Approximate Bayesian Computation

Alireza Shafaei - April 2016
The Problem

- Given a dataset \mathcal{D}, we are interested in $\mathcal{P}(\theta|\mathcal{D})$.
The Problem

- Given a dataset \mathcal{D}, we are interested in $\mathcal{P}(\theta|\mathcal{D})$.

$$\mathcal{P}(\theta|\mathcal{D}) = \frac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)$$
The Problem

- Given a dataset \mathcal{D}, we are interested in $P(\theta|\mathcal{D})$.

\[
P(\theta|\mathcal{D}) = \frac{P(\mathcal{D}|\theta)\pi(\theta)}{P(\mathcal{D})} \propto P(\mathcal{D}|\theta)\pi(\theta)
\]

\[
P(\mathcal{D}) = \int_{\Theta} P(\mathcal{D}|\theta)\pi(\theta) \, d\theta
\]
The Problem - A Review

- Previously we looked at the general problem of handling high-dimensional integrals and unnormalized probability functions.

\[\mathcal{P}(x) = \frac{1}{Z} p^*(x) \]
Rejection Sampling

- Given $p^*(x), q(x), M$ s.t. $\frac{p^*(x)}{q(x)} \leq M \forall x$.
- $x \sim q(x)$
- Accept x with probability

$$\frac{p^*(x)}{M \cdot q(x)}$$
The Problem - A Review

- Importance Sampling

\[\int_{x} f(x)p(x) \, dx \]
The Problem - A Review

- Importance Sampling

\[
\int_x f(x)p(x) \, dx = \frac{\int_x f(x)p^*(x) \, dx}{\int_x p^*(x) \, dx}
\]
The Problem - A Review

● Importance Sampling

\[\int_{x} f(x)p(x) \, dx = \frac{\int_{x} f(x)p^*(x) \, dx}{\int_{x} p^*(x) \, dx} = \frac{\int_{x} f(x)\frac{p^*(x)}{q(x)} q(x) \, dx}{\int_{x} \frac{p^*(x)}{q(x)} q(x) \, dx} \]
The Problem - A Review

- Importance Sampling

\[
\int_x f(x)p(x) \, dx = \frac{\int_x f(x)p^*(x) \, dx}{\int_x p^*(x) \, dx} = \frac{\int_x f(x)\frac{p^*(x)}{q(x)} q(x) \, dx}{\int_x \frac{p^*(x)}{q(x)} q(x) \, dx}
\]

\[
\int_x f(x)p(x) \, dx \approx \frac{\sum_{l=1}^L f(x_l)\frac{p^*(x_l)}{q(x_l)}}{\sum_{l=1}^L \frac{p^*(x_l)}{q(x_l)}}
\]
The Problem - A Review

- Markov chain Monte Carlo
The Problem - A Review

- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.
The Problem - A Review

- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.
 - Gibbs sampling.
The Problem - A Review

- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.
 - Gibbs sampling.
 - Metropolis-Hastings algorithm.
The Problem - A Review

- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.
 - Gibbs sampling.
 - Metropolis-Hastings algorithm.
 - Reversible Jump MCMC (non-parametric)
The Problem

- Given a dataset \mathcal{D}, we are interested in $\mathcal{P}(\theta|\mathcal{D})$.

$$
\mathcal{P}(\theta|\mathcal{D}) = \frac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)
$$
The Problem

- Given a dataset \mathcal{D}, we are interested in $\mathcal{P}(\theta|\mathcal{D})$.

\[
\mathcal{P}(\theta|\mathcal{D}) = \frac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)
\]

- What if we can’t calculate $\mathcal{P}(\mathcal{D}|\theta)$?
The Problem

- Apparently applies to a lot of problems in biology.
The Problem

- Apparently applies to a lot of problems in biology.
- Given a parameter θ you can simulate the execution.
The Problem

- Apparently applies to a lot of problems in biology.
- Given a parameter θ you can simulate the execution.
- $\mathcal{P}(D|\theta)$ Could be intractable or simply no mathematical derivation of it exists.
Approximate Bayesian Computation

1. Draw $\theta \sim \pi(\theta)$
Approximate Bayesian Computation

1. Draw $\theta \sim \pi(\theta)$
2. Simulate $\tilde{D} \sim P(\cdot|\theta)$
Approximate Bayesian Computation

1. Draw $\theta \sim \pi(\theta)$
2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot | \theta)$
3. Accept if $\rho(D, \tilde{D}) < \epsilon$
Approximate Bayesian Computation

