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New Term, New Format

• Eight different topics in online learning.
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New Term, New Format

• Eight different topics in online learning.

• Two parts—Theory+Application.
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Topics

Week # Topic Paper 1 Application Paper 2

1 Multiplicative Weight Update “On-line algorithms in machine

learning“ by Blum “The Multi-

plicative Weights Update Method:

a. Meta Algorithm and Applica-

tions“ by Arora et al

Adaboost “Lifelong Learning with Weighted

Majority Voter“ by Pentina and

Urner

2 Follow the Leader “Efficient algorithms for online de-

cision problems“ by Kalai and

Vempala

Deep Learning “Follow the moving leader in deep

learning“ by Zhang and Kwok

3 Intro to Bandits, UCB “Regret analysis of stochastic and

nonstochastic multi-armed ban-

dit problems“ (Chapter 1,2) by

Bubeck et al

Ranking “Learning Diverse Rankings with

Multi-Armed Bandits“ by Radlin-

ski et al

4 Contextual Bandits “Regret analysis of stochastic and

nonstochastic multi-armed bandit

problems“ (Chapter 4) by Bubeck

et al

News Recommendation “A Contextual-Bandit Approach

to Personalized News Article Rec-

ommendation“ by Li et al

5 Thompson Sampling “Linear Thompson Sampling Re-

visited“ by Abeille and Lazaric

Contextual Bandits “Thompson Sampling for Contex-

tual Bandits with Linear Payoffs“

by Agrawal and Goyal

6 Markovian Bandits “Bandit Processes and Dynamic

Allocation Indices“ by Gittins;

“Online Algorithms for the Multi-

Armed Bandit Problem with

Markovian Rewards“ by Tekin and

Liu

Stochastic Scheduling “Stochastic Scheduling“ by Nino-

Mora

7 Dueling Bandits “The K-armed dueling bandits

problem“ by Yue et al

Information Retrieval “Interactively optimizing informa-

tion retrieval systems as a duel-

ing bandits problem“ By Yue and

Joachims

8 Linear Bandits - Online linear optimization “Regret analysis of stochastic and

nonstochastic multi-armed bandit

problems“ (Chapter 5) by Bubeck

et al

Adaptive Routing “Online linear optimization and

adaptive routing“ by Awerbuch

and Kleinberg
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Overview of Topics



Predicting from Expert Advice

• Input of the algorithm: Advices from n “experts“.
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Predicting from Expert Advice

• Input of the algorithm: Advices from n “experts“.

• After the prediction, the right answer is revealed.

• No assumptions of quality or independence of the experts.

• Goal: Perform nearly as well as the best expert so far.

3



Weighted Majority

The Weighted Majority Algorithm (simple version)

1. Initialize the weights w1, · · · ,wn of all the experts to 1.

2. Given a set of predictions {x1, · · · , xn} by the experts, output the

prediction with the highest total weight. That is, output 1 if∑
i :xi=1

xi ≥
∑
i :xi=1

xi

and output 0 otherwise.

3. When the correct answer l is received, penalize each mistaken expert

by multiplying its weight by 1/2. That is, if xi 6= l , then wi ← wi/2; if

xi = l then wi is not modified. Goto 2.
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Extension of Framework

• Decisions(predictions) may not be binary or even discrete.
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Extension of Framework

• Decisions(predictions) may not be binary or even discrete.

• Define a cost function ft(wt) for decision wt made in each round t.

• Our goal is to ensure that our total cost is not much larger than the

minimum total cost of any expert, i.e.,

min
w1,··· ,wT

(
T∑
t=1

ft(wt)−min
w

T∑
t=1

ft(w)

)
.

The objective is called regret.
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Multiplicative Weights Update

Probabilistic Experts Algorithm (simple version)

1. Initialize ui = 1, where ui is the weight of the i-th expert.

2. Predict according to an expert chosen with probability proportional to

ui , the probability of choosing the i-th expert is ui/U where U is the

total weight.

3. Update weights by setting ui ← ui (1− ε)ft(wi ) for all experts.
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Follow the Leader

A more intuitive algorithm is called follow the leader(FTL),

wt = argmin
w

t∑
i=1

fi (w)

There are some variants:

• Adding regularization, follow the regularized leader(FTRL)

• Adding perturbation, follow the perturbed leader(FTPL)
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Bandits Setting

The bandits setting is different from the prediction from expert advice

setting in:

• Instead of incurring costs, we get “rewards“! So the regret becomes

max
w

T∑
t=1

ft(w)−
T∑
t=1

ft(wt).
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Bandits Setting

The bandits setting is different from the prediction from expert advice

setting in:

• Instead of incurring costs, we get “rewards“! So the regret becomes

max
w

T∑
t=1

ft(w)−
T∑
t=1

ft(wt).

• Key difference: The algorithm observes only the reward for the

selected action, and nothing else. This is called bandit feedback.
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Stochastic Bandits

• The rewards of each action(decision) a is i.i.d. according to some

distribution Da.

• The regret is

max
w

E [f (w)] · T −
T∑
t=1

E [f (wt)] .

• Exploration exploitation trade-off.
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Exploration Strategy

• Non-adaptive exploration: uniform exploration, ε-greedy

• Adaptive exploration: successive elimination, optimism under

uncertainty.

• Upper confidence bound(UCB):

UCBt(a) = µ̄t(a) + rt(a)

µ̄t(a) is the average reward of action a up to round t and

rt(a) =
√

2 log t
nt (a)

, where nt(a) denotes the number of times arm a gets

pulled till round t.

• UCB stragety: Pull every arm once and pick actions according to

UCB.
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Thompson Sampling

• Draw an arm from the posterior distribution pt of the best arm a∗,

pt(a) = P[a = a∗|Ht ] for each arm a.

where Ht = {(a1, r1), · · · , (at , rt)}.
• From another perspective, Thompson sampling sample reward

function µt from the posterior distribution and choose the best arm

according to µt .
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Other Bandits

• Contextual bandits: Rewards in each round depend on a context,

which is observed by the algorithm prior to making a decision.

• Markovian bandits: Rewards are Markovian. The ith arm is modeled

as an irreducible Markov chain with finite state space S i .

• Dueling bandits: Each iteration comprises of a noisy comparison (a

duel) between two bandits (possibly the same bandit with itself).

• Linear bandits: The set of arms K is a compact set, not necessarily

discrete. The reward function is assumed to be linear.
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References

This presentation uses content from Blum’s survey, Slivkins’s new

textbook of bandits, Bubeck’s textbook of bandits and papers from our

list.
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Call for volunteers for presentation!
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Thank you!
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