Minimizing Finite Sums

Mohamed Osama Ahmed 13/10/2015

$$\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$

data fitting term + regularizer

$$\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$

data fitting term + regularizer

- Stochastic methods:
 - O(1/t) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.

$$\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$

data fitting term + regularizer

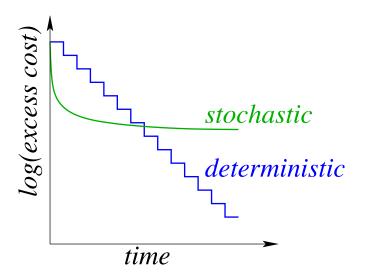
- Stochastic methods:
 - O(1/t) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\rho^t)$ convergence but requires N gradients per iteration.
 - The faster rate is possible because N is finite.

$$\min_{x \in \mathbb{R}^D} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$

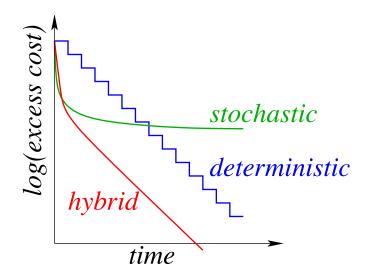
data fitting term + regularizer

- Stochastic methods:
 - O(1/t) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\rho^t)$ convergence but requires N gradients per iteration.
 - The faster rate is possible because N is finite.
- For minimizing finite sums, can we design a better method?

Motivation for Hybrid Methods



Motivation for Hybrid Methods



Hybrid Deterministic-Stochastic

• Approach 1: control the sample size.

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- The FG method uses all *N* gradients,

$$abla f(x^t) = rac{1}{N} \sum_{i=1}^N
abla f_i(x^t).$$

• The SG method approximates it with 1 sample,

$$abla f_{i_t}(x^t) pprox rac{1}{N} \sum_{i=1}^N
abla f_i(x^t).$$

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- The FG method uses all N gradients,

$$abla f(x^t) = rac{1}{N} \sum_{i=1}^N
abla f_i(x^t).$$

• The SG method approximates it with 1 sample,

$$abla f_{i_t}(x^t) \approx \frac{1}{N} \sum_{i=1}^N
abla f_i(x^t).$$

• A common variant is to use larger sample \mathcal{B}^t ,

$$\frac{1}{|\mathcal{B}^t|}\sum_{i\in\mathcal{B}^t}\nabla f_i(x^t)\approx \frac{1}{N}\sum_{i=1}^N\nabla f_i(x^t).$$

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

• For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.
- Common to gradually increase the sample size |B^t|.
 [Bertsekas & Tsitsiklis, 1996]
- We can choose $|\mathcal{B}^t|$ to achieve a linear convergence rate:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a Newton-like method.

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES!

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \nabla f_i(x^t)$$

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \nabla f_i(x^t)$$

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \mathbf{y}_i^t$$

• **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last *t* where *i* was selected. [Le Roux et al., 2012]

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \mathbf{y}_i^t$$

- **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last *t* where *i* was selected. [Le Roux et al., 2012]
- Stochastic variant of increment average gradient (IAG). [Blatt et al., 2007]

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \mathbf{y}_i^t$$

- **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last *t* where *i* was selected. [Le Roux et al., 2012]
- Stochastic variant of increment average gradient (IAG). [Blatt et al., 2007]
- Assumes gradients of non-selected examples don't change.
- Assumption becomes accurate as $||x^{t+1} x^t|| \to 0$.

Convergence Rate of SAG

• If each f'_i is *L*-continuous and *f* is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{N} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

Convergence Rate of SAG

• If each f'_i is *L*-continuous and *f* is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{N} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Linear convergence rate but only 1 gradient per iteration.
 - For well-conditioned problems, constant reduction per pass:

$$\left(1-rac{1}{8N}
ight)^N \leq \exp\left(-rac{1}{8}
ight) = 0.8825.$$

• For ill-conditioned problems, almost same as deterministic method (but *N* times faster).

