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Online Convex Optimization

Online Convex Optimization

Input: A convex set S.
fort=1,2,...:

» predict wy € S.

> receive convex loss f; : S — R.

> suffer loss fr(w:).
» Want to minimize regret with respect to best fixed action,
T T
R(wn.T) Z fie(we) rnlnft Z fe(we) = fe(w™))

> Specifically, want sub-linear regret R(wi.7) = o(T).
> Implies average regret vanishes as T' — oo.
> Such algorithms known as no-regret algorithms.
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Follow the Leader

» Basic Idea: Play strategy with minimal loss over past rounds.

Follow the Leader (FTL)
wy = argmin, c g Zf: i(w).

> Is FTL a no-regret algorithm?
» If optimize over losses up to and including loss at t expect to do well.

» How much worse do we do such an algorithm?

Be the Leader (BTL)
wy = argmin, g >, fi(w)

Lemma [KV05

For any sequence of losses, BTL has non-positive regret.
Corollary

Let wi, ..., w: be iterates produced by FTL then,
R(wir) < 0 (fr(we) — fe(wigr))
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FTL: Quadratic Loss

Theorem [SST12

Let S =R". Let fi(w) = %||w — 2|* for some z; € R". Then FTL suffers
R(’LU1;T) = O(log T)

Proof.
. t—1
w; has closed form solution, w; = ,_% D>l wi.

1 1 1
Wit :Z(Zt 4+ (t—1we) = (1 — ?)wt + Z2
Use Corollary,
1 2, 1 2
ft(wt)_ft(wt+l)=E‘lwt—ztl‘ +§Hwt+l_zt“
1 1
= 50— (1= Dl — =l

1 2
;Hwt — z|

IN

Letting L = maxq ||2¢||, since w; is average of Z;, by triangle inequality,

Ry (wi.r) < (2L)%(log T + 1) = o(T)
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FTL: Linear Loss

Let S = [—1,1]. Let fi(w) = zzw. Define losses,

—0.5 t=1
2t =41 t even
-1 t odd

Suffer loss at least T'— 1 at time T', best expert has loss T'/2. Regret is
T/2—1=0(T).

» What causes FTL to do poorly on linear losses?

» Easy fixes to allow FTL no-regret for general convex f;’s?
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Linear Loss

» For rest of presentation, we focus on linear loss, i.e., for some z; € R",
fr(w) = (w, z).
» Note: Expert setting is specific instance of linear losses where restrict

w; to lie in the simplex, i.e., w! < 1 and > w] =1, and 2z € [0,1]™.



Stabilization

» Notice: for two experts, w:’s unstable (oscillate between -1, 1).

> Solution: add stability.

Follow the Regularized Leader (FTRL)

Let L : S — R be strongly-convex regularizer, FTRL updates are given,

we = argmin,es Y;_1 (w, i) + L(w)

» Bound regret of FTRL relative to Be the Regularized Leader (BTRL)

Regret of FTRL is bounded by BTRL loss,
R(wir) < 3, (fe(we) = fe(wesa)) + L(w*) = L(wn)
= i (Wi — wen, 26) + L(w*) — L(wn)
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FTRL: Regularization Schemes

FTRL with L2 regularization (GD update)

Consider FTRL on S = R" with L(w) = %Hw”%,
t—1
wy = argmlnz Zi, w) + —Hw||2

weR™ p=il

Taking the derivative, and solving for w,
Wt = —ﬂzzi = Wt—1 — NZt—1
t=1

If optimizing a single convex function f with loss vector V f(w:), get usual

gradient descent update,

Wt = Wt—1 — va(wt—l)
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FTRL: Regularization Schemes

FTRL with entropy regularization (MWU update)

Consider FTRL for expert setting with entropy regularizer

L(w) = % > w? logw? (1-strongly-convex in L1 norm). FTRL updates

given by,
t—1

1 ) )

wy = arg min E w,2z;) + — E w’ log w’
77 -
j

weS i—1

If write first-order Lagrangian with constraint > j w! =1 get,

L(w,/\):Zzt, ijlogw +/\le11)
Solving, we get multiplicative weight update,

r__exp(—n Tl 2h)
-
> exp(—n XLz #1)
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FTRL: Linear Loss

Theorem [SST12

Consider running FTRL with regularizer L(w) = % lw||3. Assume Vw € S,
|lw|l2 < B, and assume ||z¢||2 < C. Choosing n = C\J/Bﬁ, we have

R(’LU1;T) = O(\/T)

Proof.
By Lemma,

T

R(wi.r) < L(w™) — L{w) + Y _(wy — wig, 2¢)
t=1

T
1
< — w13+ D (we — weas 24)
277 t=1
2 T

B
= — 4+ nz Hthg (GD update)
2n t=1

B2+ o2 B [2
2n K —cVrT

» In fact, FTRL no-regret when L(w) l-strongly convex in norm defined on S.
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Randomization

> Alternative interpretation of FTL failure: Poor synchronization

with losses.
» Solution: Add randomness to predictor sequence.

