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Formal Definition
Tensors as Multi-Linear Maps

The tensor product of two vector spaces V and W over a
field F is another vector space over F. It is denoted
V ⊗K W or V ⊗W when the field is understood.

If {vi} and {wj} are bases for V and W , then the set
{vi ⊗ wj} is a basis for V ⊗W

If S : V → X and T : W → Y are linear maps, then the
tensor product of S and T is a linear map

S ⊗ T : V ⊗W → X ⊗ Y

defined by

(S ⊗ T )(v ⊗ w) = S(v)⊗ T (w)
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Sufficient Definition
Tensors as Multidimensional Arrays (adapted from Kolda and Bader 2009)

With respect to a given basis, a tensor is a
multidimensional array. E.g., a real Nth-order tensor
X ∈ RI1×I2×...×IN w.r.t. the standard basis is an
N-dimensional array where Xi1,i2,...,iN is the element at
index (i1, i2, ..., iN)

The order of a tensor is the number of dimensions or
modes or indices required to uniquely identify an element

So, a scalar is a 0−mode tensor, a vector is a 1−mode
tensor, and a matrix is a 2−mode tensor
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Tensors
Subarrays

Tensor fibers: higher-order analogue to matrix rows and
columns. For 3rd -order tensor, fix all but one index.

Figure: Fibers of a 3-mode tensor

All fibers are treated as columns vectors by convention.
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Tensors
Subarrays

Tensor slices: two-dimensional sections of a tensor,
defined by fixing all but two indices:

Figure: Slices of a 3rd -order tensor

Slices can be horizontal, lateral, or frontal, corresponding
to the diagrams above.
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Tensors Operations
Tensor-Matrix Product

Consider multiplying tensor by a matrix or vector in the
nth mode.

The n-mode (matrix) product of a tensor
X ∈ RI1×I2×...×IN with a matrix S ∈ RJ×In is denoted
X ×n S and lives in RI1×...×In−1×J×In+1×...×IN

Elementwise,

(X ×n S)i1,...,in−1,j ,in+1,...,iN =
In∑

in=1

xi1,i2,...,iN sj ,in
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Tensors Operations
Tensor-Matrix Product

Example. Consider the tensor X ∈ R3×2×2, with frontal
slices

X:,:,1 =

 1 4
2 5
3 6

 X:,:,2 =

 13 16
14 17
15 18

 U =

[
1 3 5
2 5 6

]

Then, the (1, 1, 1) element of the 1-mode matrix product
of X and U is:

(X ×1 U)1,1,1 =

I1=3∑
i1=1

xi1,1,1 × u1,i1

= 1× 1 + 2× 3 + 3× 5 = 22
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Tensors Operations
Tensor-Vector Product

The n-mode (vector) product of a tensor
X ∈ RI1×I2×...×IN with a vector w ∈ RIn is denoted X •n w
and lives in RI1×...×In−1×In+1×...×IN .

Elementwise,

(X •n w)i1,...,in−1,in+1,...,iN =

IN∑
in=1

xi1,i2,...,iNwin
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Tensors Operations
Tensor-Vector Product

Example. Consider the tensor X ∈ R3×2×2 as defined as
before, where X1,1,1 = 1 and X1,2,1 = 4. Then, the (1, 1)
element of the 2-mode vector product of X and w = [1 2]
is

(X •2 w)1,1 =

I2=2∑
i2=1

xi1,i2,i3 × wi2

= 1× 1 + 4× 2 = 9
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Multilinear form of a Tensor X

The multilinear form for a tensor X ∈ RI1×I2×I3 is defined
as follows.

Consider matrices Mi ∈ Rqi×pi for i ∈ 1, 2, 3. Then, the
tensor X (M1,M2,M3) ∈ Rp1×p2×p3 is defined as∑
j1∈[q1]

∑
j2∈[q2]

∑
j3∈[q3]

Xj1,j2,j3 ·M1(j1, :)⊗M2(j2, :)⊗M3(j3, :)

A simpler case is with vectors v ,w ∈ Rd . Then,

X (I, v ,w) :=
∑

j ,l∈[d ]

vjwlT (:, j , l) ∈ Rd

which is a multilinear combination of the mode-1 fibers
(columns) of the tensor X
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Rank One Tensors

An N-way tensor X is called rank one if it can be written
as the tensor product of N vectors, i.e.,

X = a(1) ⊗ a(2) ⊗ ...⊗ a(N). (1)

where ⊗ is the vector (outer) product. The simple form of
(1) implies that

Xi1,i2,...,iN = a
(1)
i1
× a

(2)
i2
× ...× a

(N)
iN

The following diagram exhibits a rank one 3-mode tensor
X = a⊗ b ⊗ c :
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Rank k Tensors

An order-3 tensor X ∈ Rd×d×d is said to have rank k if it
can be written as the sum of k rank-1 tensors, i.e.,

X =
k∑

i=1

wi · ai ⊗ bi ⊗ ci , wi ∈ R, ai , bi , ci ∈ Rd .

Analogy to SVD where M =
∑

i σiu ⊗ v>: suggests
finding a decomposition of an arbitrary tensor into a
”spectrum” of rank-one components:
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Tensor Power Method
Motivation

Consider a 3rd -order tensor of the form
A =

∑
i wiai ⊗ ai ⊗ ai . Considering A as a multilinear

map, we can represent its action on lower-order input
tensors (vectors and matrices) using its multilinear form:

A(B,C ,D) :=
∑
i

wi (B
Tai ) · (CTai ) · (DTai ).