1. Draw $\theta \sim \pi(\theta)$
2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot | \theta)$
3. Accept if $\rho(D, \tilde{D}) < \epsilon$

$\epsilon \to \infty \implies \theta \sim \pi(\theta)$
Approximate Bayesian Computation

1. Draw $\theta \sim \pi(\theta)$
2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot | \theta)$
3. Accept if $\rho(D, \tilde{D}) < \epsilon$

- $\epsilon \to \infty \Rightarrow \theta \sim \pi(\theta)$
- $\epsilon \to 0 \Rightarrow \theta \sim \mathcal{P}(\theta | D)$
Approximate Bayesian Computation

1. Draw $\theta \sim \pi(\theta)$
2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot|\theta)$
3. Accept if $\rho(S(D), S(\tilde{D})) < \epsilon$

- $\epsilon \to \infty \Rightarrow \theta \sim \pi(\theta)$
- $\epsilon \to 0 \Rightarrow \theta \sim \mathcal{P}(\theta|D)$
Discussion

- Randomly sampling θ from the prior each time is ‘too wasteful’.
 - We want to explore the space to accept more often.
Discussion

- Randomly sampling θ from the prior each time is ‘too wasteful’.
 - We want to explore the space to accept more often.
 - Sampling from the prior does not incorporate current observations.
Discussion

- Randomly sampling θ from the prior each time is ‘too wasteful’.
 - We want to explore the space to accept more often.
 - Sampling from the prior does not incorporate current observations.
- How do we choose $\rho(\cdot, \cdot)$, $\mathcal{S}(\cdot)$, ϵ?
Approximate MCMC

1. Propose $\theta' \sim Q(\theta'|\theta)$
Approximate MCMC

1. Propose $\theta' \sim Q(\theta' | \theta)$
2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot | \theta')$
Approximate MCMC

1. Propose $\theta' \sim Q(\theta' | \theta)$
2. Simulate $\tilde{D} \sim P(\cdot | \theta')$
3. If $\rho(S(D), S(\tilde{D})) < \epsilon$
 a. Accept θ' with probability

$$\min(1, \frac{\pi(\theta') Q(\theta' | \theta)}{\pi(\theta) Q(\theta | \theta')})$$
Approximate Gibbs

- Let’s assume $\theta = (\theta_1, \theta_2)$
 - $P(\theta_1 | D, \theta_2)$ is known.
 - $P(\theta_2 | D, \theta_1)$ is unknown.
Approximate Gibbs

- Let’s assume $\theta = (\theta_1, \theta_2)$
 - $\mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known.
 - $\mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.

1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$
Let’s assume $\theta = (\theta_1, \theta_2)$
 - $\mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known.
 - $\mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.

1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$
2. $\theta_2^* \sim \pi(\theta_2)$
Approximate Gibbs

- Let’s assume $\theta = (\theta_1, \theta_2)$
 - $\mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known.
 - $\mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.

1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$
2. $\theta_2^* \sim \pi(\theta_2)$
 - $\tilde{\mathcal{D}} \sim \mathcal{P}(., | \theta_1^{t+1}, \theta_2^*)$
Approximate Gibbs

- Let’s assume $\theta = (\theta_1, \theta_2)$
 - $\mathcal{P}(\theta_1|\mathcal{D}, \theta_2)$ is known.
 - $\mathcal{P}(\theta_2|\mathcal{D}, \theta_1)$ is unknown.

1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1|\mathcal{D}, \theta_2)$
2. $\theta_2^* \sim \pi(\theta_2)$
 - $\tilde{\mathcal{D}} \sim \mathcal{P}(\cdot|\theta_1^{t+1}, \theta_2^*)$
 - $\rho(S(\mathcal{D}), S(\tilde{\mathcal{D}))) < \epsilon \Rightarrow \theta_2^{t+1} = \theta_2^*$
 - else go to 2.
Discussion

Pros

- Likelihood is not needed.
Pros

- Likelihood is not needed.
- Easy to implement and parallelize.
Discussion

Pros
● Likelihood is not needed.
● Easy to implement and parallelize.

Cons
● Lot’s of tuning.
Discussion

Pros

● Likelihood is not needed.
● Easy to implement and parallelize.

Cons

● Lot’s of tuning.
● For complex problems, sampling from the prior is frustrating because it does not incorporate the evidence.
Discussion

Pros

● Likelihood is not needed.
● Easy to implement and parallelize.

Cons

● Lot’s of tuning.
● For complex problems, sampling from the prior is frustrating because it does not incorporate the evidence.
● How good is our approximation?
Thank you!
References

4.