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Motivation

• Graphs are everywhere.

• Machine Learning tasks on graphs:

• Node classification

• Link prediction

• Neighbourhood identification

• . . .

• Representation learning on graphs: learn vector rerpresentations

of nodes or subgraphs for downstream ML tasks.
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Motivation

Figure 1: Facebook friendship network
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http://kateto.net/2014/04/facebook-data-collection-and-photo-network-visualization-with-gephi-and-r/


Motivation

Figure 2: Schizophrenia PPIs
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https://en.wikipedia.org/wiki/File:Schziophrenia_PPI.jpg
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Node Embeddings



Node Embeddings

Figure 3: Perozzi et al. 2014. [6]

• The vector representation of nodes should preserve information

about pairwise relationships.

• But mapping from non-Euclidean space to a feature vector is not

straightforward.
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Notation

• Undirected graph G = (V, E), |V| = n nodes

• Adjacency matrix A ∈ Rn×n, binary or weighted

• Degree matrix D where Dii =
∑

j Aij , diagonal

• May also have node attributes X ∈ Rn×d
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Node Embeddings - Shallow Embeddings

Encoder-decoder framework

ENC(vi ) = Zvi
Z ∈ Rm×n, vi = one-hot

DEC(ENC(vi ), ENC(vj)) = DEC(zi , zj) ≈ sG(vi , vj)

where sG is a pre-defined similarity metric between two nodes,

defined over the graph.
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Node Embeddings - Shallow Embeddings

• Matrix factorization-based approaches:

• Deterministic similarity measure such as Aij .

• Minimize the reconstruction error:

L =
∑

i,j ` (DEC(zi , zj), sG(vi , vj)) ≈ ‖ZTZ − S‖2
2.

• Random walk approaches:

• Stochastic measure of node similarity based on random walk

statistics.

• Decoder uses softmax over the inner products of the encoded

features.

See Hamilton et al. 2017 [3] for an in-depth review.
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Node Embeddings - Shallow Embeddings

• These approaches are simple and intuitive.

• But . . .

• No parameter sharing as the encoder is just a lookup table.

• Overfitting

• Very costly as for large n

• Not utilizing node features X .

• Inherently transductive.

• Instead of a lookup table, we could use a neural network to encode a

node’s local structure.

• We will focus on methods using convolution operations on graphs.
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Convolution on Graphs

(Graph-CNN)



Convolution on Graphs - a Spectral Formulation

How do we define localized convolutional filters on graphs?

We don’t have grids or sequences to define a fixed-size neighborhood.

10



the Graph Laplacian

Unormalized graph Laplacian ∆ = D − A

• Symmetric normalized graph Laplacian

L := D−1/2∆D−1/2 = In − D−1/2AD−1/2

• L = LT � 0

• Multiplicity of the eigenvalue 0 indicates the number of connected

components in the graph.

Figure 4: Example of Laplacian Matrix

11

https://en.wikipedia.org/wiki/Laplacian_matrix


the Graph Laplacian

Since L = LT � 0, for ` ∈ [1, n], it has

• Complete set of orthonormal eigenvectors {u`} ∈ Rn

• also called ”Fourier modes”, ”Fourier basis functions”

• related to spectral clustering

• Corresponding ordered real nonnegative eigenvalues {λ`}
• ”frequencies of the graph”

• L = UΛUT , U = [u1, . . . , un], Λ = diag(λ1, . . . , λn)
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Spectral Filtering

Let x ∈ Rn be a signal vector for all the nodes (we can generalize this to

a vector per node). The graph Fourier transform of x is defined as

x̂ = UT x

and the inverse GFT is is x = Ux̂ .

Define the spectral convolution as the multiplication of a signal with a

filter gθ = diag(θ) parameterized by coefficients θ ∈ Rn in the Fourier

domain as

gθ ? x = UgθU
T x

GFT of x , apply filter in Fourier domain, then transform back. Note that

gθ is a function of Λ.
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Spectral Filtering

• But since gθ is non-parametric, learning is expensive.

• And it’s not localized in space.

Solution: Approximate gθ(Λ) with a polynomial filter

gθ(Λ) ≈
K−1∑
k=0

θkΛk ,

where θ = [θ0, . . . , θK−1] is now of size independent of n.
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Spectral Filtering

• But computing the eigendecomposition of L is also expensive for

large graphs

Solution: Approximate gθ(Λ) with a K th-order truncated expansion of

Chebyshev polynomials Tk(x):

gθ(Λ) ≈
K−1∑
k=0

θkTk(Λ̂)

with a rescaled Λ̂ = 2
λmax

Λ− In.

The Chebyshev polynomials are recursively defined as

Tk(x) = 2xTk−1(x)− Tk−2(x), with T0(x) = 1 and T1(x) = x .
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Spectral Filtering

The filtering operation gθ ? x can now be written as

gθ ? x = UgθU
T x

≈ U
( K−1∑

k=0

θkTk(Λ̂)
)
UT x

=
K−1∑
k=0

θkTk(L̂)x

with L̂ = 2
λmax

L− In, and the last equality comes from

Lk = (UΛUT )k = UΛkUT .
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Spectral Filtering

The spectral filter represented by L is also localized:

• It can be shown that dG(i , j) > k ′ =⇒ (Lk
′
)i,j = 0, where dG(i , j)

is the shortest path distance between two vertices.

• gθ operates on the K -hop neighbors of a vertex!

Now we got rid of the eigendecomposition.

