Partially observable MDPs

Introduction

• Agent cannot directly observe its current state. E.g: Robot navigation with noisy actuators, medical applications. Need observations for determining the probable current state.

Markov Models		Do we have control over the state transitons?	
		NO	YES
Are the states completely observable?	YES	Markov Chain	MDP Markov Decision Process
	NO	HMM Hidden Markov Model	POMDP Partially Observable Markov Decision Process

Pr(Observing o | agent took action a and ended up in state s')

Assumptions for this talk

- T, O are known
- Finite horizon case
- Offline policies

Formal model

• Belief state *b*(*s*): Belief of the agent that it is in state s

$$b'(s') = \Pr(s' \mid o, a, b)$$

=
$$\frac{\Pr(o \mid s', a, b) \Pr(s' \mid a, b)}{\Pr(o \mid a, b)}$$

=
$$\frac{\Pr(o \mid s', a) \sum_{s \in S} \Pr(s' \mid a, b, s) \Pr(s \mid a, b)}{\Pr(o \mid a, b)}$$

=
$$\frac{O(s', a, o) \sum_{s \in S} T(s, a, s') b(s)}{\Pr(o \mid a, b)}.$$

Belief MDP

- \mathcal{B} , the set of belief states, comprise the state space;
- $\tau(b, a, b')$ is the state-transition function, which is defined as

$$\tau(b, a, b') = \Pr(b' \mid a, b) = \sum_{o \in \Omega} \Pr(b' \mid a, b, o) \Pr(o \mid a, b),$$

where

$$\Pr(b' \mid b, a, o) = \begin{cases} 1 & \text{if SE}(b, a, o) = b \\ 0 & \text{otherwise;} \end{cases}$$

• $\rho(b, a)$ is the reward function $\rho(b, a) = \sum_{s \in S} b(s)R(s, a)$

Policy trees

- Size of representation for a horizon H policy tree: $\frac{|\mathcal{O}|^{H}-1}{|\mathcal{O}|^{-1}}$
- Finding optimal policies for finite POMDPs is PSPACE-complete
- Existence of optimal solution to infinite horizon POMDPs is undecidable

Value function

 $V_p(b) = \sum_{s \in S} b(s) V_p(s) \leftarrow \text{Value function for state s corresponding to} \\ \alpha_p = \langle V_p(s_1), \dots, V_p(s_n) \rangle, \text{ then } V_p(b) = b \cdot \alpha_p$

$$V_t(b) = \max_{p \in \mathcal{P}} b \cdot \alpha_p$$

Value function

Value function is convex and piecewise linear in b

Some policies are completely dominated by others => Can prune the space of policies

Value iteration

• Initialize t = 0 and $V_0(b) = 0$ for all $b \in \mathcal{B}$.

• While $\sup_{b \in \mathcal{B}} |V_{t+1}(b) - V_t(b)| > \epsilon$, calculate $V_{t+1}(b)$ for all states $b \in \mathcal{B}$ according to the following equation, and then increment t:

$$V_{t+1}(b) = \max_{a \in \mathcal{A}} \left[R^b(b,a) + \gamma \sum_{b' \in \mathcal{B}} T^b(b,a,b') V_t(b') \right]$$

To address scalability: Do Value iteration + pruning at every t

Approximate solvers

- Point based algorithms
 - Maintain a fixed set of candidate beliefs (either random or reachable after few steps) and only update those
- QMDP
 - Ignore the observations, and update only on the basis of states and transitions
- SARSOP
 - Maintain and continuously refine the set of candidate beliefs
- Finite State Controller (FSC)