UBC MLRG (Fall 2018): Reinforcement Learning
Machine Learning Reading Group (MLRG)

• **Machine learning reading group** (MLRG) format:
 – Each semester we pick a general topic.
 – Each week someone leads us through a tutorial-style lecture/discussion.
 – So it’s organized a bit more like a “topics course” than reading group.

• We use this format because **ML has become a huge field**.

• The last few years the topics have been organized by me.
 – This year it is going to be student-run.
 – We may also drift a bit more between different topics.
Machine Learning Reading Group (MLRG)

• I’ve tried to pack as much as possible into the two ML courses:
 – CPSC 340 covers most of the most-useful methods.
 – CPSC 540 covers most of the background needed to read research papers.

• This reading group covers topics that aren’t yet in these course.
 – Aimed at people who have taken CPSC 340, and are comfortable with 540-level material.

• This may change now that we have more ML faculty.
Recent MLRG History

- Topics covered in recent tutorial-style MLRG sessions:
 - Summer 2015: Probabilistic graphical models.
 - Fall 2015: Convex optimization.
 - Winter 2016: Bayesian statistics.
 - Summer 2016: Miscellaneous.
 - Fall 2016: Deep learning.
 - Summer 2017: Online, active, and causal learning.
 - Fall 2017: Deep learning meets graphical models.
 - Fall 2018: Reinforcement learning.
Why Reinforcement Learning?

https://www.youtube.com/watch?v=Ih8EfvozBOY
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw
Building up to Reinforcement Learning

• Reinforcement learning (RL) is very general/difficult:
 – It includes many other machine learning problems as special cases.

• Good introductory book:

• Other names for reinforcement learning:
 – Approximate dynamic programming.
 – Neurodynamic programming.
 – Control theory.

• To build up to RL, let’s start with supervised learning:
 – Introduce notation, and discuss ways RL is harder.
Supervised Learning

- **Supervised learning notation:**
 - We have input features x^t.
 - There are possible outputs y^t.
 - We have a loss function $L(x^t, y^t)$.
 - E.g., loss of 0 if you classify correctly and loss of 1 is you classify incorrectly.

- **Reinforcement learning notation:**
 - The features are referred to as states s^t.
 - The outputs are referred to as actions a^t.
 - The (negative) loss function is called the reward $r(s^t, a^t)$.
 - E.g., reward of 0 if you classify correctly and reward of -1 if you classify incorrectly.
Supervised Learning

• **Supervised learning** training phase:
 – We have ‘n’ training examples, we can do whatever we want with them.
 – The output of training is a **classifier**: maps from x^t to y^t.
 – This is called a **policy** in RL: policies map from s^t to a^t.

• Goal: classifier minimizes loss \iff policy maximizes reward

• Some models give **score for each label**:
 – For example, softmax gives probability of each y^t given x^t.
 – This is a **Q function**: $Q(s^t,a^t)$ is “value” of action a^t in state s^t.
 – Given a policy, we can define the **value function** $V(s^t)$ as “value” given policy (which may be deterministic or stochastic).
State-Space Models

• In standard setup, the x^t are **IID samples**:

• In state-space models, the x^t come from a **Markov chain**:

 – Value of x^t depends on the value of x^{t-1}.
 – We obtain IID samples in the special case of no dependencies.
 – Learning in this fully-observed DAG is pretty similar.
Markov Decision Processes (MDPs)

• **State-space model** in RL notation

• In **Markov decision processes** (MDPs), \(s^t \) also depends on \(a^{t-1} \).
 - The action affects the value of the next state.
 • Here we need **planning**:
 – Choose actions that will lead to future states with high reward.
 - In MDPs we **assume we have the “model”**:
 • Know all rewards \(r(s^t, a^t) \) and transition probabilities \(p(s^t \mid s^{t-1}, a^{t-1}) \).

 – Given “model”, we can find optimal values/policy by dynamic programming:
 • **Value iteration and policy iteration**.
Reinforcement Learning

• **Reinforcement learning** is MDPs when we don’t know the “model”.
 – All we can do is take actions and observe states/rewards that result.

