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Learning with Hidden Variables

On Monday we looked at learning parameters of a UGM,

Vancouver rain example, x: rain/no-rain for each month

Modeled the energy using a log-linear model: E(x) = wTF (x)

NLL: f(w) = − 1
N

∑
t log(p(x

(t)|w)) = −wTF (D) + log(Z(w))

The objective function is convex

Today we focus on learning parameters to model p(x,h)

where only x is observed and

h is not observed (or hidden) in the training examples

e.g., if the rain entry for a few days each month is missing, how
to still use the data for learning
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Learning with Hidden Variables

We can obtain p(x) by summing over all values of h

p(x) =
∑
h

p(x,h)

=
∑
h

exp(−E(x,h))

Z

=

∑
h exp(−E(x,h))∑

x,h exp(−E(x,h))
=
Zh(x)

Z

x

h

x

h
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Z
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NLL:

f(w) = − 1

N

∑
t

log(p(x(t)|w)) =
1

N

∑
t

(− log(Zh(x
(t)))) + log(Z)

Note that the second term is the same as fully observed case

Now, even for a log-linear model the NLL is no longer convex

We can use exact or approximate inference (as applicable) to
evaluate both the terms
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Restricted Boltzmann Machines

UGM with the following structure:

No lateral connections

x and h are both binary

The figures/slides are from videos by Hugo Larochelle, available at
https://www.youtube.com/watch?v=p4Vh_zMw-HQ
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Restricted Boltzmann Machines

A compact description:

Energy:

E(x,h) = −xTWh− bTh− cTx

= −
∑
jk

wjkhjxk −
∑
j

bjhj −
∑
k

ckxk

Distribution:
p(x,h) =

exp(−E(x,h))

Z
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RBM: Inference

p(x|h) =
∏
k

p(xk|h)

p(xk = 1|h) = 1

1 + exp(−(ck + hTW.k))

= sigm(ck + hTW.k)

p(hj = 1|x) = sigm(bj +Wj.x)
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RBM: Inference

Due to conditional independence:

conditional distribution p(x|h) factorizes

we can calculate it in closed form

decoding, inference and sampling is easy if x
or h is given
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RBM: Learning

Given a set of examples {x(1),x(2), ...,x(N) }

Learn the parameters W , b, and c

Example: a set of binary images from MNIST dataset

Motivation

Unsupervised feature discovery

Compression/non-linear dimensionality reduction

A generative model of the image
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RBM: Learning

To minimize the NLL:

argmin
W,b,c

1

N

∑
t

− log(p(x(t)))

− log(p(x(t))) = − log

(∑
h exp(−E(x(t),h))∑
h,x exp(−E(x,h))

)
= − log

(∑
h

exp(−E(x(t),h))
)
+ log

(∑
h,x

exp(−E(x,h))
)

Let’s consider,

∂
(
− log p(x(t))

)
∂Wjk

=
∑
h

p(h|x(t))
∂E(x(t),h)

∂Wjk
−
∑
h,x

p(x,h)
∂E(x,h)

∂Wjk

= Eh|x

[
∂E(x(t),h)

∂Wjk

]
− Ex,h

[
∂E(x,h)

∂Wjk

]
So far we have not assumed an RBM. This can work for any hidden
variable model.
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Contrastive Divergence

Recall from previous slides:

E(x,h) = −
∑
jk

Wjkhjxk −
∑
j

bjhj −
∑
k

ckxk

Derivative:
∂E(x,h)

∂Wjk
= −hjxk

Plugging in values:

∂
(
− log p(x(t))

)
∂Wjk

= Eh|x

[
∂E(x(t),h)

∂Wjk

]
− Ex,h

[
∂E(x,h)

∂Wjk

]
= −Eh|x

[
hjx

(t)
k

]
+ Ex,h

[
hjxk

]
≈ −Eh|x

[
hjx

(t)
k

]
+ Eh|x

[
hj x̃k

]
= −p(hj = 1|x(t))x

(t)
k + p(hj = 1|x̃)x̃k
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Contrastive Divergence

Update rule:

Wjk ←Wjk + α

(
p(hj = 1|x(t))x

(t)
k − p(hj = 1|x̃)x̃k

)

We can obtain similar expressions for bj and ck

Sampling x̃ : use block Gibb’s sampling
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Contrastive Divergence

Putting everything together: CD-k algorithm

For each training example x(t)

Initialize a Gibb’s chain with x(t)

Run k rounds to obtain x̃

Update W , b, and c

Go back to the first step until a stopping criteria
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Contrastive Divergence

Wjk ←Wjk + α

(
p(hj = 1|x(t))x

(t)
k − p(hj = 1|x̃)x̃k

)
CD intuition:
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Persistent CD or Younes’ Algorithm

Pseudo code

For each training example x(t)

Initialize a Gibb’s chain with x̃(t−1)

Run k rounds to obtain x̃

Update W , b, and c

Go back to the first step until a stopping criteria

Works better in theory as well as in practice.
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Learned Features

Weights W in an image form:
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Sample the generative model

Samples obtained from an RBM trained on MNIST data

17 / 1



Extensions of RBM

Gaussian-Bernoulli RBM

Input x can be real-valued

Modified energy function

E(x,h) = −xTWh−bTh−cTx+1

2
xTx

p(x|h) turns out to be a Gaussian
distribution

Deep Belief Networks

Can be trained greedily one layer at
a time (same as RBM training) Image: deeplearning.net
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Summary

All the variables may not be observed in the training data. We
can still learn the parameters of a UGM.

Restricted Boltzmann Machines (RBM) are binary UGMs with
hidden variables (no lateral connection)

RBMs are useful for unsupervised feature discovery, non-linear
dimensionality reduction etc.

RBMs can be trained efficiently using Persistent-CD
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