Variational Inference and Mean Field

Mark Schmidt

University of British Columbia

August, 2015
We used \textit{structured prediction} to motivate studying UGMs:

Input: \texttt{Paris}

Output: "Paris"
Summary of Weeks 1 and 2

- We used **structured prediction** to motivate studying UGMs:

 Input: 🏛️ɑɾɪs

 Output: "Paris"

- **Week 1: exact inference:**
 - Exact decoding, inference, and sampling.
 - Small graphs, tree, junction trees, semi-Markov, graph cuts.
Summary of Weeks 1 and 2

- We used **structured prediction** to motivate studying UGMs:

 Input: \(\text{Paris} \)

 Output: "Paris"

- **Week 1: exact inference:**
 - Exact decoding, inference, and sampling.
 - Small graphs, tree, junction trees, semi-Markov, graph cuts.

- **Week 2: learning and approximate inference:**
 - Learning based on maximum likelihood.
 - Approximate decoding with local search.
 - Approximate sampling with MCMC.
 - Hidden variables.
 - Structure learning.
Summary of Weeks 1 and 2

- We used **structured prediction** to motivate studying UGMs:

 Input: Paris

 Output: "Paris"

- **Week 1:** **exact inference**:
 - Exact decoding, inference, and sampling.
 - Small graphs, tree, junction trees, semi-Markov, graph cuts.

- **Week 2:** **learning and approximate inference**:
 - Learning based on maximum likelihood.
 - Approximate decoding with local search.
 - Approximate sampling with MCMC.
 - Hidden variables.
 - Structure learning.

- **Week 3**:
 - Approximate inference with **variational** methods.
 - Approximate decoding with **convex** relaxations.
 - Learning based on **structured** SVMs.
Variational Inference

“Variational inference”:

- Formulate inference problem as constrained optimization.
- Approximate the function or constraints to make it easy.
Variational Inference

“Variational inference”:
- Formulate inference problem as constrained optimization.
- Approximate the function or constraints to make it easy.

Why not use MCMC?
- MCMC works asymptotically, but may take forever.
- Variational methods not consistent, but very fast.
 (trade off accuracy vs. computation)
Overview of Methods

- “Classic” variational inference based on intuition:
 - **Mean-field**: approximate log-marginal \(i \) by averaging neighbours,

\[
\mu_{i,s}^{k+1} \propto \phi_i(s) \exp \left(\sum_{(i,j) \in E} \sum_t \mu_{j,t}^k \log(\phi_{ij}(s, t)) \right),
\]

comes from statistical physics.

- Loopy belief propagation: apply tree-based message passing algorithm to loopy graphs.
- Linear programming relaxation: replace integer constraints with linear constraints.

But we are developing theoretical tools to understand these:
This has lead to new methods with better properties.

This week will follow the variational inference monster paper: Wainwright & Jordan.

Graphical Models, Exponential Families, and Variational Inference.

“Classic” variational inference based on intuition:

- **Mean-field**: approximate log-marginal i by averaging neighbours,

$$
\mu_{is}^{k+1} \propto \phi_i(s) \exp \left(\sum_{(i,j) \in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t)) \right),
$$

comes from statistical physics.

- **Loopy belief propagation**: apply tree-based message passing algorithm to loopy graphs.
Overview of Methods

• “Classic” variational inference based on intuition:
 • Mean-field: approximate log-marginal i by averaging neighbours,
 \[\mu_{i_{s}}^{k+1} \propto \phi_i(s) \exp \left(\sum_{(i,j) \in E} \sum_{t} \mu_{jt}^{k} \log(\phi_{ij}(s,t)) \right) , \]
 comes from statistical physics.
 • Loopy belief propagation: apply tree-based message passing algorithm to loopy graphs.
 • Linear programming relaxation: replace integer constraints with linear constraints.
Overview of Methods

“Classic” variational inference based on intuition:

- **Mean-field**: approximate log-marginal i by averaging neighbours,

 \[
 \mu_{i,s}^{k+1} \propto \phi_i(s) \exp \left(\sum_{(i,j) \in E} \sum_t \mu_{j,t}^k \log(\phi_{ij}(s,t)) \right),
 \]

 comes from statistical physics.

- **Loopy belief propagation**: apply tree-based message passing algorithm to loopy graphs.

- **Linear programming relaxation**: replace integer constraints with linear constraints.

