Introduction to bandits

(some slides stolen from Csaba’s AAAI tutorial)

Motivation

Do not have complete information about the
effectiveness or side-effects of the drugs.
Aim: Infer the best drug by running a
sequence of trials

Mapping to a bandits algorithm:

e Each drug choice is mapped to an arm and
its reward is mapped to the drug's
effectiveness.

e Administering a drug is an action and is
equivalent to pulling the corresponding arm.

e The trial goes on for n rounds.

Other applications: Recommender Systems, Viral Marketing, Network Routing,
Ad Placement

Introduction

How to tell if your problem is a bandit problem?

Three core properties:
1. Sequentially taking actions of unknown quality

2. The feedback provides information about quality of chosen action
3. There is no state

Assumptions:

1. Stochasticity: The reward for each arm is sampled from its underlying
distribution. The

2. Finiteness and Independence: The number of arms is finite and the reward
for each arm is independent of the others.

3. Stationarity: The reward distributions of the arms do not change over time.

Introduction

Algorithm 1 GENERIC BANDIT FRAMEWORK
I: fort=1to T do
2: SELECT: Use the bandit algorithm to decide which arm(s) to pull.
3: OBSERVE: Pull the selected arm(s) and observe the reward and associated feed-
back.
4: UPDATE: Update the estimated reward for the arms(s).

Is a special tractable case of RL

- i
Performance Metric: Cumulative regret By = n,u* — K E Xy
L. 1=1 3

Results in an exploration-exploitation trade-off:
Exploration: Pull an arm to learn more about it.
Exploitation: Pull the arm that we know has a higher reward.

Multi-armed bandits

OBSERVE: Can observe reward immediately on pulling the arm. Rewards are
scalars bounded on the [0,1] interval.

UPDATE: Use the mean of rewards obtained on pulling arm / as the empirical
estimated reward for that arm.

SELECT: Explore-Then-Commit, Epsilon-Greedy, Upper Confidence Bound,
Thompson sampling

Explore-Then-Commit
1 Choose each action m times
2 Find the empirically best action I € {1,2,..., K}

3 Choose A; = I for all remaining rounds

Explore-Then-Commit

When to commit: 1M = |' log (nA2)—‘

2
Rngmin{nA, A+A10g (71A) 4

+ — i
A A } (Gap-dependent Bound)

Worst case is when A ~ /1/n with R,, ~ /n (Gap-free Bound)
- Need advance knowledge of the horizon n

+ Optimal tuning depends on A
 Does not behave well with K > 2

Epsilon-Greedy

A; = Uniform{1,2,... K} (With probability ¢)

Find the empirically best action 7 € {1,2,..., K}

Choose A, — I (With probability 1 — ¢)

+ Interleaves exploration and exploitation.
Doesn’t require knowledge of the gap or the horizon.
+ Popularly used and works well in practice.

+

- Performance is sensitive to the choice of epsilon.
- Results in suboptimal n™{?4} regret.

Optimism in the face of uncertainty

Let 45(t) = 7y 2ogm1 L(As = 9 X

2log(1/9)
T;(t— 1)

optimistic estimate = [;(t — 1) + \/
1 Choose each action once

2 Choose the action maximising

. 2 log(t3
A; = argmax; [i;(t — 1)%,V/j}(;§(i;

3 Goto 2

Optimism in the face of uncertainty

B ~, log(n)
Ry =i (Z (Am i >)
5 0

By =0 <\/Kn log(n))

+ Doesn’t require knowledge of the gap or the horizon.
+ Results in near-optimal regret.

Thompson sampling
P_iis the posterior distribution (conditioned on the observed rewards) for arm j
i ~ B
Ay = argmazx |i;

Update P Ay

+ Simple to implement. Only requires a sampling procedure
Theoretically, it results in near-optimal regret.
+ Often works better than UCB in practice.

+

- In some variants, it tends to over-explore.

Structured Bandits

e Arms (choices) can be related by a structural assumption on the action space
or according to their corresponding features. Eg: ltems in a Rec-sys.

e In problems with large number of arms, learning about each arm separately is
inefficient.

e Contextual Bandits: Each arm j has a feature vector X; and there exists §*

E[reward for arm j] = h(x;, 0")

e Linear Bandits: h(X, 9) — <X, ‘9>
e Combinatorial Bandits: The space of arms are related according to a
combinatorial constraint.

Contextual Bandits
UPDATE: [4(0) = > ;ep, 108 [P (yilzi, 0)]

0; € argmaxy L:(0)
Linear Bandits:

R,=L max(a, 0,) — X;

(Non)-Linear Bandits

Epsilon-Greedy

ji ~ Uniform{1,2,... K} (With probability ¢) - O(nM2/3}) regret
, ~ . N + FEasy to extend for
Jt = arg max(xj, 01) (With probability 1 —¢) non-linear bandits
J
LinUCB 2
8dn g, log trace(V(:) + nL
. A 1 ddetH(Vo)
Jj+ = argmax |(X;,0) +c- \/X;-_Mt_ X
J - Don’t know how to construct

confidence intervals for
complex functions

(Non)-Linear Bandits

Thompson sampling
+ O(d nM%}) regret

0 ~ P(0|Dy) + Can use approximate sampling
: P procedures for complex functions
Jt = arg max(x,,)

J

Bootstrapping
- Not well developed theory.

Z log [P(yi|x;,0)] + Need to compute only point
estimates.
i€D

~

5]- € argmaxy L(0)

Bandits everywhere!

Adversarial Bandits (relaxing assumption 1)
Gaussian process Bandits (relaxing assumption 2)
Restless Bandits (relaxing assumption 3)

Rotting Bandits

Duelling Bandits

Firing Bandits

Difference objective functions:
Best-arm identification
Bayesian bandits

