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Recap: Experts problem

• K experts; sequence of rewards 𝑟1, 𝑟2, … with 𝑟𝑖 ∈ 0,1 𝐾.

• Each day, you must choose a distribution over experts, 𝑝𝑡. 

• At the end of the day, you see the quality of every expert. 

• Want performance comparable to the single best expert after 𝑇 days.

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ max
𝑖∈ 𝐾


𝑡=1

𝑇

𝑅𝑡,𝑖 − 

𝑡=1

𝑇

< 𝑝𝑡 , 𝑅𝑡 >

• Application: Portfolio management.
• Main algorithm: Multiplicative weights update.

• Standard Regret Bound: 𝒪 𝑇 log𝐾 .



Recap: Adversarial Bandits
• K slot machines; sequence of rewards 𝑅1, 𝑅2, … with 𝑅𝑖 ∈ 0,1 𝐾.
• At every time step, select a probability distribution over slot machines, 𝑝𝑡.

• See only reward of chosen slot machine 𝐴𝑡, 𝑅𝑡,𝐴𝑡.

• Same performance benchmark as experts setting, but harder to achieve.
• We learn less about machines at each step.

• Application: Clinical trials.
• Main algorithm: Exp3.

• Standard Regret Bound: 𝒪 𝑇𝐾 log𝐾 .

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ max
𝑖∈ 𝐾


𝑡=1

𝑇

𝑅𝑡,𝑖 − 

𝑡=1

𝑇

< 𝑝𝑡 , 𝑅𝑡 >



MWU: Standard algorithm for experts problem

K experts, rewards in [0,1]; step size 𝜼.
Initialize:

• 𝑝1 ←
1

𝑘
,
1

𝑘
, … ,

1

𝑘
(Uniform distribution over experts)

• 𝑅0 ← (0, 0, … , 0) (Cumulative rewards)
For 𝑡 = 1,… , 𝑇, do:
• Follow expert 𝑗 with probability 𝑝𝑡,𝑗.

• Expected reward is 𝑝𝑡 , 𝑟𝑡 .
• Observe 𝑟𝑡,𝑗 for each expert 𝑗.

• Update:
• 𝑅𝑡,𝑗 ← 𝑅𝑡−1,𝑗 + 𝑟𝑡,𝑗 for every 𝑗.

• 𝑝𝑡,𝑗 ← exp 𝜂𝑅𝑡,𝑗 /𝑍𝑡, (𝑍𝑡 = σ𝑖 exp 𝜂𝑅𝑡,𝑖 )



Exp3: Standard algorithm for bandits problem

K “arms”, rewards in [0,1]; step size 𝜼.
Initialize:

• 𝑝1 ←
1

𝑘
,
1

𝑘
, … ,

1

𝑘
(Uniform distribution over experts)

• 𝑅0 ← (0, 0, … , 0) (Cumulative rewards)
For 𝑡 = 1,… , 𝑇, do:
• Select arm 𝑗 with probability 𝑝𝑡,𝑗.

• Expected reward is 𝑝𝑡 , 𝑟𝑡 .
• Observe only 𝑟𝑡,𝑗 for the chosen arm 𝑗.

• ෦𝑟𝑡,𝑗 =
𝑟𝑡,𝑗

𝑝𝑡,𝑗
if chosen expert was arm 𝑗, 0 otherwise.

• Update:
• 𝑅𝑡,𝑗 ← 𝑅𝑡−1,𝑗 + ෦𝑟𝑡,𝑗for every 𝑗.

• 𝑝𝑡,𝑗 ← exp 𝜂𝑅𝑡,𝑗 /𝑍𝑡, (𝑍𝑡 = σ𝑖 exp 𝜂𝑅𝑡,𝑖 )



Exp3: Standard algorithm for bandits problem

K “arms”, rewards in [0,1]; step size 𝜼.
Initialize:

• 𝑝1 ←
1

𝑘
,
1

𝑘
, … ,

1

𝑘
(Uniform distribution over experts)

• 𝑅0 ← (0, 0, … , 0) (Cumulative rewards)
For 𝑡 = 1,… , 𝑇, do:
• Select arm 𝑗 with probability 𝑝𝑡,𝑗.

• Expected reward is 𝑝𝑡 , 𝑟𝑡 .
• Observe only 𝑟𝑡,𝑗 for the chosen expert 𝑗.

• ෦𝑟𝑡,𝑗 =
𝑟𝑡,𝑗

𝑝𝑡,𝑗
if chosen expert was expert 𝑗, 0 otherwise.

• Update:
• 𝑅𝑡,𝑗 ← 𝑅𝑡−1,𝑗 + ෦𝑟𝑡,𝑗for every 𝑗.

