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Distributed SGD – Averaging Estimates

Advantage: Needs only one round of communication. Works well for convex models. 

Disadvantage: For non-convex models, averaging different local minima doesn’t make sense. 



Distributed SGD – Averaging Gradients



Comparison against asynchronous SGD
 Do not need to worry about stale gradients 
 Do not need to set a smaller step-size compared to simple SGD 
=> Will lead to faster (in terms of number of epochs) convergence

 Need to wait for the slowest machine (“straggler”) for each update
 Poor robustness  to machine failure



Comparison against asynchronous SGD
• Staleness: number of updates that have occurred between its 

corresponding read and update operations.

Tricks to make Asynchronous SGD work:
1. Slowly increase the number of workers over the first 3 epochs of training 
2. Use lower initial learning rates



Synchronous SGD - Problem 
Few stragglers slow down the algorithm!



Solution 1 
Basic Idea: Drop the gradients of the slow workers



Solution 2
Basic Idea: Use backup workers



Experimental Comparison



Alternate solution
Use coding theory + data redundancy to always ensure that we get the full gradient and 
ensure robustness to “some” number of stragglers



Improving synchronous SGD 
Need larger batch-sizes to get the full benefit of parallelism 

Generalization performance 
decreases with higher batch-size 




Synchronous SGD with large batch-size
Competing(?) hypotheses: optimization difficulty vs poor generalization due to convergence to sharp minima

Today: Evidence for optimization difficulty and correcting for it

Solution:

(Also has theoretical evidence + multiple other sources)

Breaks down when the network is changing rapidly, which commonly occurs 
in early stages of training.

In practice:

Hack: “Warmup” - Gradually ramp up the learning rate from a small to a large value 
across the first 5 epochs



Synchronous SGD with large batch-size

Note: Fails beyond batch-size of 8K. 



Synchronous SGD with large batch-size

“With 352 GPUs (44 servers) our 
implementation completes one pass 
over all 1.28 million ImageNet 
training images in about 30 
seconds”

“No generalization issues when transferring across datasets and across tasks using 
models trained with large minibatches.”



Decreasing communication complexity
Basic Idea: Transfer just the signs of gradients



Conclusion
• Synchronous SGD is simple and typically works better (both in terms 

of time and performance) than asynchronous SGD. 
• There are some ways to mitigate the effect of stragglers. 
• To utilize the full power of the hardware, we need to enable training 

with large mini-batch sizes. Increasing the learning rate with large 
batches leads to fast convergence without any loss in performance. 

• We can reduce the communication complexity by compressing the 
gradients or using just their signs. 
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