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About me



About me

• computer science PhD student with Frank

• love functional programming (Clojure) and (de)composable systems

• have a background in distributed databases

• like Bayesian statistics as composable statistics and unified modeling

framework

⇒ like probabilistic programming languages: Anglican, pyro

• Bachelor thesis on training RBMs with STDP in the HBP

• studied philosophy and cultural anthropology in a former life
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Motivation



Why do we need uncertainties?

• reason about model confidence

• reason about predictive confidence

• prevent adversarial examples, Gal and Smith 2018

• active learning
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Types of Uncertainties



Aleatoric vs. Epistemic Uncertainty

• aleatoric: inherent stochastic uncertainty in the data

• epistemic: subjective uncertainty of the model, i.e. marginalized

posterior predictive over the model distribution

p(y |x) =

∫
p(y |x , θ)dθ (1)
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Uncertainties explained through Vision

Figure 1: Comparison of uncertainties in Vision, Kendall and Gal 2017
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Comparison of models Chua et al. 2018

Model
Aleatoric Epistemic

uncertainty uncertainty

Baseline Models

Deterministic NN (D) No No

Probabilistic NN (P) Yes No

Deterministic ensemble NN (DE) No Yes

Gaussian process baseline (GP) Homoscedastic Yes

Our Model

Probabilistic ensemble NN (PE) Yes Yes
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Example of Uncertainties in

Reinforcement Learning



Approach of Chua et al. 2018

• Model-based RL works well in small data regime

• Problem: not competitive to model-free RL in large data regime

• Neural Network models overfit in model-based RL too early

• Contribution: can be addressed by incorporating aleatoric

uncertainties in NN
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Probabilistic NN-model for continuous probabilistic output

loss Gauss (θ) =
N∑

n=1

[µθ (sn, an)− sn+1]>Σ−1θ (sn, an) [µθ (sn, an)− sn+1]

(2)

+ log det Σθ (sn, an) (3)

Note: For discrete output we can just pick a softmax distribution as

usual.
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Diagram

Ground Truth

Bootstrap 1

Bootstrap 2

Training Data

Dynamics Model Planning via Model Predictive ControlTrajectory Propagation

Figure 2: System decomposition of Chua et al. 2018

9



Cross-Entropy Method (CEM)

Idea: Learn proposal distribution f for Importance Sampling of rare

events:

KL (g∗||g) =

∫
g∗(x) ln

g∗(x)

g(x)
dx = E

[
ln

g∗(X)

g(X)

]
, X ∼ g∗ (4)

v∗ = argmin
v

KL (g∗||f (·; v)) (5)

= argmax
v

EuI{S(X)>γ} ln f (X; v) (6)

= argmax
v

EwI{S(X)>γ} ln f (X; v)
f (X; u)

f (X; w)
(7)

http://iew3.technion.ac.il/CE/files/Misc/tutorial.pdf
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Cross-Entropy Method (CEM)

Figure 3: http://iew3.technion.ac.il/CE/files/Misc/tutorial.pdf
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Probabilistic Ensembles with Trajectory Sampling (PETS)

method

Figure 4: The model-based MPC algorithm PETS. Chua et al. 2018
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Results

Figure 5: Performance of PETS on different tasks. Chua et al. 2018
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Methods for epistemic

Uncertainty



Bayesian Neural Networks

• Regularizer: Dropout as Bayesian Approximation, Gal and

Ghahramani 2016

• Optimizer: Stochastic Gradient HMC

• dedicated Variational Inference based models
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Motivation for SGHMC

Figure 6: Bayesian NN comparison. Springenberg et al. 2016
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Monte Carlo

• sample from posterior distribution over model parameters

• Goal: draw samples from posterior distribution π(θ), e.g. to get

uncertainties

• MCMC is often used for Bayesian inference

• uses a proposal distribution q (typically Gaussian) for diffusion

• problem: high rejection rate in Metropolis-Hastings acceptance in

high dimensions:

A(θi+1|θi ) = min(1,
π(θi+1)q(θi |θi+1)

π(θi )q(θi+1|θi )︸ ︷︷ ︸
acceptance probability

) (8)
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Hamiltonian Monte Carlo

• idea: exploit gradient to move around in typical set

⇒ better mixing

• used for example in the Stan probabilistic programming environment

M ?→ TM∗ Hamiltonian Flow−−−−−−−−−−→ TM∗ →M (9)

θ → (θ, p)
H→ (θ′, p′)→ θ′ (10)

H(θ, p) := − log π(p|θ)︸ ︷︷ ︸
“kinetic′′′

K(θ,p)

− log π(θ)︸ ︷︷ ︸
“potential′′′

U(θ)

(11)

(12)
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Hamiltonian system analogy

Figure 7: Properly adjusted momentum to stay in orbit, i.e. typical set around

the mode. Betancourt 2017
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Hamiltonian Flow

well-defined physical dynamics:

dθ

dt
=
∂H

∂p
=
∂K

∂p
(13)

dp

dt
= −∂H

∂θ
= −∂K

∂θ
− ∂U

∂θ
(14)

Problem: How to pick π(p|θ)? K (θ, p) := 1
2p

TM−1p + ... (inverse metric

to euclidean metric in sample space) Betancourt 2017
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Hamiltonian Flow

dθ = M−1p · dt (15)

dp = −∇θU(θ) · dt (16)
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Implementation problems

1. stay on level-set: symplectic integrators, e.g. leapfrog

2. integration time

3. each step needs a pass through the whole dataset for gradient and

the Metropolis Hasting-step because of discretization, otherwise we

introduce bias
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Stochastic Gradient Hamiltonian Monte Carlo

Chen, Fox, and Guestrin 2014

• use stochastic mini-batch sampling for gradient:

∇Ũ ≈ ∇U(θ) +N (0; V(θ)) (CTL)

• equivalent to stochastic gradient with momentum + noise calibration

• we use a Riemannian preconditioning mass matrix to adapt learning

rates in the beginning for M−1, but is a free parameter.

Springenberg et al. 2016

• Sidenote 1 : still significantly slower in convergence than Adam

• Sidenote 2 : bias not clear. Betancourt 2015

22



Naive SGHMC

dθ = M−1p · dt (17)

dp = −∇θU(θ) · dt +N (0; 2B(θ)dt) (18)

Problem: entropy increase: limt→∞ πt(θ) = unif.
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Proper SGHMC

dθ = M−1p · dt (19)

dp = −∇θŨ(θ) · dt −M−1Bp︸ ︷︷ ︸
friction

+N (0; 2B(θ)dt) (20)

SGD with momentum decay:

4θ = p · η (21)

4p = −∇θŨ(θ)η − αp︸︷︷︸
decay

(22)

Sampling leaves distribution π(θ) invariant (Fokker Planck Equation).

Chen, Fox, and Guestrin 2014
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Make Bayesian Neural Networks even sense?

• How well can we explore a million dimensional parameter space?
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Demo
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Questions?
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