Synchronous Stochastic Gradient

Outline

* Basics

* Comparison against asynchronous SGD
* Mitigating stragglers

* Enabling larger mini-batch sizes

* Decreasing communication complexity

Distributed SGD — Averaging Estimates

Algorithm 3 SimuParallelSGD(Examples {c',...c™}, Learning Rate 77, Machines k)

Define T' = |m/k|
Randomly partition the examples, giving 7" examples to each machine.
forall i € {1,...%} parallel do
Randomly shuffle the data on machine 2.
Initialize w; g = 0.
forallt € {1....7}:do
Get the tth example on’the ;th machine (this machine). ¢*
Wi ¢ < Wit—1 — NOwC' (Wi t—1)
end for
end for
Aggregate from all computers v = —} Zf:l w; ¢+ and return v.

Advantage: Needs only one round of communication. Works well for convex models.

Disadvantage: For non-convex models, averaging different local minima doesn’t make sense.

| S

nm e W

(=)

Distributed SGD — Averaging Gradients

Algorithm 1: Async-SGD worker £

Input: Dataset X
Input: B mini-batch size

while True do Algorithm 2: Async-SGD Parameter Server 7
Read 0), = (0[0],...,0[M]) from PS¢ Input: 40,71, ... learning rates.
G,(f) = i Input: o decay rate.
fori=1,...,Bdo Input: 0(°) model initialization.
Sample datapoint z; from X. | for¢t =0,1,... do
&P — @ + =V F(Zs; 0r). 2 Wait for gradient G from any worker.
end 3| 0TV L]« 090] - %Gli)
Send fo) to parameter servers. 4 H(t) 5] = a@(t—l)m il — a)Q(t)[j].
end

5 end

Comparison against asynchronous SGD

© Do not need to worry about stale gradients
© Do not need to set a smaller step-size compared to simple SGD
=> Will lead to faster (in terms of number of epochs) convergence

® Need to wait for the slowest machine (“straggler”) for each update
® Poor robustness to machine failure

Comparison against asynchronous SGD

e Staleness: number of updates that have occurred between its
corresponding read and update operations.
Test Error vs Staleness

1.6
1.4
1.2
1.0

........

doug >peg 'z daig

0.8

0.6

0.4

0.2
0 20 40 60 80 100 120

Tricks to make Asynchronous SGD work: Average Gradient Staleness
1. Slowly increase the number of workers over the first 3 epochs of training
2. Use lower initial learning rates

Test Classification Error

Synchronous SGD - Problem

Few stragglers slow down the algorithm!

CDF of Time to Collect k gradients ~ ,; Time to collect & gradients

Fraction of iterations

1.0
(e e S 26 —— Mean
0.8 — sy — Median
0.6 k=90 “m 29
—_— L.—Q7 v
0.4 B £ 20
' k'= 98 =
1.8
0.2 el =100
, 1.6
— k=100
0.0 —J 1.4
0 20 10 60 &0 100

Number of gradients, k

Thousands of iterations

Solution 1

Basic Idea: Drop the gradients of the slow workers

lterations to Converge Estimated Time to Converge

150

63
140 i
Ol
130
110 v 50
100 E
= 15
00
80 .
0 35
a0 0 T0 80 00 LOMD o) 60 T0 8() o) 100

Number of workers aggregated Number of workers aggregated

[3¥]

L7 T SN

=

Solution 2

Basic Idea: Use backup workers

Algorithm 3: Sync-SGD worker %k, where k =
| N +b

Algorithm 4: Sync-SGD Parameter Server

Input: Dataset A’
Input: B mini-batch size
fort =0.1,... do
Wait to read 89 = (8"[0],. .., 6 [M])
from parameter servers.
Gi_” r=: [
for:=1,...,Bdo
Sample datapoint z, ; from X
G « G + LVF(3,;6).
end

Send (Gﬁf). t) to parameter servers.
end

Input: 0. 71, ... learning rates.

Input: « decay rate.

Input: N number of mini-batches to aggregate.
Input: ') model initialization.

fort =0.1,... do

end

G =)
while |G| < N do
Wait for (G, t") from any worker.
if ' ==t then G « G U {G}.
else Drop gradient G.
end
QHH)[J'] — 9“)[]-] — Zc;'eg G[j].
0O [j] = a8V [j] + (1 —)@

Experimental Comparison

Convergence on Inception

0.785
~ 0.780
® 0.775
0.770
0.765
0.760

Test precision
o
-
on
wun

0.750
0.745

0 20

40 60
Time / h

53 async
106 async
212 async
50+3 sync
100+6 sync
200+12 sync

80

100

aa
(=)

o
@

2.6

Negative log likelihood

PixelCNN Min NLL Attained

——1

— 8 async
—— 16 async

—— 7+1 sync
1D+ LISYRT

Alternate solution

Use coding theory + data redundancy to always ensure that we get the full gradient and
ensure robustness to “some” number of stragglers

W, W, W3
W, W, W3
D1 D2 D3
D1 D2 D3 =L < 21
9./2 + 9> 9:-0s 9./2 + g5
91 9 9 |
\
A
A
g1+ 9. + g; (from any 2)
g1+ 9.+ 39
(a) Naive synchronous gradient de- (b) Gradient coding: The vector
scent g1 + g2 + g3 is in the span of any

two out of the vectors g1 /2 + g2,
g2 — g3 and g1 /2 + gs.

