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Copula Model

The Copula model is a joint probability distribution...
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Motivating example



A Motivating Example
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A Motivating Example

SELL!
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A Motivating Example
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UGM and Gaussian graphical



UGM and Multivariate Gaussian

Graph with nodes V and edges E.

G � (V, E)

p(x) ∼
d∏

j�1
φj(xj)

∏
(i,j)∈E

φĳ(xi, xj)
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UGM and Multivariate Gaussian

p(x) ∼ exp(−
1
2

(x − µ)T
∑

−1(x − µ))

p(x) ∼
( d∏

i�1

d∏
j�1

exp(−
1
2

xixjΣ
−1
ĳ )︸             ︷︷             ︸

φĳ(xi ,xj)

) ( d∏
i�1

exp(xivi)︸    ︷︷    ︸
φi(xi)

)

# Pair-wise Markov property holds iff Σ−1v1,v2 � 0
# Edges of G correspond with off-diagnol non-zero elements
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Limitations of M. Gaussian and Motivation for Copula

Advantages of Gaussian Graphical
Model:
# Covariance matrix conjugate

with G-Wishart prior.
# Relatively easy to sample.
# Overall cheap and simple.

Disadvantages of Gaussian
Graphical Model:
# Unimodal joint distribution
# Marginals are Gaussian
# Random variables must be

continuous
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Limitations of M. Gaussian and Motivation for Copula
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Limitations of M. Gaussian and Motivation for Copula
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Limitations of M. Gaussian and Motivation for Copula

Disadvantages of Gaussian
Graphical Model:
# Uni-modal joint distribution
# Marginals are Gaussian
# Random variables must be

continuous

Solved by Copula Model:
# Multi-modal joint distribution
# Marginals can be arbitrary

functions
# Both discrete and continuous

variables
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Copula model



The Copula Model

If we have d random variables and we want to satisfy the following
conditions:

# Marginals can be arbitrary functions
# Both discrete and continuous variables

Then what is the natural way to combine the random variables into a
joint distribution?
Answer: use their CDF’s
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Mapping the CDF

In order to allow continuous and discrete variables to "communicate,"
we consider a joint distribution as a function of marginal CDF’s.

F(F1(x1), F2(x2), ..., Fd(xd))

But working in CDF space is not nice.
Idea: we map the marginals CDF’s back into a latent variable.

F(φ−1[F1(x1)], φ−1[F2(x2)], ..., φ−1[Fd(xd)])

18



Mapping the CDF

Figure : Mapping from observed to latent variable via CDF. Multimodal
to unimodal.
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Mapping the CDF

Figure : Mapping from observed to latent variable via CDF. Multimodal
to unimodal.
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Mapping the CDF

Figure : Mapping from observed to latent variable via CDF. Multimodal
to unimodal.
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Mapping the CDF

We’ve been talking about mapping
the marginal of x to a latent variable
but do we know the marginals?

Yes! Given a set of data, we can
approximate marginals.
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Gaussian Copula

Notation:

# ϕ(x) - standard normal density (PDF)
# Φ(x) - standard normal Cumulative Distribution Function (CDF)
# Φ−1(x) - Inverse CDF
# Latent random variable Z
# CDF F1(x1) � Φ(z1)
# PDF f1(x1) � 1

σ1
ϕ(z1)
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Gaussian Copula

For any multivariate distribution, with CDF F and marginal CDF’s Fi,
copula C is such distribution on [0, 1]d s.t.

F(x1, x2 . . . , xd) � C(F1(x1), . . . , F1(xd))

� C(φ−1[F1(x1)], φ−1[F2(x2)], . . . , φ−1[Fd(xd)])
� C(z1, z2, . . . , zd)
� Φd(z1, z2, . . . , zd)

(1)

We picked φ and Φd to be Gaussian but they could be Student-t, Laplace,
etc.
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Gaussian Copula

CDF
F(x) � C(F1(x1), F2(x2), . . . , Fd(xd))

PDF

f (x) � c(F1(x1), F2(x2), . . . , Fd(xd))
d∏

i�i
fi(xi)

where fi(xi) is the marginal PDF.
Copula density c is defined by:

c(F1(x1), F2(x2), . . . , Fd(xd)) �
∂dC

∂F1 . . . ∂Fd
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Chain Rule

# 2-D case

f (x, y) �
∂2C(Fx(x), Fy(y))

