Multi Armed Bandits

Alireza Shafaei

Machine Learning Reading Group
The University of British Columbia
Summer 2017
Outline

A Quick Review
 Online Convex Optimization (OCO)
 Measuring The Performance

Bandit Convex Optimization
 Motivation
 Multi Armed Bandit
 A Simple MAB Algorithm
 EXP3

Stochastic Multi Armed Bandit
 Definition
 Bernoulli Multi Armed Bandit
 Algorithms

Contextual Bandits
 Motivation
Online Convex Optimization

Definition

- At each iteration t, the player chooses $x_t \in \mathcal{K}$.
- A convex loss function $f_t \in \mathcal{F} : \mathcal{K} \rightarrow \mathbb{R}$ is revealed.
- A cost $f_t(x_t)$ is incurred.
 - \mathcal{F} is a set of bounded functions.
 - f_t is revealed after choosing x_t.
 - f_t can be adversarially chosen.
Online Convex Optimization

Regret

- Given an algorithm A.
- Regret of A after T iterations is defined as:

$$\text{regret}_T(A) := \sup \left\{ \sum_{t=1}^{T} f_t(x_t) - \min_{x \in K} \sum_{t=1}^{T} f_t(x) \right\}$$

- Online Gradient Descent $O(GD\sqrt{T})$.
- If f_i is α-strongly convex then $O\left(\frac{G^2}{2\alpha}(1 + \log(T))\right)$.
Bandit Convex Optimization

Definition

1. In OCO we had access to $\nabla f_t(x_t)$.
2. In BCO we only observe $f_t(x_t)$.
3. Multi Armed Bandit further constrains the BCO setting.

1Material from [1].
Bandit Convex Optimization

Motivation

- In data networks, the decision maker can measure the RTD of a packet, but rarely has access to the congestion pattern of the entire network.

- In ad-placement, the search engine can inspect which ads were clicked through, but cannot know whether different ads, had they been chosen, would have been click through or not.

- Given a fixed budget, how to allocate resources among the research projects whose outcome is only partially known at the time of allocation and may change through time.

- Wikipedia. Originally considered by Allied scientists in World War II, it proved so intractable that, according to Peter Whittle, the problem was proposed to be dropped over Germany so that German scientists could also waste their time on it.
Multi Armed Bandit (MAB)

Definition

- On each iteration t, the player chooses an action i_t from a predefined set of discrete actions $\{1, \ldots, n\}$.
- An adversary, independently, chooses a loss $\in [0, 1]$ for each action.
- The loss associated with i_t is then revealed to the player.
- There are a variety of MAB specifications with various assumptions and constraints.
- This definition is similar to the multi-expert problem, except we do not observe the loss associated with the other experts.
MAB as a BCO

- The algorithms usually choose an action w.r.t a distribution over the actions.
- If we define $\mathcal{K} = \Delta_n$, an n-dimensional simplex then

$$f_t(x) = \ell_t^\top x = \sum_{i=1}^{n} \ell_t(i)x(i) \quad \forall x \in \mathcal{K}$$

- We have an exploration-exploitation trade-off.
- A simple approach would be to
 - Exploration With some probability, explore by choosing actions uniformly at random. Construct an estimate of the actions’ losses with the feedback.
 - Exploitation Otherwise, use the estimates to make a decision.
A Simple MAB Algorithm

Definition

- An algorithm can be constructed:

\textbf{Algorithm 17} Simple MAB algorithm

1: Input: OCO algorithm \(A \), parameter \(\delta \).
2: \textbf{for} \(t = 1 \) to \(T \) \textbf{do}
3: \hspace{1em} Let \(b_t \) be a Bernoulli random variable that equals 1 with probability \(\delta \).
4: \hspace{1em} \textbf{if} \(b_t = 1 \) \textbf{then}
5: \hspace{2em} Choose \(i_t \in \{1, 2, \ldots, n\} \) uniformly at random and play \(i_t \).
6: \hspace{2em} Let
\[
\hat{\ell}_t(i) = \begin{cases}
\frac{n}{\delta} \cdot \ell_t(i_t), & i = i_t \\
0, & \text{otherwise}
\end{cases}
\]
7: \hspace{1em} Let \(\hat{f}_t(x) = \hat{\ell}_t^T x \) and update \(x_{t+1} = A(\hat{f}_1, \ldots, \hat{f}_t) \).
8: \hspace{1em} \textbf{else}
9: \hspace{2em} Choose \(i_t \sim x_t \) and play \(i_t \).
10: \hspace{2em} Update \(\hat{f}_t = 0, \hat{\ell}_t = 0, x_{t+1} = A(\hat{f}_1, \ldots, \hat{f}_t) \).
11: \hspace{1em} \textbf{end if}
12: \textbf{end for}
A Simple MAB Algorithm

Analysis

- This algorithm guarantees:

\[\mathbb{E} \left[\sum_{t=1}^{T} \ell_t(i_t) - \min_i \sum_{t=1}^{T} \ell_t(i) \right] \leq O \left(T^{\frac{3}{4}} \sqrt{n} \right) \]

\[\mathbb{E}[\hat{\ell}_t(i)] = \mathbb{P}[b_t = 1] \cdot \mathbb{P}[i_t = i | b_t = 1] \cdot \frac{n}{\delta} \ell_t(i) = \ell_t(i) \]

\[\|\hat{\ell}_t\|_2 \leq \frac{n}{\delta} \cdot |\ell_t(i_t)| \leq \frac{n}{\delta} \]

- \[\mathbb{E}[\hat{f}_t] = f_t \]
A Simple MAB Algorithm

Analysis

$$
\mathbf{E}[\text{regret}_T] \\
= \mathbf{E}[\sum_{t=1}^{T} f_t(x_t) - \min_{x \in \Delta_n} \sum_{t=1}^{T} f_t(x)] \\
= \mathbf{E}[\sum_{t=1}^{T} \ell_t(i_t) - \min_i \sum_{t=1}^{T} \ell_t(i)] \\
= \mathbf{E}[\sum_{t=1}^{T} \ell_t(i_t) - \sum_{t=1}^{T} \ell_t(i^*)] \\
\leq \mathbf{E}[\sum_{t \notin S_T} \hat{\ell}_t(i_t) - \sum_{t \notin S_T} \hat{\ell}_t(i^*) + \sum_{t \in S_t} 1] \\
\leq \mathbf{E}[\sum_{t \notin S_T} \hat{\ell}_t(i_t) - \min_i \sum_{t \notin S_T} \hat{\ell}_t(i) + \sum_{t \in S_t} 1] \\
\leq \frac{3}{2} GD \sqrt{T} + \delta \cdot T \\
\leq 3G \sqrt{T} + \delta \cdot T \\
\leq 3 \frac{n}{\delta} \sqrt{T} + \delta \cdot T \\
= O(T^{3/4} \sqrt{n}).
$$

i* is indep. of $\hat{\ell}_t$

Theorem 3.1

For Δ_n, $D \leq 2$

$\|\ell_t\| \leq \frac{n}{\delta}$

$\delta = \sqrt{nT^{-\frac{1}{4}}}$
Algorithm 18 EXP3 - simple version

1: Input: parameter $\varepsilon > 0$. Set $x_1 = (1/n)1$.
2: for $t \in \{1, 2, ..., T\}$ do
3: Choose $i_t \sim x_t$ and play i_t.
4: Let
 \[
 \hat{l}_t(i) = \begin{cases}
 \frac{1}{x_t(i_t)} \cdot l_t(i_t), & i = i_t \\
 0, & \text{otherwise}
 \end{cases}
 \]
5: Update $y_{t+1}(i) = x_t(i)e^{-\varepsilon\hat{l}_t(i)}$, $x_{t+1} = \frac{y_{t+1}}{\|y_{t+1}\|_1}$
6: end for