But we are developing theoretical tools to understand these:

- Has lead to new methods with better properties.
Overview of Methods

- “Classic” variational inference based on intuition:
 - **Mean-field**: approximate log-marginal \(i \) by averaging neighbours,
 \[
 \mu_{i^k}^{k+1} \propto \phi_i(s) \exp \left(\sum_{(i,j) \in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t)) \right),
 \]
 comes from statistical physics.
 - **Loopy belief propagation**: apply tree-based message passing algorithm to loopy graphs.
 - **Linear programming relaxation**: replace integer constraints with linear constraints.

- But we are developing theoretical tools to understand these:
 - Has lead to new methods with better properties.

- This week will follow the variational inference monster paper:
We will again consider log-linear models:

\[P(X) = \frac{\exp(w^T F(X))}{Z(w)}, \]

but view them as **exponential family distributions**,

\[P(X) = \exp(w^T F(X) - A(w)), \]

where \(A(w) = \log(Z(w)) \).
We will again consider log-linear models:

\[P(X) = \frac{\exp(w^T F(X))}{Z(w)}, \]

but view them as exponential family distributions,

\[P(X) = \exp(w^T F(X) - A(w)), \]

where \(A(w) = \log(Z(w)) \).

- Log-partition \(A(w) \) is called the cumulant function,

\[\nabla A(w) = \mathbb{E}[F(X)], \quad \nabla^2 A(w) = \mathbb{V}[F(X)], \]

which implies convexity.
The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$
The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$

E.g., in CPSC 540 we did this for logistic regression:

$$A(w) = \log(1 + \exp(w)),$$

implies that $A^*(\mu)$ satisfies

$$\mathcal{W} = \log(\mu) / \log(1 - \mu).$$

When $0 < \mu < 1$ we have

$$A^*(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu) = -H(p_\mu),$$

negative entropy of binary distribution with mean μ.

If μ does not satisfy boundary constraint, $A^*(\mu) = \infty$.

The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in W} \{\mu^T w - A(w)\}.$$

E.g., in CPSC 540 we did this for logistic regression:

$$A(w) = \log(1 + \exp(w)),$$

implies that $A^*(\mu)$ satisfies $w = \log(\mu)/\log(1 - \mu)$.

When $0 < \mu < 1$ we have

$$A^*(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu) = -\text{H}(\mu),$$

negative entropy of binary distribution with mean μ. If μ does not satisfy boundary constraint, $A^*(\mu) = \infty$.
The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in W} \{ \mu^T w - A(w) \}.$$

E.g., in CPSC 540 we did this for logistic regression:

$$A(w) = \log(1 + \exp(w)),$$

implies that $A^*(\mu)$ satisfies $w = \log(\mu)/\log(1 - \mu)$.

- When $0 < \mu < 1$ we have

 $$A^*(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu)$$

 $$= -H(p_\mu),$$

 negative entropy of binary distribution with mean μ.

- If μ does not satisfy boundary constraint, $A^*(\mu) = \infty$.
More generally, if \(A(w) = \log(Z(w)) \) then

\[
A^*(\mu) = -H(p_\mu),
\]

subject to boundary constraints on \(\mu \) and constraint:

\[
\mu = \nabla A(w) = \mathbb{E}[F(X)].
\]

Convex set satisfying these is called marginal polytope \(\mathcal{M} \).
More generally, if $A(w) = \log(Z(w))$ then

$$A^*(\mu) = -H(p_\mu),$$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

Convex set satisfying these is called marginal polytope \mathcal{M}.

If A is convex (and LSC), $A^{**} = A$. So we have

$$A(w) = \sup_{\mu \in \mathcal{U}} \{w^T \mu - A^*(\mu)\}.$$
More generally, if $A(w) = \log(Z(w))$ then

$$A^*(\mu) = -H(p_\mu),$$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

Convex set satisfying these is called marginal polytope \mathcal{M}.

If A is convex (and LSC), $A^{**} = A$. So we have

$$A(w) = \sup_{\mu \in \mathcal{U}} \{w^T \mu - A^*(\mu)\}.$$

and when $A(w) = \log(Z(w))$ we have

$$\log(Z(w)) = \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\}.$$

We’ve written inference as a convex optimization problem.
The maximum likelihood parameters w satisfy:

\[
\begin{align*}
\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w)) &= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_{\mu})\} \quad \text{(convex conjugate)} \\
&= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_{\mu})\} \\
&= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_{\mu})\} \quad \text{(convex/concave)}
\end{align*}
\]
The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\}$$ \hspace{1cm} \text{(convex conjugate)}

$$= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$$

$$= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\}$$ \hspace{1cm} \text{(convex/concave)}