∂X∂Y

�
∂
X

(
∂
Y

(
C(Fx(x), Fx(y))

))
�
∂
X

(
∂C
∂Fy

dFy

dy

)
�

∂2C
∂Fx∂Fy

·
dFx
dX

dFy

dY
� copula density × product of marginal pdf

26



Gaussian Copula

PDF can be written with a correlation matrix K:

f (x) �
1

|K|
1
2
exp{−

1
2

z(K−1 − I)zT
}

d∏
i�1

1
σi
ϕ(zi)

where
zi � Φ

−1 [Fi(xi)]

Density of copula:

c(x) �
1

|K|
1
2
exp(−

1
2

z(K−1 − I)zT)
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Special Case: Uniform Correlation Structure

K �

*....
,

1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

+////
-

, ρ ∈ (
−1

d − 1
, 1]

Solving for K−1 and |K|,

c(x) � k1(ρ, d) ∗ exp
{
k2(ρ, d)

(
(d − 1)ρ

d∑
i�1

z2i − 2
d∑

j�1

∑
i<j

zizj

)}
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Special Case: Serial Correlation Structure

K �

*....
,

1 ρ . . . ρd−1

ρ 1 . . . ρd−2

...
...

. . .
...

ρd−1 ρd−2 . . . 1

+////
-

, ρ ∈ (
−1

d − 1
, 1]

Solving for K−1 and |K|,

c(x) � k3(ρ, d) ∗ exp
{
k4(ρ, d)

(
2ρ

d∑
i�1

z2i − ρ(z21 + z2d) − 2
d−1∑
i�1

zizi+1

)}
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Copula inference



Inference

Given n points of d dimensional data x1:n, we would like to find the
relationship between pairs of random variables.

G � (V, E) ⇒ {K|Kĳ � 0 if (i, j) < E}

P(Zi⊥Zj |Z−i−j) � 1 −
1
T

T∑
t�1

Iĳ(Gt)
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Pre-requisites

Markov properties associated with UGM for Z translate into Markov
properties for X [proof omitted]:

P(Xi⊥Xj |X−i−j) � P(Zi⊥Zj |Z−i−j) � 1 −
1
T

T∑
t�1

Iĳ(Gt)

Iĳ(G) �



1, if (i, j) ∈ E
0, otherwise
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Inference can be done independent of marginals

Given x(1:n), any set of marginal CDF’s will obey the following constarint
A on z(1:n):

A(x(1:n)) �
[
liv < zi

v < ui
v : 1 ≤ i ≤ n, 1 ≤ v ≤ d

]
liv � max{zk

v : xk
v < xi

v}, ui
v � min{zk

v : xi
v < xk

v}

If z(1:n) obey constraint A, no need for marginals.
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Inference can be done independent of marginals

Idea: Only order of zi matter
because choosing Fi is simply
choosing a way to
"connect-the-dots" in marginal
CDF’s of x.
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Inference

# G be a graph defining a gaussian graphical model for the latent
variables Zv

# Joint posterior distribution of K, the latent data z(1:n) and the Graph
is,

p(K, z1:n,G|C) ∝ p(z1:n
|K,C) × p(K|G) × p(G)

C is the event that z(1:n) obeys constraint A(x(1:n))

# Joint distribution is not defined if K < PG. PG is the set of symmetric,
positive, definite matrices "obeying" graph G
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Inference Algorithm

Since joint distribution is not defined for K < PG, construct Gibbs
sampling algorithm for the marginal:

p(z(1:n) ,G|C) �
∫

K∈PG

p(K, z(1:n) ,G|C)dK
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Gibbs sampling Algorithm

We have a joint density,

f (x, y1, ..., yk)

and we are interested in the marginal density,

f (x) �
∫ ∫

..
∫

f (x, y1, ..., yk)dy1, dy2, ...dyk

Assume we can sample the k + 1-many univariate conditional densities:

f (X|y1..., yk)
f (Y1 |x, y2..., yk)
f (Y2 |x, y1, y3..., yk)
...
f (Yk |x, y1, y3..., yk−1)
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Gibbs sampling Algorithm

Choose arbitrarily, k initial values: Y1 � y01,Y2 � y02,Y3 � y03....Yk � y0k

x1 by a draw from f (X|y01, ..., y
0
k)

y11 by a draw from f (Y1 |x1, y02, ..., y
0
k)

y12 by a draw from f (Y2 |x1, y01, y
0
3..., y

0
k)

...
y1k by a draw from f (Yk |x1, y11, ..., y

1
k−1)

This constitutes one Gibbs "pass" through k+1 conditional distributions,
yielding samples: (x1, y11, y

1
2, ...y

1
k), (x2, y21, y

2
2, ...y

2
k)...

