Non-Parametric Bayes

Mark Schmidt

UBC Machine Learning Reading Group

January 2016
Bayesian learning includes:

- Gaussian processes.
- Approximate inference.
- Bayesian nonparametrics.
Motivation: Choosing Number of Mixture Components

Consider density estimation with mixture of Gaussians:

How many clusters should we use?
Motivation: Choosing Number of Mixture Components

Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Standard approach:

1. Try out a bunch of different values for number of clusters.
2. Use a model selection criterion to decide (BIC, cross-validation, etc.).
Motivation: Choosing Number of Mixture Components

Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Bayesian non-parametric approach:

- Fit a single model where number of clusters adapts to data.
Motivation: Choosing Number of Mixture Components

Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Bayesian non-parametric approach:
- Fit a single model where number of clusters adapts to data.
- Number of clusters increases with dataset size.
- Standard **Gaussian mixture model** with \(k \) mixtures.

\[
x^i | z^i = c, \theta_c \sim \mathcal{N}(\mu_c, \Sigma_c), \quad z^i \sim \text{Cat}(\theta_1, \theta_2, \ldots, \theta_k),
\]
Finite Mixture Models

- Standard **Gaussian mixture model** with k mixtures.

$$x^i | z^i = c, \theta_c \sim N(\mu_c, \Sigma_c), \quad z^i \sim \text{Cat}(\theta_1, \theta_2, \ldots, \theta_k),$$

- The conjugate prior to the categorical distribution

$$p(z^i = c | \theta) = \theta_c,$$

is the **Dirichlet distribution**,

$$p(\theta | \alpha) \propto \theta_1^{\alpha_1-1}\theta_2^{\alpha_2-1}\ldots\theta_k^{\alpha_k-1}.$$

- We can think of Dirichlet as **distribution over probabilities** of k variables.
Finite Mixture Models

- **Standard Gaussian mixture model** with k mixtures.

$$x^i | z^i = c, \theta_c \sim \mathcal{N}(\mu_c, \Sigma_c), \quad z^i \sim \text{Cat}(\theta_1, \theta_2, \ldots, \theta_k),$$

- The conjugate prior to the categorical distribution

$$p(z^i = c | \theta) = \theta_c,$$

is the **Dirichlet distribution**,

$$p(\theta | \alpha) \propto \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \cdots \theta_k^{\alpha_k - 1}.$$

- We can think of Dirichlet as distribution over probabilities of k variables.
- With this and MCMC/variational inference, we can do the usual Bayesian stuff.
- However, this model requires us to **pre-specify** k. \/
We don’t want to pre-specify \(k \).

Naive approach:

- Put a prior over \(k \).
- Work with posterior over \(k, \theta \), and mixture parameters.
Infinite Mixture Models

- We don’t want to pre-specify k.
- Naive approach:
 - Put a prior over k.
 - Work with posterior over k, θ, and mixture parameters.
- Challenges:
 - Do we have to fit a model for every k?
 - For $k' < k$, posterior are defined over different spaces (needs reversible-jump MCMC).
We don’t want to pre-specify k.

Naive approach:
- Put a prior over k.
- Work with posterior over k, θ, and mixture parameters.

Challenges:
- Do we have to fit a model for every k?
- For $k' < k$, posterior are defined over different spaces (needs reversible-jump MCMC).

Non-parametric Bayesian approach:
- Assume $k = \infty$, but only a finite number were used to generate data.
Infinite Mixture Models

- We don’t want to pre-specify k.

- Naive approach:
 - Put a prior over k.
 - Work with posterior over k, θ, and mixture parameters.

- Challenges:
 - Do we have to fit a model for every k?
 - For $k' < k$, posterior are defined over different spaces (needs reversible-jump MCMC).

- Non-parametric Bayesian approach:
 - Assume $k = \infty$, but only a finite number were used to generate data.
 - Posterior will contain assignments of points to these clusters.
 - Posterior predictive can assign point to new cluster.
Recall that **stochastic process** is an infinite collection of random variables.

Gaussian process: “infinite-dimensional” Gaussian.
- Process is defined by mean function and covariance function.
- Useful non-parametric prior for continuous distributions.

Dirichlet process: “infinite-dimensional” Dirichlet.
- Process defined by concentration parameter α.
- Useful non-parametric prior for categorical distributions.

