(st, at)− log q(at|st)]− Vψ(st, at))2

]
“ It may be beneficial to keep track of both V (st) and Q(st, at) networks.
This is perfectly reasonable in a message passing framework, and in practice
might have many of the same benefits as the use of a target network, where
the updates to Q and V can be staggered or damped for stability.”

“Policy iteration or actor-critic methods might be preferred (over, for
example, direct Q-learning), since they explicitly handle both approximate
messages and approximate factors in the structured variational
approximation. ”

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 31 / 33



Soft Q-learning

We can also just drop the neural networks for value V (st) and policy q(at|st)

V (st) = log

∫
A
exp(Q(st, at))dat, q(at|st) = exp(Q(st, at)− V (st))

Now only one neural network: Qφ(st, at)

Only one objective function to minimize

E(φ) = 1

2
Est,at∼q︸ ︷︷ ︸

not function of φ

(r(st, at) + Est+1|st,at [ V(st+1)︸ ︷︷ ︸
not function of φ

]−Qφ(st, at))2


and writing Qt := Qφ(st, at),

∇φE = E


∇φQt

≈ standard Q learning update︷ ︸︸ ︷Qt −
r(st, at) + E

[
log

∫
A
expQt+1dat+1

]
︸ ︷︷ ︸

≈maxa∈A Qt+1





Paper by Sergey Levine, 2018 RL + Inference Oct 2018 32 / 33



Soft Q-learning: integrals

“In the case of discrete actions, this update is straightforward to implement,
since the integral is replaced with a summation, and the policy can be
extracted simply by normalizing the Q-function. In the case of
continuous actions, a further level of approximation is needed to evaluate the
integral using samples. Sampling from the implicit policy is also non-trivial,
and requires an approximate inference procedure, as discussed by Haarnoja
et al. (Haarnoja et al., 2017).”

Actually, in general, evaluating Est , Est+1|st,at , Eat|st is nontrivial.

Paper by Sergey Levine, 2018 RL + Inference Oct 2018 33 / 33


	Background and notation
	Policy search as probabilistic inference
	Inference  optimization
	Approximate inference with function approximation