Now suppose A had orthonormal columns. Then,
M3(I, a1, a1) =

∑
i wi · (I>ai ) · (a>i a1)2 = w1a1 + 0 + 0.

This is analogous to an eigenvector of a matrix. If v is an
eigenvector of M we can write

Mv = M(I, v) = λv
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Tensor Power Method
Whitening the Tensor

We’re extremely unlikely to encounter an empirical tensor
built from orthogonal components like this...

But can learn a whitening transform using the second
moment, M2 =

∑
i wiai ⊗ ai ≡

∑
i wiaia

>
i .

Whitening transforms the covariance matrix to the identity
matrix. The data is thereby decorrelated with unit
variance. The following diagram displays the action of a
whitening transform on data sampled from a bivariate
Gaussian:
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The whitening transform is invertible so long as the
empirical second moment matrix has full column rank

Given the whitening matrix W , we can whiten the
empirical third moment tensor by evaluating

T =M3(W ,W ,W ) =
∑
i

wi · (W>ai )
⊗3 =

∑
i∈[k]

wi · v⊗3
i

where {vi} is now an orthogonal basis
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Tensor Power Method
Procedure

Start from a whitened tensor T . Then:

1 Randomly initialize v . Evaluate the expression

v 7→ T (I, v , v)

||T (I, v , v , )||
until convergence to obtain v with eigenvalue λ

2 Deflate T = T − λv ⊗ v ⊗ v . Store eigenvalue/eigenvector
pair, and then go to 1.

This leads to the algorithm for recovering the columns of a
parameter matrix by representing its columns as moments:
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Summary of Method of Moments

Tensor factorization is NP-hard in general

For orthogonal tensors, factorization is polynomial in
sample size and number of operations

Unlike EM algorithm or variational Bayes, this method
converges to the global optimum

For a more detailed analysis and how to frame any latent
variable model using this method, see
newport.eecs.uci.edu/anandkumar/MLSS.html

newport.eecs.uci.edu/anandkumar/MLSS.html
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Outline

1 Tensors Redux
Tensor Concepts and Definition
Tensor Power Method Revisited

2 Tensor Learning for Neural Networks
Neural Network LearnIng Using Feature Tensors
(NNLIFT)
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Very recent work (last arXiv.org datestamp: Jan 11 2016)
on finding optimal weights for a two-layer neural network,
with notes on how to generalize to more complex
architectures:
https://arxiv.org/pdf/1506.08473.pdf

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar.
Beating the Perils of Non-Convexity: Guaranteed Training
of Neural Networks using Tensor Methods.

https://arxiv.org/pdf/1506.08473.pdf


Spectral
Methods II

G. Roeder

Tensors Redux

Tensor Concepts
and Definition

Tensor Power
Method
Revisited

Tensor
Learning for
Neural
Networks

Neural Network
LearnIng Using
Feature Tensors
(NNLIFT)

Summary

For Further
Reading

23/30

Very recent work (last arXiv.org datestamp: Jan 11 2016)
on finding optimal weights for a two-layer neural network,
with notes on how to generalize to more complex
architectures:
https://arxiv.org/pdf/1506.08473.pdf

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar.
Beating the Perils of Non-Convexity: Guaranteed Training
of Neural Networks using Tensor Methods.

https://arxiv.org/pdf/1506.08473.pdf


Spectral
Methods II

G. Roeder

Tensors Redux

Tensor Concepts
and Definition

Tensor Power
Method
Revisited

Tensor
Learning for
Neural
Networks

Neural Network
LearnIng Using
Feature Tensors
(NNLIFT)

Summary

For Further
Reading

24/30

Neural Network LearnIng Using Feature Tensors
(NNLIFT)

Target network is a label-generating model with
architecture f̃ (x) := E[ỹ |x ] = A>1 σ(A>2 x + b1) + b2:

Must assume input pdf p(x) is known ”sufficiently well”
for learning (or can be estimated using unsupervised
methods)
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Neural Network LearnIng Using Feature Tensors
(NNLIFT)

Key insight: there exists a transformation φ(·) of the input
{(xi , yi )} that captures the relationship between the
parameter matrices A1 and A2 and the input

The transformation generates feature tensors that can be
factorized using the method of moments

mth-order Score function, defined as (Janzamin et al.
2014)

Sm(x) := (−1)m
∇(m)

x p(x)

p(x)

where p(x) is the pdf of the random vector x ∈ Rd and

∇(m)
x is the mth order derivative operator
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The 1st order score function is the normalized gradient of
the log of the input density function

This encodes variations in the input distribution p(x). By
looking at the gradient of the distribution you get an idea
of where there is a large change occurring in the
distribution

The correlation E[y · S3(x)] between the third-order score
function S3(x) and the output y then has a particularly
useful form, because the x averages out in expectation.
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Neural Network LearnIng Using Feature Tensors
(NNLIFT)

In Lemma 6 of the paper, authors prove that the rank-1
components of the third order tensor E[ỹ · S3(x)] are the
columns of the weight matrix A1:

E[ỹ · S3(x)] =
k∑

j=1

λj · (A1)j ⊗ (A1)j ⊗ (A1)j ∈ Rd×d×d

It follows that the columns of A1 are recoverable using the
method of moments, with optimal convergence guarantees
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Neural Network LearnIng Using Feature Tensors
(NNLIFT)

The remainder of the steps can to the following algorithm:
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Summary of Talk

Tensorial representations of Latent Variable Models
promise to overcome shortcomings of EM algorithm and
variational Bayes

Tensors algebra involves non-trivial but conceptually
straightforward operations

These methods may point to a new direction in machine
learning research that gives guarantees in unsupervised
learning
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