• 𝑝𝑡,𝑗 ← exp 𝜂𝑅𝑡,𝑗 /𝑍𝑡, (𝑍𝑡 = σ𝑖 exp 𝜂𝑅𝑡,𝑖 )

Note: 𝔼 𝑟𝑡 = 𝑟𝑡



Recap: Stochastic Bandits
• K slot machines; sequence of rewards 𝑅1, 𝑅2, … with 𝑅𝑖 ∈ 0,1 𝐾,  𝑅𝑡 ∼ 𝒟.
• At every time step, select a probability distribution over slot machines, 𝑝𝑡.

• See only reward of chosen slot machine 𝐴𝑡, 𝑅𝑡,𝐴𝑡.

• Same performance benchmark as experts setting, but harder to achieve.
• We learn less about machines at each step.

• Application: Clinical trials.
• Main algorithm: UCB, 𝜖-greedy, ETC.
• Standard Regret Bounds: ℴ 𝑇 .

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ 𝑇𝜇∗ − 𝔼 

𝑡=1

𝑇

𝑅𝑡,𝐴𝑡

• Slot machine 𝑖 has mean 𝜇𝑖.



Today: Contextual Bandits
• Usually, there is some context that 

can help you make a decision. 

• For example:
• Patient data for clinical trials.

• Consumer data for news/movie 
recommendation. 

• Today, we will see how we can use 
this “context” to guide our decision 
making process. 

News that generates most clicks should be front and center. 
However, the “click through rate” depends on the user!



Contextual Bandits: Formal Setup
• 𝐾 arms, with reward sequence 𝑟, 𝑟2, … , with 𝑟𝑖 ∈ 0,1 𝐾 .

• At time 𝑡, algorithm receives context 𝑠𝑡 ∈ 𝒮.
• Call 𝒮 the context set.
• Given the context, the algorithm must choose an arm to follow (or a distribution over 

arms).
• If the algorithm selects arm 𝐴𝑡 at time 𝑡, then 𝑟𝑡,𝐴𝑡 is revealed to the algorithm.

• We’d like to compete with the best “policy”:
• A policy is a map 𝑔 ∶ 𝒮 → [𝐾], which tells us which arm to use upon seeing context 𝑠.
• Our goal is to select a sequence of arms so that after 𝑇 time steps, we’ve incurred 

almost as much reward as the best policy in hindsight. 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≔ max
𝑔∶𝒮→[𝐾]



𝑡=1

𝑇

𝑟𝑡,𝑔(𝑠𝑡) − 𝔼 

𝑡=1

𝑇

𝑟𝑡,𝐴𝑡



Contextual Bandits: some context

• We are running a sports news website. 
Today, there are 𝐾 big sports related news 
stories.

• Every time a user visits our set, we must 
decide then and there which headlines to 
display to her on the front page.

• The goal is to maximize  the number of 
clicks.

Consider the following example:
Bob just visited our website!
1. Bob loves the Toronto Raptors. 
2. Hates the Los Angeles Clippers.

Which headline should we show to Bob?

1. 2.

Arms

Context



Towards an algorithm for contextual bandits
Begin with a trick. Recall, we’d like to bound the regret:

Regret T = max
𝑔∶𝒮→[𝐾]

σ𝑡=1
𝑇 𝑟𝑡,𝑔 𝑠𝑡 − 𝔼 σ𝑡=1

𝑇 𝑟𝑡,𝐴𝑡



Towards an algorithm for contextual bandits
Begin with a trick. Recall, we’d like to bound the regret:

Regret T = max
𝑔∶𝒮→[𝐾]

σ𝑡=1
𝑇 𝑟𝑡,𝑔 𝑠𝑡 − 𝔼 σ𝑡=1

𝑇 𝑟𝑡,𝐴𝑡

= max
𝑔∶ 𝒮→[𝐾]



𝑠∈𝒮



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑔(𝑠) − 𝔼 𝑟𝑡,𝐴𝑡



Towards an algorithm for contextual bandits
Begin with a trick. Recall, we’d like to bound the regret:

Regret T = max
𝑔∶𝒮→[𝐾]

σ𝑡=1
𝑇 𝑟𝑡,𝑔 𝑠𝑡 − 𝔼 σ𝑡=1

𝑇 𝑟𝑡,𝐴𝑡

= max
𝑔∶ 𝒮→[𝐾]



𝑠∈𝒮



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑔(𝑠) − 𝔼 𝑟𝑡,𝐴𝑡

=

𝑠∈𝒮

max
𝑔∶ 𝒮→[𝐾]



