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Online Convex Optimization

Online Convex Optimization

Input: A convex set S.

for t = 1, 2, ... :

I predict wt ∈ S.

I receive convex loss ft : S → R.

I suffer loss ft(wt).

I Want to minimize regret with respect to best fixed action,

R(w1:T ) =
T∑
t=1

(ft(wt)−min
u∈S

ft(u)) =
T∑
t=1

(ft(wt)− ft(w∗))

I Specifically, want sub-linear regret R(w1:T ) = o(T ).

I Implies average regret vanishes as T → ∞.
I Such algorithms known as no-regret algorithms.
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Follow the Leader

I Basic Idea: Play strategy with minimal loss over past rounds.

Follow the Leader (FTL)

wt = arg minw∈S
∑t−1
i=1 fi(w).

I Is FTL a no-regret algorithm?

I If optimize over losses up to and including loss at t expect to do well.

I How much worse do we do such an algorithm?

Be the Leader (BTL)

wt = arg minw∈S
∑t
i=1 fi(w)

Lemma [KV05]

For any sequence of losses, BTL has non-positive regret.

Corollary

Let w1, ..., wt be iterates produced by FTL then,

R(w1:T ) ≤
∑T
t=1(ft(wt)− ft(wt+1))
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FTL: Quadratic Loss

Theorem [SS+12]

Let S = Rn. Let ft(w) = 1
2
‖w − zt‖2 for some zt ∈ Rn. Then FTL suffers

R(w1:T ) = O(log T )

Proof.

wt has closed form solution, wt = 1
t−1

∑t−1
i=1 wi.

wt+1 =
1

t
(zt + (t− 1)wt) = (1−

1

t
)wt +

1

t
zt.

Use Corollary,

ft(wt)− ft(wt+1) =
1

2
‖wt − zt‖2 +

1

2
‖wt+1 − zt‖2

=
1

2
(1− (1−

1

t
)
2
)‖wt − zt‖2

≤
1

t
‖wt − zt‖2

Letting L = maxt ‖zt‖, since wt is average of Zi, by triangle inequality,

RT (w1:T ) ≤ (2L)
2
(log T + 1) = o(T )
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FTL: Linear Loss

Example: Two Expert Setting [SS+12]

Let S = [−1, 1]. Let ft(w) = ztw. Define losses,

zt =


−0.5 t=1

1 t even

−1 t odd

Suffer loss at least T − 1 at time T , best expert has loss T/2. Regret is

T/2− 1 = O(T ).

I What causes FTL to do poorly on linear losses?

I Easy fixes to allow FTL no-regret for general convex ft’s?
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Linear Loss

I For rest of presentation, we focus on linear loss, i.e., for some zt ∈ Rn,

ft(w) = 〈w, zt〉.

I Note: Expert setting is specific instance of linear losses where restrict

wt to lie in the simplex, i.e., wjt ≤ 1 and
∑
j w

j
t = 1, and zt ∈ [0, 1]n.
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Stabilization

I Notice: for two experts, wt’s unstable (oscillate between -1, 1).

I Solution: add stability.

Follow the Regularized Leader (FTRL)

Let L : S → R be strongly-convex regularizer, FTRL updates are given,

wt = arg minw∈S
∑t−1
i=1〈w, zi〉+ L(w)

I Bound regret of FTRL relative to Be the Regularized Leader (BTRL)

Lemma [SS+12]

Regret of FTRL is bounded by BTRL loss,

R(w1:T ) ≤
∑T
t=1(ft(wt)− ft(wt+1)) + L(w∗)− L(w1)

=
∑T
t=1〈wt − wt+1, zt〉+ L(w∗)− L(w1)
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FTRL: Regularization Schemes

FTRL with L2 regularization (GD update)

Consider FTRL on S = Rn with L(w) = 1
2η
‖w‖22,

wt = arg min
w∈Rn

t−1∑
i=1

〈zi, w〉+
1

2η
‖w‖22

Taking the derivative, and solving for w,

wt = −η
∑
t=1

zi = wt−1 − ηzt−1

If optimizing a single convex function f with loss vector ∇f(wt), get usual

gradient descent update,

wt = wt−1 − η∇f(wt−1)
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FTRL: Regularization Schemes

FTRL with entropy regularization (MWU update)

Consider FTRL for expert setting with entropy regularizer

L(w) = 1
η

∑
j w

j logwj (1-strongly-convex in L1 norm). FTRL updates

given by,

wt = arg min
w∈S

t−1∑
i=1

〈w, zi〉+
1

η

∑
j

wj logwj

If write first-order Lagrangian with constraint
∑
j w

j = 1 get,

L(w, λ) =

t−1∑
i=1

〈zt, w〉+
1

η

∑
j

wj logwj + λ(1−
∑
j

wj)

Solving, we get multiplicative weight update,

wkt =
exp(−η

∑t−1
i=1 z

k
i )∑

j exp(−η
∑t−1
i=1 z

j
i )
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FTRL: Linear Loss

Theorem [SS+12]

Consider running FTRL with regularizer L(w) = 1
2η
‖w‖22. Assume ∀w ∈ S,

‖w‖2 ≤ B, and assume ‖zt‖2 ≤ C. Choosing η = B

C
√
2T

, we have

R(w1:T ) = O(
√
T ).