The average of the conditional densities f (X|y1, ..yk) will be a close
approximation to f (X)
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Inference Algorithm

We would like to solve for the marginal:

p(z(1:n) ,G|C) �
∫

K∈PG

p(K, z(1:n) ,G|C)dK

# Initialize variables to G0, K0, z(1:n) where z(1:n) obeys C
# Sample G using Metropolis-Hastings
# Sample K using block Gibbs-sampling
# Sample z(1:n) using Gibbs-sampling
# Repeat for T iterations
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Inference Algorithm: Metropolis-Hasting

1. Sample G from the conditional
p(G|z(1:n) ,C) � p(G|z(1:n)) ∝ p(z(1:n)

|G)p(G)
2. Propose Gnew where Gnew

∈ nbd(G)*
3. Generate u from U(0, 1)
4. Move to Gnew if

u <
p(Gnew

|z(1:n))p(G|Gnew)
p(G|z(1:n))p(Gnew |G)

* nbd(G) are all the graphs G∗ s.t. G∗ differs from G by the addition or
subtraction of one edge.
# p(Gnew

|G) is the proposal function and is chosen.
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Inference Algorithm:

p(G|z(1:n)) �
p(z(1:n)

|G)p(G)
p(z(1:n))

# We need to solve for p(z(1:n)
|G), the marginal likelihood

# Solving the numerator gives estimate for p(z(1:n) ,G|C)
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Inference Algorithm: Exploit Conjugacy

# We need to solve for p(z(1:n)
|G), the marginal likelihood

# Z is Gaussian with G-Wishart prior

p(K) �
1

IG(δ,D)
|K|δ−2/2 exp

(
−1
2
〈K,D〉

)
where 〈K,D〉 � tr(KTD) is the trace inner product.
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Inference Algorithm: Exploit Conjugacy

# The marginal is the ratio of normalizing constants

p(z(1:n)
|G) � IG(δ + n,D + U)/IG(δ,D)

where U �
∑n

i�1(zi)T(zi)
# If G is decomposable, then this can be solved explicitly, else use

numerical integration
# Laplace approximation, other methods
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Inference Algorithm: Block-Gibbs

We sample K from the posterior:

p(K|G, z(1:n) ,C) � p(K|G, z(1:n))

Again exploit the conjugacy of Gaussians:

p(K|G, z(1:n)) � WG
(
δ + n,D +

n∑
i�1

(zi)T(zi)
)
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Inference Algorithm: Block-Gibbs

1. Choose some block b from K
2. Set Kt+1

−b � Kt
−b and sample Kb from conditional

Kt+1
b ∼ p(Kb |Kt

−b,G, z
(1:n))

3. Repeat for S iterations

Block Gibbs sampling for G-Wishart : projecteuclid.org/euclid.ejs/1328280902
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Inference Algorithm: Gibbs

Having K, we sample z(1:n), noting independence between samples:

p(z(1:n)
|K,G,C) �

n∏
i�1

p(z(i)
|K,C)

We sample z(i) independently and employ a Gibbs sampler with
conditional:

p(z(i)
v |z

(i)
−v,K,C)

The conditional is truncated Gaussian. To impose C, we require

z(i)
v ∈ [liv, ui

v]
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Inference : Monte Carlo Estimates

Estimate of conditional independence:

P(Xi⊥Xj |X−i−j) � 1 −
1
T

T∑
t�1

Iĳ(Gt)

Iĳ(G) �



1, if (i, j) ∈ E
0, otherwise

Estimate of correlation matrix:

K̃ �
1
T

T∑
t�1

Kt
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Inference : Monte Carlo Estimates

Estimate of correlation matrix:

K̃ �
1
T

T∑
t�1

Kt

Estimate of Gaussian Copula CDF:

F(X) � C(F̂1(x1) . . . F̂p(xp) |K̃)

where F̂1(x1) is the empirical marginal distribution.
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Sampling

Sampling x is easy once the correlation matrix is known.

