
Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?

Minimizing Finite Sums

Mohamed Osama Ahmed
13/10/2015

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt

For minimizing finite sums, can we design a better method?

) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Motivation for Hybrid Methods

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Motivation for Hybrid Methods

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

The FG method uses all N gradients,

∇f (x t) =
1

N

N∑

i=1

∇fi (x t).

The SG method approximates it with 1 sample,

∇fit (x t) ≈
1

N

N∑

i=1

∇fi (x t).

A common variant is to use larger sample Bt ,

1

|Bt |
∑

i∈Bt
∇fi (x t) ≈

1

N

N∑

i=1

∇fi (x t).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

The FG method uses all N gradients,

∇f (x t) =
1

N

N∑

i=1

∇fi (x t).

The SG method approximates it with 1 sample,

∇fit (x t) ≈
1

N

N∑

i=1

∇fi (x t).

A common variant is to use larger sample Bt ,

1

|Bt |
∑

i∈Bt
∇fi (x t) ≈

1

N

N∑

i=1

∇fi (x t).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

The FG method uses all N gradients,

∇f (x t) =
1

N

N∑

i=1

∇fi (x t).

The SG method approximates it with 1 sample,

∇fit (x t) ≈
1

N

N∑

i=1

∇fi (x t).

A common variant is to use larger sample Bt ,

1

|Bt |
∑

i∈Bt
∇fi (x t) ≈

1

N

N∑

i=1

∇fi (x t).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

x t+1 = x t − αt

|Bt |
∑

i∈Bt
fi (x

t).

For a fixed sample size |Bt |, the rate is sublinear.

Gradient error decreases as sample size |Bt | increases.
Common to gradually increase the sample size |Bt |.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt | to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

x t+1 = x t − αt

|Bt |
∑

i∈Bt
fi (x

t).

For a fixed sample size |Bt |, the rate is sublinear.

Gradient error decreases as sample size |Bt | increases.

Common to gradually increase the sample size |Bt |.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt | to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Approach 1: Batching

The SG method with a sample Bt uses iterations

x t+1 = x t − αt

|Bt |
∑

i∈Bt
fi (x

t).

For a fixed sample size |Bt |, the rate is sublinear.

Gradient error decreases as sample size |Bt | increases.
Common to gradually increase the sample size |Bt |.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt | to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES!

The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

y t
i

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

y t
i

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

y t
i

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex,
with αt = 1/16L SAG has

E[f (x t)− f (x∗)] 6

(
1−min

{
µ

16L
,

1

8N

})t

C ,

where

C = [f (x0)− f (x∗)] +
4L

N
‖x0 − x∗‖2 +

σ2

16L
.

Linear convergence rate but only 1 gradient per iteration.
For well-conditioned problems, constant reduction per pass:

(
1− 1

8N

)N

≤ exp

(
−1

8

)
= 0.8825.

For ill-conditioned problems, almost same as deterministic
method (but N times faster).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex,
with αt = 1/16L SAG has

E[f (x t)− f (x∗)] 6

(
1−min

{
µ

16L
,

1

8N

})t

C ,

where

C = [f (x0)− f (x∗)] +
4L

N
‖x0 − x∗‖2 +

σ2

16L
.

Linear convergence rate but only 1 gradient per iteration.
For well-conditioned problems, constant reduction per pass:

(
1− 1

8N

)N

≤ exp

(
−1

8

)
= 0.8825.

For ill-conditioned problems, almost same as deterministic
method (but N times faster).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2

= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2

= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O(L

µ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, L
µ} log(1/ε)).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2

= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2

= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O(L

µ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, L
µ} log(1/ε)).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2

= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2

= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:

Stochastic: O(L
µ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, L
µ} log(1/ε)).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2

= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2

= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O(L

µ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, L
µ} log(1/ε)).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Comparing Deterministic and Stochatic Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
p = 47236)

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
p = 47236)

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Other Linearly-Convergent Stochastic Methods

Subsequent stochastic algorithms with linear rates:

Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]

Incremental surrogate optimization [Mairal, 2013].
Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,

2013, Zhang et al., 2013]

SAGA [Defazio et al., 2014]

SVRG has a much lower memory requirement (later in talk).

