Synchronous Stochastic Gradient
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Distributed SGD — Averaging Estimates

Algorithm 3 SimuParallelSGD(Examples {c',...c™}, Learning Rate 77, Machines k)

Define T' = |m/k|
Randomly partition the examples, giving 7" examples to each machine.
forall i € {1,...%} parallel do
Randomly shuffle the data on machine 2.
Initialize w; g = 0.
forallt € {1....7}:do
Get the tth example on’the ;th machine (this machine). ¢*
Wi ¢ < Wit—1 — NOwC' (Wi t—1)
end for
end for
Aggregate from all computers v = —} Zf:l w; ¢+ and return v.

Advantage: Needs only one round of communication. Works well for convex models.

Disadvantage: For non-convex models, averaging different local minima doesn’t make sense.
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Distributed SGD — Averaging Gradients

Algorithm 1: Async-SGD worker £

Input: Dataset X
Input: B mini-batch size

while True do Algorithm 2: Async-SGD Parameter Server 7
Read 0), = (0[0],...,0[M]) from PS¢ Input: 40,71, ... learning rates.
G,(f) = i Input: o decay rate.
fori=1,...,Bdo Input: 0(°) model initialization.
Sample datapoint z; from X. | for¢t =0,1,... do
&P — @ + =V F(Zs; 0r). 2 Wait for gradient G from any worker.
end 3| 0TV L]« 090] - %Gli)
Send fo) to parameter servers. 4 H(t) 5] = a@(t—l)m il — a)Q(t)[j].
end

5 end



Comparison against asynchronous SGD

© Do not need to worry about stale gradients
© Do not need to set a smaller step-size compared to simple SGD
=> Will lead to faster (in terms of number of epochs) convergence

® Need to wait for the slowest machine (“straggler”) for each update
® Poor robustness to machine failure



Comparison against asynchronous SGD

e Staleness: number of updates that have occurred between its
corresponding read and update operations.
Test Error vs Staleness
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Tricks to make Asynchronous SGD work: Average Gradient Staleness
1. Slowly increase the number of workers over the first 3 epochs of training
2. Use lower initial learning rates

Test Classification Error



Synchronous SGD - Problem

Few stragglers slow down the algorithm!
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Thousands of iterations

Solution 1

Basic Idea: Drop the gradients of the slow workers
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Solution 2

Basic Idea: Use backup workers

Algorithm 3: Sync-SGD worker %k, where k =
| N +b

Algorithm 4: Sync-SGD Parameter Server

Input: Dataset A’
Input: B mini-batch size
fort =0.1,... do
Wait to read 89 = (8"[0],. .., 6 [M])
from parameter servers.
Gi_” r=: [
for:=1,...,Bdo
Sample datapoint z, ; from X
G « G + LVF(3,;6).
end

Send (Gﬁf). t) to parameter servers.
end

Input: 0. 71, ... learning rates.

Input: « decay rate.

Input: N number of mini-batches to aggregate.
Input: ') model initialization.

fort =0.1,... do

end

G =)
while |G| < N do
Wait for (G, t") from any worker.
if ' ==t then G « G U {G}.
else Drop gradient G.
end
QHH)[J'] — 9“)[]-] — Zc;'eg G[j].
0O [j] = a8V [j] + (1 — )@




Experimental Comparison

Convergence on Inception

0.785
~ 0.780
® 0.775
0.770
0.765
0.760

Test precision
o
-
on
wun

0.750
0.745

0 20

40 60
Time / h

53 async
106 async
212 async
50+3 sync
100+6 sync
200+12 sync

80

100

aa
(=)

o
@

2.6

Negative log likelihood

PixelCNN Min NLL Attained

——1

— 8 async
—— 16 async

—— 7+1 sync
1D+ LISYRT




Alternate solution

Use coding theory + data redundancy to always ensure that we get the full gradient and
ensure robustness to “some” number of stragglers
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g1+ 9.+ 39
(a) Naive synchronous gradient de- (b) Gradient coding: The vector
scent g1 + g2 + g3 is in the span of any

two out of the vectors g1 /2 + g2,
g2 — g3 and g1 /2 + gs.



Improving synchronous SGD

Need larger batch-sizes to get the full benefit of parallelism
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Figure 1. ImageNet top-1 validation error vs. minibatch size.



Synchronous SGD with large batch-size

Competing(?) hypotheses: optimization difficulty vs poor generalization due to convergence to sharp minima

Today: Evidence for optimization difficulty and correcting for it

Solution: | Linear Scaling Rule: When the minibatch size is
multiplied by k, multiply the learning rate by k.

(Also has theoretical evidence + multiple other sources)

In practice: Breaks down when the network is changing rapidly, which commonly occurs
in early stages of training.

Hack: ~Warmup” - Gradually ramp up the learning rate from a small to a large value
across the first 5 epochs



Synchronous SGD with large batch-size
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Figure 2. Warmup. Training error curves for minibatch size 8192 using various warmup strategies compared to minibatch size 256.
Validation error (mean=std of 5 runs) is shown in the legend, along with minibatch size £n and reference learning rate 7).

Note: Fails beyond batch-size of 8K.



Synchronous SGD with large batch-size
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“No generalization issues when transferring across datasets and across tasks using
models trained with large minibatches.”



Decreasing communication complexity

Basic Idea: Transfer just the signs of gradients

Algorithm 1: SIGNSGD

Input: learning rate 0, current point x;,
g + stochasticGradient(xy,)
Tp41 ¢ T — 0sign(gr)

Algorithm 2: SIGNSGD with majority vote

Input: learning rate o, current point xy, #
workers M each with an independent
gradient estimate ¢, ()
on server

pull sign(g,,,) from each worker

‘ A . a
push sign [Z”;’:l sign(gm )} to each

worker
on each worker

c . M . ~
T4+l ¢ T — 0S1gN [Zm_l SIgn(g,,,)}
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Conclusion

* Synchronous SGD is simple and typically works better (both in terms
of time and performance) than asynchronous SGD.

* There are some ways to mitigate the effect of stragglers.

* To utilize the full power of the hardware, we need to enable training
with large mini-batch sizes. Increasing the learning rate with large
batches leads to fast convergence without any loss in performance.

* We can reduce the communication complexity by compressing the
gradients or using just their signs.
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