- Has a worst-case near-optimal regret bound of $O(\sqrt{Tn \log n})$.
- See P104 of the OCO book for proof.
Stochastic Multi Armed Bandit

Definition

- On each iteration t, the player chooses an action i_t from a predefined set of discrete actions $\{1, \ldots, n\}$.
- Each action i has an underlying (fixed) probability distribution P_i with mean μ_i.
- The loss associated with i_t is then revealed to the player. (A sample is taken from P_{it}).
- P_i’s could be a simple Bernoulli variable.
- A more complex version could assume a Markov process for each action, within which the state of one or all processes change after each iteration.
- We still have the exploration-exploitation trade-off.
Bernoulli Multi Armed Bandit

Definition2

Algorithm 1 Bernoulli Multi Arm Bandit

1: for \(a \) in 1..\(K \) do
2: \(Q[a] = 0, N[a] = 0, S[a] = 0, F[a] = 0 \)
3: end for
4: for \(t \) in 1..\(T \) do
5: \(a = \text{PickArm}(Q, N, S, F) \)
6: \(r = \text{BernoulliReward}(a) \)
7: \(N[a] = N[a] + 1 \)
8: \(Q[a] = Q[a] + \frac{1}{N[a]} (r - Q[a]) \)
9: \(S[a] = S[a] + r \)
10: \(F[a] = F[a] + (1 - r) \)
11: end for

- \(N[a] \) The number of times arm \(a \) is pulled.
- \(Q[a] \) The running average of rewards for arm \(a \).
- \(S[a] \) The number of successes for arm \(a \).
- \(F[a] \) The number of failures for arm \(a \).
- The same notion of regret, except the optimal strategy is to pull the arm with the largest mean, \(\mu^* \).

2Material from [2].
Alireza Shafaei

Multi Armed Bandits

A Quick Review
Online Convex Optimization (OCO)
Measuring The Performance

Bandit Convex Optimization
Motivation
Multi Armed Bandit
A Simple MAB Algorithm
EXP3

Stochastic Multi Armed Bandit
Definition
Bernoulli Multi Armed Bandit
Algorithms

Contextual Bandits
Motivation

Algorithms

- Random Selection ⇒ $O(T)$.
- Greedy Selection ⇒ $O(T)$.
- ϵ-Greedy Selection ⇒ $O(T)$.
- Boltzmann Exploration ⇒ $O(T)$.
 \[
P(a) = \frac{\exp(Q[a]/\tau)}{\sum_a \exp(Q[a]/\tau)}
\]
- Upper-Confidence Bound ⇒ $O(\ln(T))$.
 \[
 A = \arg\max_a \left[Q[a] + \sqrt{\frac{2 \log t}{N[a]}} \right]
 \]
- Thompson Sampling ⇒ $O(\ln(T))$.
 For a in $1..K$:
 \[
 \theta[a] \sim Beta(S[a] + 1, F[a] + 1)
 \]
 \[
 A = \arg\max_a (\theta[a])
 \]
Algorithms

Empirical Evaluation

![Graph showing empirical evaluation of algorithms. The x-axis represents steps, and the y-axis represents the percentage of optimal arm pulls. Different algorithms are compared, including greedy, random, e-greedy, boltzmann, ucb, and thompson. The graph illustrates how each algorithm performs over a range of steps.](image-url)
Contextual Bandits

Motivation

- There are scenarios within which we can have access to more information.
- The extra information can be encoded as a context vector.
- In online advertising, the behaviour of each user, or the search context for instance, can provide valuable information.
- One simple way is to treat each context having its own bandit problem.
- Variations of the previous algorithms relate the context vector with the expected reward through linear models, neural networks, kernels, or random forests.
Thanks

Thanks! Questions?
References I

E. Hazan.
Introduction to Online Convex Optimization.

S. Raja.
Multi Armed Bandits and Exploration Strategies.
https://sudeepraja.github.io/Bandits/