UBC MLRG (Summer 2016): Miscellaneous

Some images from this lecture are taken from Google Image Search.
Recent MLRG History

• Topics covered in recent MLRG terms:
 – Fall 2014: Deep learning and Bayesian optimization.
 – Summer 2015: Probabilistic graphical models.
 – Fall 2015: Convex optimization.

• Summer 2016 proposal: miscellaneous!
 – Major topics not previously covered in CPSC 540 or recently in the MLRG.
 • But that we don’t want to dedicate a semester to.
 – Plan is to spend 2 weeks on each topic.

• Today:
 – Overview of these topics, and getting people to choose topics/weeks.
Independent Component Analysis (ICA)

• 540 covers probabilistic PCA and factor analysis:
 – Latent factors follow an independent Gaussian distribution.

• Independent component analysis:
 – Latent factors follow and independent non-Gaussian distribution.

• Key advantage:
 – Latent factors become identifiable (up to label switching).

• Key applications:
 – Source separation.
 – Causality.
Changepoint Detection

• 540 covers hidden Markov models:
 – Finds latent “modes” and latent dynamics in time-series.

• Changepoint detection:
 – Task of finding breakpoints where time series distribution changes.

• Key advantage:
 – May be easier than fitting generative HMM.

• Key applications:
 – Bioinformatics.
 – Econometrics.
Sub-Modularity

• 540 covers convexity:
 – Class of continuous functions that is easy to minimize.

• Sub-modularity:
 – Class of discrete functions that is easy to minimize.
 – Algorithms also exist for approximate maximization.

• Key advantage:
 – Expands class of efficiently-solvable problems.

• Applications:
 – Computer vision.
 – Sensor networks.

• Related: QUBO.
Relational Models

- 540 covers Bayesian networks:
 - Describes relationships between variables.

- Probabilistic relational models and Markov logic networks:
 - We have “types” of variables and probabilities on logical statements.

- Key advantage:
 - More expressive language.

- Applications:
 - Adding probabilities to databases.

Continuous Graphical Models

• 540 covers discrete and Gaussian graphical models:
 – Convenient due to conjugacy.
• Nonparanormal and Gaussian-copulas models:
 – More flexible continuous distributions.
• Key advantage:
 – Gaussians are very restricted class.
• Applications:
Grammars

• 540 covers Markov models:
 – Useful for modeling sequence data with Markov assumption.
 – Can be generalized to Bayesian networks.

• Probabilistic context-free grammars:
 – Different generalization using “recursive” Markov assumption.

• Key advantage:
 – Dependencies at different scales.

• Applications:
 – Natural language processing.
 – RNA secondary structure.

• Related: And-Or trees, image grammars.
Topic Models

• 540 covers density estimation.
• Topic models:
 – Hierarchical density estimation.
• Key advantage:
 – Structure at different scales (document vs. word).
• Applications:
 – Document modeling/clustering/analysis.
• Related: more non-parametric Bayes.
Spectral Methods

• 540 covers expectation maximization:
 – Only finds global optimum.

• Spectral methods:
 – Consistent estimators.

• Key advantage:
 – No local minima if you have enough data.

• Applications:
 – All the usual HMM applications.
Large-Scale Kernels Methods

• 540 covers kernel methods:
 – Flexible universal approximators.
 – But $O(n^2)$ or worse cost/storage.

• Large-scale methods:
 – Tricks to get $O(n \log n)$.

• Big literature:
 – Nystrom.
 – Fast multipole.
 – Kronecker products.
 – Circulant matrices.
Topics/Schedule

• June 1: No meeting (UAI camera-ready deadline)
• June 8, 15: Spectral Methods (Sharan and Geoff)
• June 22: Relational Models (Chris)
• June 29: Submodularity (Saif)
• July 6: Grammars (Nasim)
• July 13, 20: Continuous graphical models (Eviatar, Steven, Kevin)
• July 27, August 3: Large-scale kernels methods (Issam, Julieta)
• August 10, 17: Changepoint detection (Mohamed, Alireza)
• August 24, 31: Independent component analysis (Julie, Ricky)