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑔(𝑠) − 𝔼 𝑟𝑡,𝐴𝑡



Towards an algorithm for contextual bandits
Begin with a trick. Recall, we’d like to bound the regret:

Regret T = max
𝑔∶𝒮→[𝐾]

σ𝑡=1
𝑇 𝑟𝑡,𝑔 𝑠𝑡 − 𝔼 σ𝑡=1

𝑇 𝑟𝑡,𝐴𝑡

= max
𝑔∶ 𝒮→[𝐾]



𝑠∈𝒮



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑔(𝑠) − 𝔼 𝑟𝑡,𝐴𝑡

=

𝑠∈𝒮

max
𝑔∶ 𝒮→[𝐾]



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑔(𝑠) − 𝔼 𝑟𝑡,𝐴𝑡

=

𝑠∈𝒮

max
𝑖∈[𝐾]



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑖 − 𝔼 𝑟𝑡,𝐴𝑡

How can we deal with this?



Towards an algorithm for contextual bandits



𝑠∈𝒮

max
𝑖∈[𝐾]



𝑡 ∶ 𝑠𝑡=𝑠

𝑟𝑡,𝑖 − 𝔼 𝑟𝑡,𝐴𝑡 ≤

𝑠∈𝒮

𝑅𝑒𝑔𝑟𝑒𝑡(𝑁𝑠) ≤

𝑠∈𝒮

𝒪 𝑁𝑠𝐾 log 𝐾 = 𝒪 𝑇 𝑆 𝐾𝑙𝑜𝑔𝐾

Let 𝑁𝑠 = “number of steps where 𝑠𝑡 = 𝑠”. Then:

This yields a natural and simple algorithm.



𝓢-exp3 Algorithm

K “arms”, rewards in 𝟎, 𝟏 ; context set 𝓢. 

For every context 𝑠 ∈ 𝒮, run an instance of the exp3 algorithm.

Theorem: The 𝒮-exp3 algorithm has regret 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 = 𝒪 𝑇 𝑆 𝐾 log𝐾 .

Compare with 𝒪 𝑇𝐾 𝑙𝑜𝑔𝐾 in the non-contextual setting.



A new setting
• Consider a setting where the player has fixed ahead of time a set of 

policies that could be used for choosing actions. 

• We can view this as an “expert” problem.
• View each policy as an expert who knows the current context.

• The advice of the expert is the output of the policy on the current context.

• The notion of context is now implicit: the context is available through the 
expert advice.

• How is this different from the expert problem?
• Following the advice of expert 𝑗 only reveals feedback for experts who offered 

the same advice as expert 𝑗.

• This partial feedback issue was also prevalent in the bandit setting.
• Pulling lever 𝑗 only revealed information about the 𝑗-th slot machine.



Bandits with expert advice: Formal setup
• K “arms”, N “experts”. The rewards of the arms are in [0,1].

• Suppose that 𝑒𝑗(𝑡) is the predicted arm of expert 𝑗 at time 𝑡.
• Expert 𝑗’s reward at time 𝑡 is the reward of the arm he predicted.

• Using the expert advice, the algorithm must at each time step produce a 
distribution over arms.

• If the algorithm selects arm 𝐴𝑡 at time 𝑡, the cost of arm 𝐴𝑡 is revealed.

• We’d like to minimize the following:

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 := max
𝑗∈[𝑁]


𝑡=1

𝑇

𝑟𝑡,𝑒𝑗 𝑡 − 𝔼 

𝑡=1

𝑇

𝑟𝑡,𝐴𝑡

Note: we are comparing the algorithms performance to the performance of the best expert.



Using exp3

• Main idea: because we don’t learn about all experts at step 𝑡, it is 
natural to view each expert as a “meta”-arm in a higher level bandit 
problem. 

• Viewing experts as “arms” allows us to apply exp3 to obtain:

But, we can obtain a bound comparable to standard bandit regret bounds.
Incomparable to standard bandit regret bounds because no dependence on K

Theorem: The exp3 algorithm has regret 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 = 𝒪 𝑇𝑁 log𝑁 ,

For the multi-armed bandit problem with expert advice.

Poor performance when there is a large number of experts!



Modifying exp3: the exp4 algorithm

• Exp3: “Exponential weights algorithm for exploration and 
exploitation.”

• Exp4: “Exponential weights algorithm for exploration and exploitation 
with experts.”



K “arms”, rewards in [0,1]; N “experts”; step size 𝜼.
Initialize:

• 𝑞1 ← 1/𝑁,… , 1/𝑁 (Uniform distribution over experts)
• 𝑌0 ← (0,0, … , 0) (Cumulative rewards for experts)  

For 𝑡 = 1,… , 𝑇, do:
• Obtain expert advice, 𝑒1 𝑡 ,… , 𝑒𝑁 𝑡 .
• Select arm 𝐴𝑡 according to distribution 𝑝𝑡 , where 𝑝𝑡,𝑖 = σ𝑗:𝑒𝑗 𝑡 =𝑖 𝑞𝑡,𝑗.