which is $-\infty$ unless $F(D) = \mu$ (e.g., Max Likelihood), so we have
The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\} \quad \text{(convex conjugate)}$$

$$= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$$

$$= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\} \quad \text{(convex/concave)}$$

which is $-\infty$ unless $F(D) = \mu$ (e.g., Max Likelihood), so we have

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \max_{\mu \in \mathcal{M}} H(p_\mu),$$

subject to $F(D) = \mu$.
The **maximum likelihood** parameters w satisfy:

\[
\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))
\]

\[
= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in M} \{w^T \mu + H(p_{\mu})\} \quad \text{(convex conjugate)}
\]

\[
= \min_{w \in \mathbb{R}^d} \sup_{\mu \in M} \{-w^T F(D) + w^T \mu + H(p_{\mu})\}
\]

\[
= \sup_{\mu \in M} \{ \min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_{\mu})\} \quad \text{(convex/concave)}
\]

which is $-\infty$ unless $F(D) = \mu$ (e.g., Max Likelihood), so we have

\[
\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))
\]

\[
= \max_{\mu \in M} H(p_{\mu}),
\]

subject to $F(D) = \mu$.

- **Maximum likelihood** \Rightarrow maximum entropy + moment constraints.
- Converse: MaxEnt + fit feature frequencies \Rightarrow ML(log-linear).
We wrote inference as a convex optimization:

\[
\log(Z) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},
\]
We wrote inference as a convex optimization:

\[
\log(Z) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},
\]

Did this make anything easier?
We wrote inference as a convex optimization:

$$\log(Z) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},$$

Did this make anything easier?

- Computing entropy $H(p_\mu)$ seems as hard as inference.
- Characterizing marginal polytope \mathcal{M} becomes hard with loops.
We wrote inference as a convex optimization:

\[
\log(Z) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},
\]

Did this make anything easier?

- Computing entropy \(H(p_\mu) \) seems as hard as inference.
- Characterizing marginal polytope \(\mathcal{M} \) becomes hard with loops.

Practical variational methods:

- Work with approximation to marginal polytope \(\mathcal{M} \).
- Work with approximation/bound on entropy \(A^* \).
Difficulty of Variational Formulation

- We wrote inference as a convex optimization:

\[
\log(Z) = \sup_{\mu \in \mathcal{M}} \left\{ w^T \mu + H(p_{\mu}) \right\},
\]

- Did this make anything easier?
 - Computing entropy \(H(p_{\mu}) \) seems as hard as inference.
 - Characterizing marginal polytope \(\mathcal{M} \) becomes hard with loops.

- Practical variational methods:
 - Work with approximation to marginal polytope \(\mathcal{M} \).
 - Work with approximation/bound on entropy \(A^* \).

- Comment on notation when discussing inference with fixed “\(w \)”:
 - Put everything “inside” \(w \) to discuss general log-potentials:

\[
\log(Z) = \sup_{\mu \in \mathcal{M}} \left\{ \sum_i \sum_s \mu_{i,s} \log \phi_i(s) + \sum_{(i,j) \in E} \sum_{s,t} \mu_{ij,st} \log \phi_{ij}(s,t) - \sum_X p_u(X) \log(p_u(X)) \right\},
\]

and we have all \(\mu \) values even with parameter tieing.
Mean Field Approximation

- **Mean field** approximation assumes

 \[\mu_{ij,st} = \mu_{i,s} \mu_{j,t}, \]

 for all edges, which means

 \[p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t), \]

 and that variables are independent.
Mean Field Approximation

- **Mean field** approximation assumes

\[\mu_{ij,st} = \mu_{i,s} \mu_{j,t}, \]

for all edges, which means

\[p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t), \]

and that variables are independent.

- Entropy is simple under mean field approximation:

\[\sum_X p(X) \log p(X) = \sum_i \sum_{x_i} p(x_i) \log p(x_i). \]
Mean Field Approximation

- **Mean field** approximation assumes
 \[\mu_{ij,st} = \mu_{i,s} \mu_{j,t}, \]
 for all edges, which means
 \[p(x_i = s, x_j = t) = p(x_i = s) p(x_j = t), \]
 and that **variables are independent**.