Also called the *Chinese restaurant process*.
Recall that **stochastic process** is an infinite collection of random variables.

Gaussian process: “infinite-dimensional” Gaussian.
- Process is defined by mean function and covariance function.
- Useful non-parametric prior for continuous distributions.

Dirichlet process: “infinite-dimensional” Dirichlet.
- Process defined by concentration parameter α.
- Useful non-parametric prior for categorical distributions.
- Also called the **Chinese restaurant process**.
The first customer sits at their own table.
The first customer sits at their own table.

The second customer:
- Sits at a new table with probability \(\frac{\alpha}{1+\alpha} \).
- Sits at first table with probability \(\frac{1}{1+\alpha} \).
The first customer sits at their own table.

The second customer:
- Sits at a new table with probability $\frac{\alpha}{1+\alpha}$.
- Sits at first table with probability $\frac{1}{1+\alpha}$.

The $(n+1)$ customer:
- Sits at a new table with probability $\frac{\alpha}{n+\alpha}$.
- Sits at table c with probability $\frac{n_c}{n+\alpha}$.
Chinese Restaurant Process

- At time n, defines probabilities over k “tables” and all others,

$$\left(\frac{n_1}{n + \alpha}, \frac{n_2}{n + \alpha}, \ldots, \frac{n_k}{n + \alpha}, \frac{\alpha}{n + \alpha} \right).$$

- Higher concentration α means more occupied tables.
 - For large n number of tables is $O(\alpha \log n)$.
 - We can put a hyper-prior on α.

- A subtle issue is that the CRP is exchangeable:
 - Up to label switching, probabilities are unchanged if order of customers is changed.

- An equivalent view of Dirichlet/Chinese-restaurant process is the “stick-breaking” process.
Dirichlet Process Mixture Models

- Standard finite Gaussian mixture likelihood (fixed variance Σ)

$$p(x|\Sigma, \theta, \mu_1, \mu_2, \ldots, \mu_k) = \sum_{c=1}^{k} \theta_c p(x|\mu_c, \Sigma),$$

where we might assume θ comes from a Dirichlet distribution.
Dirichlet Process Mixture Models

- Standard finite Gaussian mixture likelihood (fixed variance Σ)

$$p(x|\Sigma, \theta, \mu_1, \mu_2, \ldots, \mu_k) = \sum_{c=1}^{k} \theta_c p(x|\mu_c, \Sigma),$$

where we might assume θ comes from a Dirichlet distribution.

- Infinite Gaussian mixture likelihood,

$$p(x|\Sigma, \theta, \mu_1, \mu_2, \ldots) = \sum_{c=1}^{\infty} \theta_c p(x|\mu_c, \Sigma),$$

where we might assume θ comes from a Dirichlet process.

- So the DP gives us the non-zero θ_c values.

- In practice, variational/MCMC inference methods used.

https://www.youtube.com/watch?v=0Vh7qZY9sPs
Non-parametric Bayes place priors over infinite-dimensional objects.

- Complexity of model grows with data.

Various extensions exist (some will be discussed next time):
- Latent Dirichlet allocation (topic models).
- Beta (Indian buffet) process (PCA and factor analysis).
- Hierarchical Dirichlet process.
- Pólya trees (generating trees).
- Infinite hidden Markov models (infinite number of hidden states).
Non-parametric Bayes place priors over infinite-dimensional objects.
 - Complexity of model grows with data.

Gaussian processes define prior over infinite-dimensional functions.

Dirichlet processes define prior over infinite-dimensional probabilities.
 - Interpretation in terms of Chinese restaurant process.

Allows us to fit mixture models without pre-specifying number of mixtures.
Summary

- Non-parametric Bayes place priors over infinite-dimensional objects.
 - Complexity of model grows with data.
- Gaussian processes define prior over infinite-dimensional functions.
- Dirichlet processes define prior over infinite-dimensional probabilities.
 - Interpretation in terms of Chinese restaurant process.
- Allows us to fit mixture models without pre-specifying number of mixtures.
- Various extensions exist (some will be discussed next time):
 - Latent Dirichlet allocation (topic models).
 - Beta (Indian buffet) process (PCA and factor analysis).
 - Hierarchical Dirichlet process.
 - Pólya trees (generating trees).
 - Infinite hidden Markov models (infinite number of hidden states).