• Expected reward is 𝑝𝑡 , 𝑟𝑡 .
• Observe only 𝑟𝑡,𝑗 for the chosen arm 𝑗.

• ෦𝑟𝑡,𝑗 ←
𝑟𝑡,𝑗

𝑝𝑡,𝑗
if chosen expert was arm 𝑗, 0 otherwise.

• ෦𝑦𝑡,𝑗 ← ෦𝑟𝑡,𝑗 if 𝑒𝑗 𝑡 = 𝐴𝑡, and 0 otherwise.

• Update:
• 𝑌𝑡,𝑗 ← 𝑌𝑡−1,𝑗 + ෦𝑦𝑡,𝑗for every 𝑗.

• 𝑞𝑡,𝑗 ← exp 𝜂𝑌𝑡,𝑗 /𝑍𝑡, (𝑍𝑡 = σ𝑖 exp 𝜂𝑌𝑡,𝑖 )

The Exp4 algorithm:



The Exp4 algorithm:

Theorem: The exp4 algorithm has regret 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 = 𝒪 𝑇𝑁 log 𝐾 ,

For the multi-armed bandit problem with expert advice.
Compare with 𝒪 𝑇𝑁 𝑙𝑜𝑔𝑁 in obtained by just running exp3.

This is still slightly incomparable with the non-contextual setting, where the regret is bounded by 𝒪 𝑇𝐾 log𝐾 .

We can get a bound closer to this by modifying the exp4 algorithm (mixing in the uniform distribution), to obtain:

Theorem: The modified exp4 algorithm has regret 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 = 𝒪 𝑇𝐾 log𝑁 ,

For the multi-armed bandit problem with expert advice.
Can have exponentially many experts with regret bound similar to the non-contextual setting.



Application: News recommendation 
[Chu, Langford, Li, Schapire 2010]

• At time 𝑡: 
• The algorithm observes:

• the current user 𝑢𝑡, the features, 𝑥𝑡,𝑢𝑡 , of user 𝑢𝑡. 

• A set of articles, 𝒜𝑡, and the features, 𝑥𝑡,𝑎, of each article 𝑎 ∈ 𝒜𝑡.
• Assume: at each step, the context can be described by 𝑑 binary features.

• Based on the features and the number of clicks on previous trials, the algorithm 
selects an article to display to user 𝑢𝑡. (Can be a randomized choice).

• Payoff is 1 if the current user clicks on the displayed article, and 0 otherwise. We 
work in the stochastic setting, that is the rewards are random.
• Assume: the expected number of clicks of an article step 𝑡 is a linear function of its features 

(and the user’s).

• Goal: minimize regret (with respect to best policy in hindsight). 



A first attempt: apply exp4 algorithm

• How many experts are there?
• Equivalent to asking how many functions are there from the context space to the 

“arm” space?
• Since the context can be described by 𝑑 binary features, the size of the context space is 2𝑑.

• There are 𝐾 arms at round 𝑡.

• So, there are  𝐾 2𝑑 functions from the context space to the arm space.

• That is, there are 𝑁 = 𝐾 2𝑑experts.

• So, what does exp4 give us?

• Regret is bounded by 𝒪 𝑇𝐾 log𝑁 = 𝒪 𝑇𝐾2𝑑 log𝐾 , which is exponential 

in the number of features!

• What is the runtime of a single iteration of exp4?
• 𝒪 𝑁 = exponential in the number of features!



A better idea: use the structure of the features

• Main idea: 
• The click through rate at time 𝑡 is a linear function of the features.

• Can look back in time to set up a linear system to solve for each article:

𝐷𝑎,𝑡𝜃𝑎 = 𝑏𝑎,𝑡

Data matrix, rows 
correspond to feature 
vectors (contexts for 

article a)

The linear function we 
wish we knew

Vector corresponding 
to click/no click 

feedback

This ends up giving a UCB on the expected payoff of arm 𝑎. Choose the arm maximizing the UCB.

They call this the LinUCB algorithm.



LinUCB Algorithm: Main result

Theorem: Suppose a set of K articles is fixed ahead of time. Then, the 
LinUCB algorithm has 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 = ෨𝒪 𝑇𝐾𝑑 ,

and each iteration takes 𝒪(𝐾𝑑3) runtime. 

Note: this algorithm removes the exponential dependence on d.



Experiments

Doesn’t make use of user data Makes use of user data


