
Synchronous Stochastic Gradient

Outline

• Basics
• Comparison against asynchronous SGD
• Mitigating stragglers
• Enabling larger mini-batch sizes
• Decreasing communication complexity

Distributed SGD – Averaging Estimates

Advantage: Needs only one round of communication. Works well for convex models.

Disadvantage: For non-convex models, averaging different local minima doesn’t make sense.

Distributed SGD – Averaging Gradients

Comparison against asynchronous SGD
 Do not need to worry about stale gradients
 Do not need to set a smaller step-size compared to simple SGD
=> Will lead to faster (in terms of number of epochs) convergence

 Need to wait for the slowest machine (“straggler”) for each update
 Poor robustness to machine failure

Comparison against asynchronous SGD
• Staleness: number of updates that have occurred between its

corresponding read and update operations.

Tricks to make Asynchronous SGD work:
1. Slowly increase the number of workers over the first 3 epochs of training
2. Use lower initial learning rates

Synchronous SGD - Problem
Few stragglers slow down the algorithm!

Solution 1
Basic Idea: Drop the gradients of the slow workers

Solution 2
Basic Idea: Use backup workers

Experimental Comparison

Alternate solution
Use coding theory + data redundancy to always ensure that we get the full gradient and
ensure robustness to “some” number of stragglers

Improving synchronous SGD
Need larger batch-sizes to get the full benefit of parallelism

Generalization performance
decreases with higher batch-size

Synchronous SGD with large batch-size
Competing(?) hypotheses: optimization difficulty vs poor generalization due to convergence to sharp minima

Today: Evidence for optimization difficulty and correcting for it

Solution:

(Also has theoretical evidence + multiple other sources)

Breaks down when the network is changing rapidly, which commonly occurs
in early stages of training.

In practice:

Hack: “Warmup” - Gradually ramp up the learning rate from a small to a large value
across the first 5 epochs

Synchronous SGD with large batch-size

Note: Fails beyond batch-size of 8K.

Synchronous SGD with large batch-size

“With 352 GPUs (44 servers) our
implementation completes one pass
over all 1.28 million ImageNet
training images in about 30
seconds”

“No generalization issues when transferring across datasets and across tasks using
models trained with large minibatches.”

Decreasing communication complexity
Basic Idea: Transfer just the signs of gradients

Conclusion
• Synchronous SGD is simple and typically works better (both in terms

of time and performance) than asynchronous SGD.
• There are some ways to mitigate the effect of stragglers.
• To utilize the full power of the hardware, we need to enable training

with large mini-batch sizes. Increasing the learning rate with large
batches leads to fast convergence without any loss in performance.

• We can reduce the communication complexity by compressing the
gradients or using just their signs.

References
• Zinkevich, Martin, et al. "Parallelized stochastic gradient

descent." Advances in neural information processing systems. 2010.
• Chen, Jianmin, et al. "Revisiting distributed synchronous SGD." arXiv

preprint arXiv:1604.00981 (2016).
• Tandon, Rashish, et al. "Gradient coding: Avoiding stragglers in distributed

learning." International Conference on Machine Learning. 2017.
• Goyal, Priya, et al. "Accurate, large minibatch SGD: training imagenet in 1

hour." arXiv preprint arXiv:1706.02677 (2017).
• Bernstein, Jeremy, et al. "Compression by the signs: distributed learning is a

two-way street." (2018).

