UBC MLRG (Winter 2017): Reinforcement Learning

Machine Learning Reading Group (MLRG)

- Machine learning reading group (MLRG) format:
 - Each semester we pick a general topic.
 - Each week someone leads us through a tutorial-style lecture/discussion.
 - So it's organized a bit more like a "topics course" than reading group.
- We use this format because ML has become a huge field.

Machine Learning Reading Group (MLRG)

- I've tried to pack as much as possible into the two ML courses:
 - CPSC 340 covers most of the most-useful methods.
 - CPSC 540 covers most of the background needed to read research papers.
- This reading group covers topics that aren't yet in these course.
 - Aimed at people who have taken CPSC 340, and are comfortable with 540-level material.

Recent MLRG History

- Topics covered in recent tutorial-style MLRG sessions:
 - Summer 2015: Probabilistic graphical models.
 - Fall 2015: Convex optimization.
 - Winter 2016: Bayesian statistics.
 - Summer 2016: Miscellaneous.
 - Fall 2016: Deep learning.
 - Winter 2016: Reinforcement learning.
 - Summer 2017: Bandits, Online/Active Learning, Causality.

Why Reinforcement Learning?

https://www.youtube.com/watch?v=Ih8EfvOzBOY https://www.youtube.com/watch?v=SH3bADiB7uQ https://www.youtube.com/watch?v=nUQsRPJ1dYw

Building up to Reinforcement Learning

- Reinforcement learning (RL) is very general/difficult:
 - It includes many other machine learning problems as special cases.
- Good introductory book:
 - "Introduction to Reinforcement Learning" by Sutton & Barto.
- Other names for reinforcement learning:
 - Approximate dynamic programming.
 - Neurodynamic programming.
- To build up to RL, let's start with supervised learning:
 - Introduce notation, and discuss ways RL is harder.

Supervised Learning

- Supervised learning notation:
 - We have input features x^t.
 - There are possible outputs y^t.
 - We have a loss function L(x^t,y^t).
 - E.g., loss of 0 if you classify correctly and loss of 1 is you classify incorrectly.
- Reinforcement learning notation:
 - The features are referred to as states s^t.
 - The outputs are referred to as actions a^t.
 - The (negative) loss function is called the reward r(s^t,a^t).
 - E.g., reward of 0 if you classify correctly and reward of -1 if you classify incorrectly.

Supervised Learning

- Supervised learning training phase:
 - We have 'n' training examples, we can do whatever we want with them.
 - The output of training is a classifier: maps from x^t to y^t .
 - This is called a policy in RL: policies map from s^t to a^t.
- Goal: classifier minimizes loss ⇔ policy maximizes reward
- Some models give score for each label:
 - For example, softmax gives probability of each y^t given x^t.
 - This is a **Q** function: Q(s^t,a^t) is "value" of action a^t in state s^t.
 - Given a policy, we can define the value function V(s^t) as "value" given policy (which may be deterministic or stochastic).

State-Space Models

• In standard setup, the x^t are IID samples:

• In state-space models, the x^t come from a Markov chain:

- Value of x^t depends on the value of x^{t-1} .
- We obtain IID samples in the special case of no dependencies.
- Learning in this full-observed DAG is pretty similar.

Markov Decision Processes

• State-space model in RL notation

a³

- In Markov decision processes (MDPs), st also depends on at-1.
 - The action affects the value of the next state.
 - Here we need planning:
 - Choose actions that will lead to future states with high reward.
 - In MDPs we assume we have the "model":
 - Know all rewards r(s^t, a^t) and transition probabilities p(s^t | s^{t-1}, a^{t-1}).
 - Give "model", we can find optimal values/policy by dynamic programming:
 - <u>Value iteration and policy iteration</u> (next week).

Reinforcement Learning

- Reinforcement learning is MDPs when we don't know the "model".
 All we can do is take actions and observe states/rewards that result.
- We need to simultaneously solve three problems:
 - We need to solve a supervised learning problem, r(s^t,a^t).
 - We need to discover dynamics of a state-space model, p(s^t | s^{t-1}, a^{t-1}).
 - We need to plan an MDP policy maximizing long-term reward, s^t -> a^t.
- All while working with simulations.
- Unfortunately, this combination gives a few more challenges...

Active Learning

- Let's go back to the basic supervised learning setting:
 Features s^t are just IID samples.
- Active learning considers the following variation:
 - The training examples are unlabeled.
 - The learner can query the user to label a training example s^t.
 - Goal is to do well with a fixed budget of queries.
- The fixed budget means we can't visit all features/states.

- Here we need exploration: which states do we visit to learn the most?

Online Learning and Bandit Feedback

- In online learning there is no separate training/testing phase:
 - We receive a sequence of features/states s^t.
 - We have to choose prediction/action a^t on each example as it arrives.
 - Our "score" is the average loss/reward over time.
 - Here we need to predict well as we go (not at the end).
 - You pay a penalty for trying bad actions as you are learning.
- A common variation is with **bandit feedback**:
 - We only observe the reward function r(s^t,a^t) for actions a^t that we choose.
 - Here we have an exploration vs. exploitation trade-off:
 - Should we explore by picking an a^t we don't know much about?
 - Should we exploit by picking an a^t that gives high reward?

Causal Learning

- Causal learning:
 - Observational prediction:
 - Do people who take Cold-FX have shorter colds?
 - Causal prediction:
 - Does taking Cold-FX cause you to have shorter colds?
 - Counter-factual prediction:
 - You didn't take Cold-FX and had long cold, would taking it have made it shorter?
- Here we need to learn effects of actions.

Including predicting effects of new actions.

- We may not control the actions: off-policy learning.
 - Actions are often randomized, but still want to find best actions.

Reinforcement Learning

- Reinforcement learning is MDPs when we don't know the "model".
 - All we can do is take actions and observe states/rewards that result.
- We need to consider:
 - Modeling how (s^t,a^t) combinations affects reward (supervised learning)
 - Learning how (s^t,a^t) affects s^{t+1} (state-space models, causality).
 - Planning for long-term reward (MDPs).
 - Exploring space of states and actions (active learning, bandit feedback).
- Two common frameworks:
 - Monte Carlo methods collects a lot of simulations to turn it into an MDP.
 - Temporal-difference learning considers online prediction as you go.
 - Need to consider exploration vs. exploitation, penalties for trying bad actions.

Related Problems

- Inverse reinforcement learning, apprenticeship learning, etc.:
 - Learning from an expert without an explicit reward function.
- Hidden state-space models:
 - The actual state is hidden, and x^t is just an observation based on the state.
 - Hidden Markov models, Kalman filters, LQR control.
- Partially-observed MDPs (POMDPs):
 - MDPs and reinforcement with hidden state-space model.
 - Hard even when you know the "model".

Schedule

Date	Торіс	Presenter
Jan 10	Motivation/Overview	Mark
Jan 17	MDPs (policy iteration, value iteration)	Nasim
Jan 24	Monte Carlo (estimators, on-policy/off-policy learning)	Julie
Jan 31	TD learning, eligibility traces (least squares TD)	Raunak
Feb 7	Sarsa, Q-learning	Jennifer
Feb 14	Functional approximation, TD-Gammon, ATARI	Michael
Feb 21	Planning, temporal abstraction	Ricky
Feb 28	Policy gradient, Monte-Carlo tree-search, AlphaGo	Stephen
Mar 7	Optimal control, flying helicopters	Issam
Mar 14	POMDPs part 1	Sharan
Mar 21	POMDPs part 2	Jason
Mar 28	Value-Iteration Networks	Julieta
April 4	RL in Practice	Glen