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The Problem - A Review

e Previously we looked at the general problem of
handling high-dimensional integrals and
unnormalized probability functions.
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e Rejection Sampling (2)
o Given p*(a:),q(af),Ms.t.p Y < M V.
N q(x)

~ ¢(z)
o Accept x with probability

p*(x)
M - q(x)
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e Markov chain Monte Carlo

e Use a transition ¢(6**'|¢")to move in the space.
o (Gibbs sampling.
o Metropolis-Hastings algorithm.
o Reversible Jump MCMC (non-parametric)



The Problem

e Given a dataset D, we are interested in P (0| D).

P(D|0)n(6)

PEID) = %5

x P(D|0)m(H)



The Problem

e Given a dataset D, we are interested in P (0| D).

D|0)n(6)
P(D)

P(O|D) = P x P(D|0)m(6)

e What if we can’t calculate P(D|0)?
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The Problem

e Apparently applies to a lot of problems in
biology.

e (Given a parameter ) you can simulate the
execution.

e P(D|f) Could be intractable or simply no
mathematical derivation of 1t exists.
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Approximate Bayesian Computation

1. Draw 6 ~ 7(6)
2. Simulate D ~ P(-|9)

o~

3. Acceptitf yp(S(D),S(D)) < e

®ec — 0o= 0~ m(h)
oc—~ 0= 0~ P(0D)
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—:-@—E Discussion

e Randomly sampling §) from the prior each time 1s

‘too wasteful’.
o We want to explore the space to accept more often.

o Sampling from the prior does not incorporate current
observations.

e How do we choose /O('a ')a S(')a €9
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Approximate MCMC

1. Propose 6 ~ Q(¢'|0)
2. SimulateD ~ P(.|6")

3. If p(S(D),S(D)) < ¢
a. Accept g’ with probability

7T(Q’)Q(Q’!@))
m(0)Q(0]6")

min(1,
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Approximate Gibbs

® Let’sassumef = (61, 62)
o P(0:1|D, 65) is known.
o P(02|D, 6) is unknown.

1. 9?—1 = 73(91’2), 92)

2y 9; f\iﬂ'((gg)
o D~ P(|07",65)
o p(S(D),S(D)) <e= 0. =63
o else go to 2.
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Discussion

Pros

e Likelihood is not needed.
e FEasy to implement and parallelize.

Cons

e [ot’s of tuning.

e For complex problems, sampling from the prior is frustrating because it does not
incorporate the evidence.

e How good is our approximation?



Thank you!
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