Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion

University of British Columbia

August 25, 2015

https://www.youtube.com/watch?v=kp3ik5f3-2c&t=18m36s

Outline

- Motivation
- Approximate decoding
- ICM: Iterated conditional modes
- Block methods
- Alpha-beta swap & alpha-expansion

Motivation

Photography by Dina Boyer: <u>https://flic.kr/p/n9kdpQ</u>

Tung, Frederick, and James J. Little. "Collageparsing: Nonparametric scene parsing by adaptive overlapping windows." Computer Vision– ECCV 2014. Springer International Publishing, 2014. 511-525.

Motivation

- We often have more than
 2 states for each node
- Often the states are not directly comparable
- Exact decoding is NPhard — but we still want real-time predictions

ICM: Iterated Conditional Modes

- Until convergence
 - For $x_i \in \mathbf{X}$

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

- Until convergence
 - For $x_i \in \mathbf{X}$
 - Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
 - Solve for x_i

• Until convergence

• For
$$x_i \in \mathbf{X}$$
 iterated

- Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed
- Solve for x_i

• Until convergence

• For
$$x_i \in \mathbf{X}$$
 iterated

- Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed conditional
- Solve for x_i

• Until convergence

• For
$$x_i \in \mathbf{X}$$
 iterated

• Assume that all other nodes $x_j \in \mathbf{X}, j \neq i$ are fixed conditional

• Solve for x_i modes

Pros and cons of ICM

• Pros

• Cons

- Super fast
- Super easy to implement

- Greedy will get stuck on local minima
- In practice, local minima will not be very good

Improving ICM

Guaranteed to find global minimum if done enough times

- Restart with different initializations
- Look at all the nodes, and update only the one that gives the *best improvement*

Improving ICM

ICM with

Vanilla ICM J

ICM with best improvement

Other variants of local search

- Local search is an area of research on its own
- Usually a top performer on SAT, TSP, scheduling, and other NP-hard problems
- Read the book of my supervisor ☺

Block methods

- In ICM we updated one node at a time
- Simple extension: update more than one node at a time
- In fact, we now have a toolbox to do exact decoding in large graphs
 as long as they have a nice graph structure

decode optimally

decode optimally too

Other block methods

Many methods have this 1-variable, >1-variables generalization

Mark will cover this next Monday

- Inference: mean field updates the marginal of 1 variable at a time we can update the marginals of >1 variables at a time
- Sampling: Gibbs sampling samples 1 variable at a time — we can sample a block of >1 variables at a time < Jason will cover this tomorrow

Alpha-beta swap & alpha-expansion

An overview

original labelling

swap

Remember graph cuts

- Assume a binary label set (e.g. black and white)
- Connect nodes to "source" and "sink"
- If the submodular property is satisfied ($\theta_{01} + \theta_{10} > \theta_{00} + \theta_{11}$) then we can decode this exactly solving a max-flow problem
- Problem: most images are not binary

http://www.caam.rice.edu/~wy1/ParaMaxFlow/2007/06/binary-code.html

Alpha-beta swap

- All pixels not labelled alpha or beta stay fixed
- Do a graph cut on alpha and beta
- Some alpha nodes become beta and vice-versa

Alpha-expansion

- All pixels not alpha may change to alpha
- Some pixels become alpha

Alpha-expansion

The required constraints are stronger than those for beta-swap: θ(α, α) + θ(β, γ) < θ(α, γ) + θ(β, α) for any alpha, beta and gamma triplet

Performance on the Tsukuba image

Exact multi-label optimization

- There is one case when multi-label optimization is possible
- We have to assume that the energy is

$$E(f) = \sum_{p \in \mathcal{P}} D_p f_p + \sum_{(p,q) \in \mathcal{N}} \lambda_{pq} |f_p - f_q|$$

• If the minimum cut severs edge t^p_i, assign label i to p

Boykov, Yuri, and Olga Veksler. "Graph cuts in vision and graphics: Theories and applications." Handbook of mathematical models in computer vision. Springer US, 2006. 79-96.

Cool applications

- Graphcut textures (SIGGRAPH 03): <u>https://</u> www.youtube.com/watch?v=Ya6BshBH6G4
- Grabcut demo (SIGGRAPH 04) using OpenCV: <u>https://youtu.be/kAwxLTDDAwU?t=19s</u>