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $\left(1-\sqrt{rac{\mu}{l}}
 ight)=$ 0.99761.
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$. Fastest possible first-order method: $\left(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761.$
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$. Fastest possible first-order method: $\left(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761.$
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250.$ Fastest possible first-order method: $\left(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048.$
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $\left(1-\sqrt{\frac{\mu}{L}}
 ight)=0.99761.$
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250.$
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048.$
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(N\frac{L}{\mu}\log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\frac{L}{\mu}}\log(1/\epsilon)).$
 - SAG: $O(\max\{N, \frac{L}{\mu}\}\log(1/\epsilon))$.

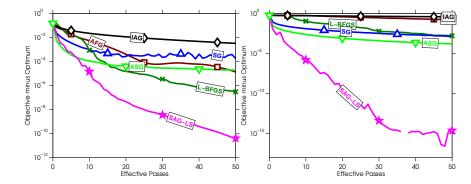
Comparing Deterministic and Stochatic Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



SAG Compared to FG and SG Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



Other Linearly-Convergent Stochastic Methods

• Subsequent stochastic algorithms with linear rates:

- Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
- Incremental surrogate optimization [Mairal, 2013].
- Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]
- SAGA [Defazio et al., 2014]

Other Linearly-Convergent Stochastic Methods

- Subsequent stochastic algorithms with linear rates:
 - Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
 - Incremental surrogate optimization [Mairal, 2013].
 - Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]
 - SAGA [Defazio et al., 2014]
- SVRG has a much lower memory requirement.
- There arealso non-smooth extensions.

SAG Implementation Issues

- Basic SAG algorithm:
 - while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.

•
$$y_i = f'_i(x)$$
.

•
$$x = x - \frac{\alpha}{N}d$$

SAG Implementation Issues

- Basic SAG algorithm:
 - while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.

•
$$y_i = f'_i(x)$$
.

•
$$x = x - \frac{\alpha}{N}d$$
.

- Practical variants of the basic algorithm allow:
 - Regularization.
 - Sparse gradients.
 - Automatic step-size selection.
 - Termination criterion.
 - Acceleration [Lin et al., 2015].

SAG Implementation Issues

- Basic SAG algorithm:
 - while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.

•
$$y_i = f'_i(x)$$
.

•
$$x = x - \frac{\alpha}{N}d$$
.

- Practical variants of the basic algorithm allow:
 - Regularization.
 - Sparse gradients.
 - Automatic step-size selection.
 - Termination criterion.
 - Acceleration [Lin et al., 2015].
 - Adaptive non-uniform sampling [Schmidt et al., 2013].

Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]

Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]

- For SAG: NO.
- Performance is intermediate between IAG and SAG.

Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]

- For SAG: NO.
- Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - For classic SG methods, can only improve constants.

Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]

- For SAG: NO.
- Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - For classic SG methods, can only improve constants.
 - For SAG, bias sampling towards Lipschitz constants L_i,

$$\|\nabla f_i(x) - \nabla f_i(y)\| \leq L_i \|x - y\|.$$

improves rate to depend on L_{mean} instead of L_{max} . (with bigger step size)

Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]

- For SAG: NO.
- Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - For classic SG methods, can only improve constants.
 - For SAG, bias sampling towards Lipschitz constants L_i,

$$\|\nabla f_i(x) - \nabla f_i(y)\| \leq L_i \|x - y\|.$$

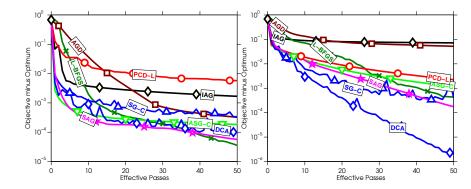
improves rate to depend on L_{mean} instead of L_{max} .

(with bigger step size)

- Adaptively estimate *L_i* as you go.
- Slowly learns to ignore well-classified examples.