There are also non-smooth extensions (last part of talk).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Other Linearly-Convergent Stochastic Methods

Subsequent stochastic algorithms with linear rates:

Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]

Incremental surrogate optimization [Mairal, 2013].
Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,

2013, Zhang et al., 2013]

SAGA [Defazio et al., 2014]

SVRG has a much lower memory requirement.

There arealso non-smooth extensions.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG Implementation Issues

Basic SAG algorithm:

while(1)
Sample i from {1, 2, . . . ,N}.
Compute f ′i (x).
d = d − yi + f ′i (x).
yi = f ′i (x).
x = x − α

N d .

Practical variants of the basic algorithm allow:

Regularization.
Sparse gradients.
Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG Implementation Issues

Basic SAG algorithm:

while(1)
Sample i from {1, 2, . . . ,N}.
Compute f ′i (x).
d = d − yi + f ′i (x).
yi = f ′i (x).
x = x − α

N d .

Practical variants of the basic algorithm allow:

Regularization.
Sparse gradients.
Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].

Adaptive non-uniform sampling [Schmidt et al., 2013].

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG Implementation Issues

Basic SAG algorithm:

while(1)
Sample i from {1, 2, . . . ,N}.
Compute f ′i (x).
d = d − yi + f ′i (x).
yi = f ′i (x).
x = x − α

N d .

Practical variants of the basic algorithm allow:

Regularization.
Sparse gradients.
Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.

For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go.
Slowly learns to ignore well-classified examples.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG with Adaptive Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG

AG
D

L−B
FG

S

SG−C

ASG−C

PCD−L

DCA

SAG

0 10 20 30 40 50

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG

AGD

L−BFGS

SG−C
ASG−C

PCD−L

DCA

SAG

Datasets where SAG had the worst relative performance.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG

AGDL−BFGS SG−C
ASG−C

PCD−L

D
C

A

SAG

SAG−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG AGD L−BFGS

SG−C ASG−CPCD−L

DCA

SAG

SAG−LS (Lipschitz)

Adaptive non-uniform sampling helps a lot.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG with Mini-Batches

Reasons to use mini-batches with SAG:
1 Parallelize gradient calculation.
2 Decrease memory (only store gradient of the mini-batch).

3 Increase convergence rate.
(classic SG methods: only changes constant)

Convergence rate depends on L for mini-batches:

L(B) ≤ L(i), possibly by up to |B|.
Allows bigger step-size, α = 1/L(B).
Place examples in batches to make L(B) small.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG with Mini-Batches

Reasons to use mini-batches with SAG:
1 Parallelize gradient calculation.
2 Decrease memory (only store gradient of the mini-batch).
3 Increase convergence rate.

(classic SG methods: only changes constant)

Convergence rate depends on L for mini-batches:

L(B) ≤ L(i), possibly by up to |B|.
Allows bigger step-size, α = 1/L(B).
Place examples in batches to make L(B) small.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

SAG with Mini-Batches

Reasons to use mini-batches with SAG:
1 Parallelize gradient calculation.
2 Decrease memory (only store gradient of the mini-batch).
3 Increase convergence rate.

(classic SG methods: only changes constant)

Convergence rate depends on L for mini-batches:

L(B) ≤ L(i), possibly by up to |B|.
Allows bigger step-size, α = 1/L(B).
Place examples in batches to make L(B) small.

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Comparing SAG and SAGA

named-entity recognition tasks (CoNLL-2000)

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches.
Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .
For CRFs, only need to store marginals of parts.

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches.

Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .
For CRFs, only need to store marginals of parts.

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches.
Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .

For CRFs, only need to store marginals of parts.

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches.
Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .
For CRFs, only need to store marginals of parts.

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches.
Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .
For CRFs, only need to store marginals of parts.

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

If the above don’t work, use SVRG...

(optical character and named-entity recognition tasks)

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs

for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs
for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.

Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs
for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs
for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.

s and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Requires 2 gradients per iteration and occasional full passes,
but only requires storing d

Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?

Conclusions

- Deterministic methods are fast but requires N gradients
 per iteration.

- Stochastic methods require 1 gradient per iteration but
slow convergence.

- SAG, SVRG, and similar methods achieve faster
convergence rate with few gradient evaluations