• We need to simultaneously solve three problems:
 – We need to solve a **supervised learning** problem, \(r(s^t,a^t) \).
 – We need to discover **dynamics of a state-space model**, \(p(s^t | s^{t-1}, a^{t-1}) \).
 – We need to **plan an MDP policy** maximizing long-term reward, \(s^t \rightarrow a^t \).

• All **while working with simulations**.

• Unfortunately, this combination gives a few more challenges...
Active Learning

• Let’s go back to the basic supervised learning setting:
 – Features s^t are just IID samples.

• Active learning considers the following variation:
 – The training examples are unlabeled.
 – The learner can query the user to label a training example s^t.
 – Goal is to do well with a fixed budget of queries.

• The fixed budget means we can’t visit all features/states.
 – Here we need exploration: which states do we visit to learn the most?
Online Learning and Bandit Feedback

• In **online learning** there is **no separate training/testing** phase:
 – We receive a sequence of features/states s^t.
 – We have to choose prediction/action a^t on each example as it arrives.
 – Our “score” is the average loss/reward over time.
 – Here we need to **predict well as we go** (not at the end).
 • You **pay a penalty for trying bad actions** as you are learning.

• A common variation is with **bandit feedback**:
 – We **only observe the reward function** $r(s^t,a^t)$ for actions a^t that we choose.
 – Here we have an **exploration vs. exploitation trade-off**:
 • Should we explore by picking an a^t we don’t know much about?
 • Should we exploit by picking an a^t that gives high reward?
Causal Learning

- **Causal learning:**
 - Observational prediction:
 - Do people who take Cold-FX have shorter colds?
 - Causal prediction:
 - Does taking Cold-FX cause you to have shorter colds?
 - Counter-factual prediction:
 - You didn’t take Cold-FX and had long cold, would taking it have made it shorter?

- Here we need to **learn effects of actions.**
 - Including predicting effects of **new actions.**

- We may not control the actions: **off-policy learning.**
 - Actions are often randomized, but still want to find best actions.
Reinforcement Learning

• **Reinforcement learning** is MDPs when we don’t know the “model”.
 – All we can do is take actions and observe states/rewards that result.

• We need to consider:
 – Modeling how \((s^t,a^t)\) combinations affects reward (supervised learning).
 – Learning how \((s^t,a^t)\) affects \(s^{t+1}\) (state-space models, causality).
 – Planning for long-term reward (MDPs).
 – Exploring space of states and actions (active learning, bandit feedback).

• Two common frameworks:
 – **Monte Carlo** methods collects a lot of simulations to turn it into an MDP.
 – **Temporal-difference** learning considers online prediction as you go.
 • Need to consider exploration vs. exploitation, penalties for trying bad actions.
Related Problems

• **Inverse reinforcement learning**, apprenticeship learning, etc.:
 – Learning from an expert without an explicit reward function.

• **Hidden state-space models**:
 – The actual state is hidden, and x^t is just an observation based on the state.
 – Hidden Markov models, Kalman filters, LQR control.

• **Partially-observed MDPs (POMDPs)**:
 – MDPs and reinforcement with hidden state-space model.
 – Hard even when you know the “model”.
Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 15</td>
<td>Motivation/Overview</td>
<td>Mark</td>
</tr>
<tr>
<td>Oct 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 12</td>
<td>Bayesian GANs & RL</td>
<td>Yifan</td>
</tr>
<tr>
<td>Nov 19</td>
<td>Causality</td>
<td>Christian</td>
</tr>
<tr>
<td>Nov 26</td>
<td>(Bayesian RL?)</td>
<td>Shoran</td>
</tr>
<tr>
<td>Dec 3</td>
<td>B.Clamp Stuff (prob)</td>
<td>Jason</td>
</tr>
<tr>
<td>Dec 10</td>
<td>Alpha Go</td>
<td>Aaron</td>
</tr>
<tr>
<td>Dec 17</td>
<td></td>
<td>Bryan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilder</td>
</tr>
</tbody>
</table>