So what’s the algorithm?
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Chebyshev Spectral Graph Convolution

We had a feature matrix X ∈ Rn×d , let Hk = Tk(L̂)X ∈ Rn×d , then we

have

H0 = X

H1 = L̂X

Hk = 2L̂Hk−1 − Hk−2

The filtering operation costs O(K |E|), and the corresponding K -hop

convolution operation is

X ′ =
K−1∑
k=0

HkΘk ,

where Θk ∈ Rd×m for a desired output size m. We can now use X ′ as a

feature extractor (node embeddings).
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Graph-CNN

Remarks:

• Convolution followed by non-linear activation.

• Graph coarsening/downsampling to group together similar vertices.

• Graph clustering, but NP-hard.

• Greedy algorithm: Graclus multilevel clustering, gives successive

coarsened graphs.

• Graph pooling: create balanced binary tree to remember which

nodes were matched to perform pooling.

• For more information, see [1, 4].
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Graph-CNN

Figure 5: Architecture of a CNN on graphs and the four ingredients of a

(graph) convolutional layer. Defferrard et al. 2016 [1].
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Graph Convolutional Networks

(GCN)



GCN

Kipf & Welling [5] introduced the multi-layer Graph Convolutional

Network (GCN) with the following layer-wise propagation rule:

H`+1 = σ
(
D̃−1/2ÃD̃−1/2H`W`

)
, (1)

where Ã = A + In is the adjacency matrix of the undirected graph G with

added self-loops, σ(·) is some nonlinear activation, and H0 = X .
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GCN

Recall the Chebyshev spectral graph convolution derived earlier,

gθ ? x ≈
K−1∑
k=0

θkTk(L̂)x

For K = 2 and approximate λmax ≈ 2, we have

gθ ? x ≈ θ0x + θ1L̂x

= θ0x + θ1(
2

λmax
L− In)x

≈ θ0x + θ1(L− In)x

= θ0x − θ1D
−1/2AD−1/2x

= θ(In + D−1/2AD−1/2)x By letting θ = θ0 = −θ1

The eigenvalues of In + D−1/2AD−1/2 are in range [0, 2], which may lead

to numerical instability in repeated applications of this filter.
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GCN

Renormalization trick:

In + D−1/2AD−1/2 → D̃−1/2ÃD̃−1/2

Generalizing to node signals of multiple dimensions and using W as the

parameters instead of θ, we get the convolution operation (prior to

activation) in eq.1,

Z = D̃−1/2ÃD̃−1/2XW

where W ∈ Rd×m for a desired output size m.

The cost of the filtering operation (prior to multiplication by W ) is

O(|E|), and and all matrix multiplications here can be efficiently

computed.
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where W ∈ Rd×m for a desired output size m.

The cost of the filtering operation (prior to multiplication by W ) is

O(|E|), and and all matrix multiplications here can be efficiently

computed.

23



GCN - Semi-supervised Classification

To perform semi-supervised classification under this framework, first

compute Â = D̃−1/2ÃD̃−1/2. The 2-layer forward model used is

Ŷ = softmax(ÂReLU(ÂXW0)W1)

The cross-entropy loss is applied over all labeled examples

L = −
∑
i∈YL

K∑
c=1

Yic ln Ŷic

where YL is the set of node indices where labels exist.
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GCN

Remarks:

• No longer limited to the explicit parameterization given by the

Chebyshev polynomials.

• Alleviate the problem of overfitting on local neighborhood structures

for graphs with very wide node degree distributions.

• Scalable.

• But it is transductive in nature.
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Inductive Representation

Learning on Large Graphs

(GraphSAGE)



GraphSAGE

Goal: Efficiently generate node embeddings for nodes unseen at training

time, or entirely new graphs.

• Essential for high throughput, production level systems.

• Generalization across graphs with similar structures.

• How to achieve this without re-training with the entire graph?
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GraphSAGE

GraphSAGE: Sample and Aggregate (Hamilton et al. [2])

• Train a set of aggregator functions that learn to aggregate feature

information from a node’s local neighborhood.

• Learn how to aggregate node features, degree statistics, etc.

• At test time, apply the learned aggregation functions to generate

embeddings for entirely unseen nodes.

• Unsupervised loss function.
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GraphSAGE - Embedding Generation

Assume ∀k ∈ {1, . . . ,K}, the AGGREGATEk functions are learned, as well

as a set of weights Wk , the embedding generation procedure is

Figure 6: Hamilton et al. [2]
28



GraphSAGE - Embedding Generation

Figure 7: Hamilton et al. [2]

After K iterations, each node’s embedding will contain information for all

its K -hop neighbors. In the minibatch setting, first forward sample the

required neighborhood sets and then run the inner loop.

29



GraphSAGE

• Uniformly sample a fixed-size set of neighbors to keep the

computional cost of each batch under control.

• Graph-based loss function (unsupervised):

JG(zu) = − log(σ(zTu zv ))− Q · Evn∼Pn(v) log(σ(−zTu zvn))

• v : a node that co-occurs near u on a fixed-length random walk

• σ: sigmoid

• Pn: negative sampling distribution

• Q: number of negative samples

• Can also replace/augment this loss with a supervised, task-specific

objective.
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GraphSAGE - Aggregator Functions

• Mean aggregator

• Elementwise mean of {hk−1
u ,∀u ∈ N (v)}.

• LSTM aggregator

• LSTMs operate on sequences.

• Apply LSTMs to a random permutation of a node’s neighbors.

• Pooling aggregator

• Each neighbor’s vector is independently fed through a FC layer.

• Then perform elementwise max-pooling.

• AGGREGATE
pool
k = max({σ(Wpoolh

k
ui + b), ∀ui ∈ N (v)})
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Other methods

Figure 8: PyTorch geometric
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https://github.com/rusty1s/pytorch_geometric


Libraries

Figure 9: DGL

Figure 10: PyTorch geometric

33

https://github.com/dmlc/dgl
https://github.com/rusty1s/pytorch_geometric
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