SAG with Adaptive Non-Uniform Sampling

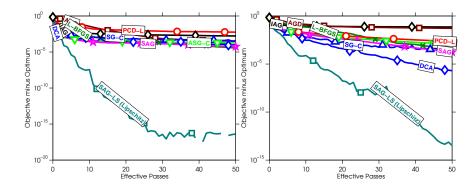
• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)



• Datasets where SAG had the worst relative performance.

SAG with Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)



• Adaptive non-uniform sampling helps a lot.

SAG with Mini-Batches

• Reasons to use mini-batches with SAG:

- Parallelize gradient calculation.
- ② Decrease memory (only store gradient of the mini-batch).

SAG with Mini-Batches

• Reasons to use mini-batches with SAG:

- Parallelize gradient calculation.
- ② Decrease memory (only store gradient of the mini-batch).
- Increase convergence rate.

(classic SG methods: only changes constant)

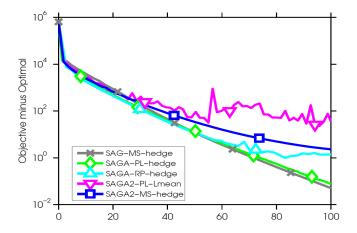
SAG with Mini-Batches

• Reasons to use mini-batches with SAG:

- Parallelize gradient calculation.
- ② Decrease memory (only store gradient of the mini-batch).
- Increase convergence rate. (classic SG methods: only changes constant)
- Convergence rate depends on *L* for mini-batches:
 - $L(\mathcal{B}) \leq L(i)$, possibly by up to $|\mathcal{B}|$.
 - Allows bigger step-size, $\alpha = 1/L(\mathcal{B})$.
 - Place examples in batches to make L(B) small.

Comparing SAG and SAGA

named-entity recognition tasks (CoNLL-2000)

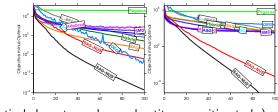


• A major disadvantage of SAG is the memory requirement.

- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches.

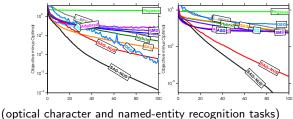
- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches.
 - Use structure in the objective:
 - For $f_i(x) = L(a_i^T x)$, only need to store N values of $a_i^T x$.

- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches.
 - Use structure in the objective:
 - For $f_i(x) = L(a_i^T x)$, only need to store N values of $a_i^T x$.
 - For CRFs, only need to store marginals of parts.



(optical character and named-entity recognition tasks)

- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches.
 - Use structure in the objective:
 - For $f_i(x) = L(a_i^T x)$, only need to store N values of $a_i^T x$.
 - For CRFs, only need to store marginals of parts.



• If the above don't work, use SVRG...

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x₀
- for s = 0, 1, 2...• $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ • $x^0 = x_s$

.

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x₀
- for s = 0, 1, 2...• $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ • $x^0 = x_s$ • for t = 1, 2, ..., m• Randomly pick $i_t \in \{1, 2, ..., N\}$ • $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s)$. • $x_{s+1} = x^t$ for random $t \in \{1, 2, ..., m\}$.

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x₀
- for s = 0, 1, 2...• $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ • $x^0 = x_s$ • for t = 1, 2, ..., m• Randomly pick $i_t \in \{1, 2, ..., N\}$ • $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s)$. • $x_{s+1} = x^t$ for random $t \in \{1, 2, ..., m\}$.

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s .

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x₀
- for s = 0, 1, 2...• $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ • $x^0 = x_s$ • for t = 1, 2, ..., m• Randomly pick $i_t \in \{1, 2, ..., N\}$ • $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s).$ • $x_{s+1} = x^t$ for random $t \in \{1, 2, ..., m\}$.

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s .

Practical issues similar to SAG (acceleration versions, automatic step-size/termination, handles sparsity/regularization, non-uniform sampling, mini-batches).

Conclusions

- Stochastic methods require 1 gradient per iteration but slow convergence.

- Deterministic methods are fast but requires N gradients per iteration.

- SAG, SVRG, and similar methods achieve faster convergence rate with few gradient evaluations