Improving synchronous SGD

Need larger batch-sizes to get the full benefit of parallelism

E Y
o
1

Generalization performance
decreases with higher batch-size

®

w
o,
-

/

w
o
T

N
(6

y —
)

ImageNet top-1 validation error

N
o

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size
Figure 1. ImageNet top-1 validation error vs. minibatch size.

Synchronous SGD with large batch-size

Competing(?) hypotheses: optimization difficulty vs poor generalization due to convergence to sharp minima

Today: Evidence for optimization difficulty and correcting for it

Solution: | Linear Scaling Rule: When the minibatch size is
multiplied by k, multiply the learning rate by k.

(Also has theoretical evidence + multiple other sources)

In practice: Breaks down when the network is changing rapidly, which commonly occurs
in early stages of training.

Hack: ~Warmup” - Gradually ramp up the learning rate from a small to a large value
across the first 5 epochs

Synchronous SGD with large batch-size

100

T T T T T T T T

kn=256, n= 0.1, 23.60%x0.12 1, 23.60%=x0.12
kn= 8k, n= 3.2, 25.88%%£0.56 2, 23.74%=%=0.09

.1, 23.60%+0.12 |
.2, 24.84%+0.37 1

kn=256, n= 0
3

kn=256, n= 0.
kn= 8k, n= 3.

kn= 8k, n=

901

training error %

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

epochs epochs epochs
(a) no warmup (b) constant warmup (c) gradual warmup

Figure 2. Warmup. Training error curves for minibatch size 8192 using various warmup strategies compared to minibatch size 256.
Validation error (mean=std of 5 runs) is shown in the legend, along with minibatch size £n and reference learning rate 7).

Note: Fails beyond batch-size of 8K.

Synchronous SGD with large batch-size

0.3
T s “With 352 GPUs (44 servers) our
f'cvi | - implementation completes one pass
= e over all 1.28 million ImageNet
2 0.24/‘ training images in about 30
g’?o_zz: ' seconds”
0.2

256 512 1k 2k 4K 8k 11k
mini-batch size

“No generalization issues when transferring across datasets and across tasks using
models trained with large minibatches.”

Decreasing communication complexity

Basic Idea: Transfer just the signs of gradients

Algorithm 1: SIGNSGD

Input: learning rate 0, current point x;,
g + stochasticGradient(xy,)
Tp41 ¢ T — 0sign(gr)

Algorithm 2: SIGNSGD with majority vote

Input: learning rate o, current point xy, #
workers M each with an independent
gradient estimate ¢, ()
on server

pull sign(g,,,) from each worker

‘ A . a
push sign [Z”;’:l sign(gm)} to each

worker
on each worker

c . M . ~
T4+l ¢ T — 0S1gN [Zm_l SIgn(g,,,)}

top 1 train accuracy

=
o

=
~

=
o

=
wn

o
~

sgd
——— signum

—— adam

—— sgd without wd

T T T T

20 40 60 80 100 120
epoch

Conclusion

* Synchronous SGD is simple and typically works better (both in terms
of time and performance) than asynchronous SGD.

* There are some ways to mitigate the effect of stragglers.

* To utilize the full power of the hardware, we need to enable training
with large mini-batch sizes. Increasing the learning rate with large
batches leads to fast convergence without any loss in performance.

* We can reduce the communication complexity by compressing the
gradients or using just their signs.

References

» Zinkevich, Martin, et al. "Parallelized stochastic gradient
descent." Advances in neural information processing systems. 2010.

* Chen, Jianmin, et al. "Revisiting distributed synchronous SGD." arXiv
preprint arXiv:1604.00981 (2016).

* Tandon, Rashish, et al. "Gradient coding: Avoiding stragglers in distributed
learning." International Conference on Machine Learning. 2017.

* Goyal, Priya, et al. "Accurate, large minibatch SGD: training imagenetin 1
hour." arXiv preprint arXiv:1706.02677 (2017).

* Bernstein, Jeremy, et al. "Compression by the signs: distributed learning is a
two-way street." (2018).