Proof.

By Lemma,

R(w1:T ) ≤ L(w
∗
)− L(w1) +

T∑
t=1

〈wt − wt+1, zt〉

≤
1

2η
‖w∗‖22 +

T∑
t=1

〈wt − wt+1, zt〉

=
B2

2η
+ η

T∑
t=1

‖zt‖22 (GD update)

≤
B2

2η
+ ηTC

2
=
B

C

√
2

T

I In fact, FTRL no-regret when L(w) 1-strongly convex in norm defined on S.
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Randomization

I Alternative interpretation of FTL failure: Poor synchronization

with losses.

I Solution: Add randomness to predictor sequence.

I Follow the Perturbed Leader (FTPL) proposed by Kalai and Vempala

[KV05]. FTPL uses FTL with extra hallucinated cost at time 0

sampled from distribution.

Follow the Perturbed Leader (FTPL) [KV05]

Let z0 ∼ dµ(x). Then FTPL updates given by,

wt = arg minw∈S
∑t−1
i=0〈w, zi〉
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FTPL: Linear Loss

Theorem [KV05]

Let D = supx,y∈S ‖x− y‖1, A = sup1≤t≤T ‖zt‖.
Define probability distribution dµ(x) = ( ε

2
)ne−ε‖x‖1 .

FTPL with z0 sampled from dµ(x) satisfies,

E[
T∑
t=1

〈zt, wt〉] ≤ O(1 + εA)E[〈zt, u〉] +O(
D

ε
logn)

I Proof similar to FTRL proof.

I Above bound contains both additive and multiplicative constant.

I FTPL can be used to solve problems where number of experts is

exponential in size of input.

I FTPL can also be shown to be no-regret (only additive constant) with

R(w1:T ) = O(
√
T ), with a modified version of dµ(x) [KV05].
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Applications
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GAN Training

I During the training of a Generative Adversarial Network (GAN), a

discriminator and a generator compete in a two player game.

I GANs often suffer from lack of convergence during training.

I GANs have generated an interest in analyzing two player game

dyanamics, i.e., settings where both players use learning algorithms to

try and converge to some sort of equillibrium.

I No-regret learning algorithms are thought to be good candidates for

such dynamics.
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GAN Training

I A well-known result due to Robinson [Rob51] characterizes

convergence of game where both players use FTL.

Fictitious Play [Rob51]

Consider following two-player game. Let A ∈ Rm×n, consider payoff

function φ(x, y) = xTAy, i.e., player 1 suffers loss xTAy, and player 2

suffers loss −xTAy. Assume player 1 uses learning rule,

xt = arg min
j

t−1∑
i=1

〈ej , Ayi〉

And player 2 uses learning rule,

yt = arg max
j

t−1∑
i=1

〈ej , ATxi〉

Then players’ plays converge to a Nash equillibrium of game.
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GAN Training

I Robinson’s result revived by Ge et al. [GXC+18] to propose

Fictitious-GAN - a training algorithm based on fictitious play.

I Show when discriminator and generator use fictitious play as opposed

to gradient descent/ascent, convergence in the players’ utilities.

(a) Fictitious play (b) Gradient descent/ascent dynamics
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Deep Learning

I Zhen amd Kwok [ZK17] develop Follow the Moving Leader (FTML), a

novel optimization algorithm for training deep networks.

I Use an FTL variant, Follow the Proximal Regularized Leader

(FTPRL) update rule.

Follow the Proximal Regularized Leader (FTPRL)

wt = arg minw∈S
∑t
i=1 Pi(w) = arg minw∈S

∑t
i=1(〈gi, w〉+ 1

2
‖w − wi−1‖2Qi

)

I Some of the most well-known algorithms for deep network optimization

such as Adagrad, Adam, can be derived as FTPRL update.
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Deep Learning

I Zhen and Kwok [ZK17] use FTPRL algorithm to compare FTML to

other state-of-the-art optimization algorithms.

I For instance, FTML uses a weighted FTPRL update,

wt = arg min
w∈S

t∑
i=1

wi,t(〈gi, w〉+
1

2
‖w − wi−1‖2Q)

I Adam can be written in a very similar way except that rather then

centering each Pi(w) at wi−1 it centers them all at wt−1,

wt = arg min
w∈S

t∑
i=1

wi,t(〈gi, w〉+
1

2
‖w − wt−1‖2Q)

I Suggest that centring on only last iterate results in Adam being less

stable than FTML in changing environments.
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Deep Learning

I In experiments, Zheng and Kwok [ZK17] show that FTML outperforms

state-of-the-art optimization algorithms such as Adam, RMSProp, and

Adadelta on various deep learning objectives.
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Recap

Theory

I Follow the Leader is a natural algorithm for online learning.

I FTL is not a no-regret algorithm.

I Two perspectives to turn into no-regret algorithm.

1. Regularization: FTRL.

2. Randomization: FTPL.

Applications

I Game theoretic perspective + no-regret algorithms can result in novel

techniques for training GANs (notoriously difficult to train).

I Can view many state-of-the-art optimization algorithms as variants of

FTL, devise new methods, compare through FTL setup.

I Other applications include dual averaging techniques for convex

optimization.
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