# Sample Gaussian latent variable z
# Map z back to x using empirical marginal distributions

uv � φ (̃zv)

x̃v � F̃−1v (uv)
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Case Study



Case Study - Labor Force Survey Data

# Considers dependencies among income levels, educational
attainment, fertility and family background

# link: http://webapp.icpsr.umich.edu/GSSS/
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Labor Force Survey Data

Variables Type
NEC - Income of the Respondent (INC) ordinal variable (21C)
DEG - Highest degree obtained by the
respondent ordinal variable (5C)

CHILD - number of children of the
respondent count variable

PINC - financial status of the parents of
the respondent ordinal variable (5c)

PDEG - highest degree obtained by the
respondent’s parents an ordinal variable (5c)

PCHILD - number of children of the
respondent’s parents count variable

AGE - respondent’s age in years count variable
52



Results

Fig: Estimates of the posterior inclusion probability of edges (CHILD,
PINC) and (DEG, PCHILD) across iterations.
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Figure 4.1: Estimates of the posterior inclusion probability of edges (CHILD, PINC) and (DEG,
PCHILD) across iterations.

Hoff (9) assessed links between variables in this dataset by inspecting the 95% credible inter-
vals for the regression coefficients to see if they have spanned zero. The main conclusions resulting
from our copula Gaussian graphical models approach are shared by Hoff (9) though we differ in
two instances. First, our method shows a high probability (essentially one) of an edge between
CHILD and PCHILD, while this link was absent in Hoff (9). Such an inclusion seems sensible,
as individual fertility levels are likely to be related to historical fertility in a given family. Further-
more, we place only a 20% inclusion probability on an edge between PINC and PCHILD, though
this connection was displayed in Hoff (9).

Table 4.1: Posterior estimates of the off-diagonal elements of Υ and posterior inclusion probability
of edges for the labor force data.

Variable 1 Variable 2 Entry in Υ Edge Probability
CHILD INC 0.292 0.997
CHILD PCHILD 0.22 0.999
CHILD PDEG -0.262 0.953
CHILD AGE 0.599 1
INC DEG 0.489 1
INC AGE 0.34 1
DEG PCHILD -0.187 0.668
DEG PDEG 0.473 1
PCHILD PDEG -0.303 0.991
PINC PDEG 0.453 1
PDEG AGE -0.232 0.988

9
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Results

Table: Posterior estimates of the off-diagonal elements of and posterior
inclusion probability of edges for the labor force data
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Figure 4.1: Estimates of the posterior inclusion probability of edges (CHILD, PINC) and (DEG,
PCHILD) across iterations.

Hoff (9) assessed links between variables in this dataset by inspecting the 95% credible inter-
vals for the regression coefficients to see if they have spanned zero. The main conclusions resulting
from our copula Gaussian graphical models approach are shared by Hoff (9) though we differ in
two instances. First, our method shows a high probability (essentially one) of an edge between
CHILD and PCHILD, while this link was absent in Hoff (9). Such an inclusion seems sensible,
as individual fertility levels are likely to be related to historical fertility in a given family. Further-
more, we place only a 20% inclusion probability on an edge between PINC and PCHILD, though
this connection was displayed in Hoff (9).

Table 4.1: Posterior estimates of the off-diagonal elements of Υ and posterior inclusion probability
of edges for the labor force data.

Variable 1 Variable 2 Entry in Υ Edge Probability
CHILD INC 0.292 0.997
CHILD PCHILD 0.22 0.999
CHILD PDEG -0.262 0.953
CHILD AGE 0.599 1
INC DEG 0.489 1
INC AGE 0.34 1
DEG PCHILD -0.187 0.668
DEG PDEG 0.473 1
PCHILD PDEG -0.303 0.991
PINC PDEG 0.453 1
PDEG AGE -0.232 0.988
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Closing remarks



Summary

We’ve covered an introduction to Copula Models:

# Advantages of Copula models over traditional Gaussian
# The Gaussian Copula model
# Inference using Copula model
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Further Readings

# Copula Gaussian Graphical Models (https://www.stat.
washington.edu/research/reports/2009/tr555.pdf)

Recent paper and accompanying code:

# Variational Gaussian Copula Inference
people.ee.duke.edu/~lcarin/VGC_AISTATS2016.pdf

# github.com/shaobohan/VariationalGaussianCopula

Copula models in a financial setting:

# Modelling the dependence structure of financial assets: A survey of
four copulas www.nr.no/files/samba/bff/SAMBA2204.pdf
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