» Follow the Perturbed Leader (FTPL) proposed by Kalai and Vempala
[KV05]. FTPL uses FTL with extra hallucinated cost at time 0

sampled from distribution.

Follow the Perturbed Leader

Let zo ~ dp(z). Then FTPL updates given by,

w¢ = argmin,, ¢ g ZZ;S (w, 2:)

S
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FTPL: Linear Loss

Theorem [KV05

Let D = SUPy yes |z —ylli, A= SUp; << ll2¢1-
Define probability distribution du(z) = (;)"676”1”1.
FTPL with zo sampled from du(z) satisfies,

B[S (et we)] < O(1 + €A) E[{zi,)] + O(2 logn)

t=1

» Proof similar to FTRL proof.
» Above bound contains both additive and multiplicative constant.

» FTPL can be used to solve problems where number of experts is

exponential in size of input.

» FTPL can also be shown to be no-regret (only additive constant) with
R(wi.r) = O(VT), with a modified version of du(z) [KVO05].
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Applications
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GAN Training

» During the training of a Generative Adversarial Network (GAN), a

discriminator and a generator compete in a two player game.
» GANSs often suffer from lack of convergence during training.

» GANSs have generated an interest in analyzing two player game
dyanamics, i.e., settings where both players use learning algorithms to

try and converge to some sort of equillibrium.

» No-regret learning algorithms are thought to be good candidates for

such dynamics.

N

N}



GAN Training

> A well-known result due to Robinson [Rob51] characterizes

convergence of game where both players use FTL.

Fictitious Play [Rob51

Consider following two-player game. Let A € R,,x», consider payoff
function ¢(z,y) = 2T Ay, i.e., player 1 suffers loss 27 Ay, and player 2

suffers loss —zT Ay. Assume player 1 uses learning rule,

=1
Ty = arg min Z<€j, Ay;)
|
And player 2 uses learning rule,
t—1
Yyt = arg max Z(ej, ATz;)
At

Then players’ plays converge to a Nash equillibrium of game.
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GAN Training

» Robinson’s result revived by Ge et al. [GXCT18] to propose
Fictitious-GAN - a training algorithm based on fictitious play.

» Show when discriminator and generator use fictitious play as opposed

to gradient descent/ascent, convergence in the players’ utilities.

Player 1's utiity
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Deep Learning

» Zhen amd Kwok [ZK17] develop Follow the Moving Leader (FTML), a

novel optimization algorithm for training deep networks.

» Use an FTL variant, Follow the Proximal Regularized Leader
(FTPRL) update rule.

Follow the Proximal Regularized Leader (FTPRL)

we = argming g iy Pi(w) = argmin, e 325, (95, w) + gllw — wial[3,)

» Some of the most well-known algorithms for deep network optimization
such as Adagrad, Adam, can be derived as FTPRL update.
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Deep Learning

» Zhen and Kwok [ZK17] use FTPRL algorithm to compare FTML to

other state-of-the-art optimization algorithms.
» For instance, FTML uses a weighted FTPRL update,

t

. 1
we = argmin > wie({g, w) + 5w — w1 [3)
weS im1

» Adam can be written in a very similar way except that rather then
centering each P;(w) at w;—1 it centers them all at w¢_1,
¢

. 1
wy = argmin 3w (ge,w) + 3w —wa[3)
weS i—1

> Suggest that centring on only last iterate results in Adam being less

stable than FTML in changing environments.
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Deep Learning

» In experiments, Zheng and Kwok [ZK17] show that FTML outperforms
state-of-the-art optimization algorithms such as Adam, RMSProp, and

Adadelta on various deep learning objectives.
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Recap

Theory
» Follow the Leader is a natural algorithm for online learning.
» FTL is not a no-regret algorithm.

» Two perspectives to turn into no-regret algorithm.

1. Regularization: FTRL.
2. Randomization: FTPL.

Applications
» Game theoretic perspective + no-regret algorithms can result in novel
techniques for training GANs (notoriously difficult to train).
» Can view many state-of-the-art optimization algorithms as variants of

FTL, devise new methods, compare through FTL setup.

» Other applications include dual averaging techniques for convex

optimization.

N

N}



References

@ Hao Ge, Yin Xia, Xu Chen, Randall Berry, and Ying Wu.
Fictitious gan: Training gans with historical models.
In Proceedings of the Furopean Conference on Computer Vision
(ECCV), pages 119-134, 2018.

@ Adam Kalai and Santosh Vempala.
Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291-307, 2005.

@ Julia Robinson.

An iterative method of solving a game.

Annals of mathematics, pages 296-301, 1951.
[§ Shai Shalev-Shwartz et al.

Online learning and online convex optimization.

Foundations and Trends® in Machine Learning, 4(2):107-194, 2012.
@ Shuai Zheng and James T Kwok.

Follow the moving leader in deep learning.

In Proceedings of the 34th International Conference on Machine 22 /22