- Entropy is simple under mean field approximation:
 \[\sum_X p(X) \log p(X) = \sum_i \sum_{x_i} p(x_i) \log p(x_i). \]

- Marginal polytope is also simple:
 \[\mathcal{M}_F = \{ \mu \mid \mu_{i,s} \geq 0, \sum_s \mu_{i,s} = 1, \mu_{ij,st} = \mu_{i,s} \mu_{j,t} \}. \]
Entropy of Mean Field Approximation

- Entropy form is from distributive law and probabilities sum to 1:

\[
\sum_{X} p(X) \log p(X) = \sum_{X} p(X) \log \left(\prod_{i} p(x_i) \right)
\]

\[
= \sum_{X} p(X) \sum_{i} \log(p(x_i))
\]

\[
= \sum_{i} \sum_{X} p(X) \log p(x_i)
\]

\[
= \sum_{i} \sum_{X} \prod_{j} p(x_j) \log p(x_i)
\]

\[
= \sum_{i} \sum_{X} p(x_i) \log p(x_i) \prod_{j \neq i} p(x_j)
\]

\[
= \sum_{i} \sum_{x_i} p(x_i) \log p(x_i) \sum_{x_j | j \neq i \land j \neq i} \prod_{j \neq i} p(x_j)
\]

\[
= \sum_{i} \sum_{x_i} p(x_i) \log p(x_i).
\]
Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

$$\sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_\mu) \} \leq \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} = \log(Z).$$
Mean Field as Non-Convex Lower Bound

- Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

 \[
 \sup_{\mu \in \mathcal{M}_F} \{w^T \mu + H(p_\mu)\} \leq \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\} = \log(Z).
 \]

- Since $\mathcal{M}_F \subseteq \mathcal{M}$, it is an inner approximation:
Mean Field as Non-Convex Lower Bound

- Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:
 \[
 \sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_\mu) \} \leq \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} = \log(Z).
 \]

- Since $\mathcal{M}_F \subseteq \mathcal{M}$, it is an inner approximation:

\[\text{Fig. 5.3 Cartoon illustration of the set } \mathcal{M}_F(G) \text{ of mean parameters that arise from tractable distributions is a nonconvex inner bound on } \mathcal{M}(G). \text{ Illustrated here is the case of discrete random variables where } \mathcal{M}(G) \text{ is a polytope. The circles correspond to mean parameters that arise from delta distributions, and belong to both } \mathcal{M}(G) \text{ and } \mathcal{M}_F(G).\]

- Constraints $\mu_{ij,st} = \mu_{i,s} \mu_{j,t}$ make it non-convex.
Mean Field Algorithm

- The mean field free energy is defined as

\[-E_{MF} \triangleq w^T \mu + H(p_{\mu})\]

\[= \sum_i \sum_s \mu_{i,s} w_{i,s} + \sum_{(i,j) \in E} \sum_{s,t} \mu_{i,s} \mu_{i,t} w_{ij,st} - \sum_i \sum_s \mu_{i,s} \log \mu_{i,s} \]

- Last term is entropy, first two terms sometimes called ‘energy’.
The mean field free energy is defined as

\[-E_{MF} \triangleq w^T \mu + H(p_\mu)\]

\[= \sum_i \sum_s \mu_{i,s} w_{i,s} + \sum_{(i,j) \in E} \sum_s \mu_{i,s} \mu_{i,t} w_{ij,st} - \sum_i \sum_s \mu_{i,s} \log \mu_{i,s}.\]

Last term is entropy, first two terms sometimes called ‘energy’.

Mean field algorithm is coordinate descent on this objective,

\[-\nabla_{i,s} E_{MF} = w_{i,s} + \sum_{(i,j) \in E} \sum_t \mu_{i,j} w_{ij,st} - \log(\mu_i) - 1.\]

Equating to zero for all \(s\) and solving for \(\mu_{i,s}\) gives update

\[\mu_{i,s} \propto \exp(w_{i,s} + \sum_{(i,j) \in E} \sum_t \mu_{i,j} w_{ij,st}).\]
• Mean field is weird:
 • Non-convex approximation to a convex problem.
 • For learning, we want upper bounds on $\log(Z)$.

• Alternative interpretation of mean field:
 • Minimize KL divergence between independent distribution and p.

Discussion of Mean Field and Structured MF

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on $\log(Z)$.

- Alternative interpretation of mean field:
 - Minimize KL divergence between independent distribution and p.

- Structured mean field:
 - Cost of computing entropy is similar to cost of inference.
Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on $\log(Z)$.

- Alternative interpretation of mean field:
 - Minimize KL divergence between independent distribution and p.

- Structured mean field:
 - Cost of computing entropy is similar to cost of inference.
 - Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
Structured Mean Field with Tree

More edges means better approximation of \mathcal{M} and $H(p_\mu)$:

- original G
- (Naïve) MF H_0
- structured MF H_s

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
Variational methods write inference as optimization:
- But optimization seems as hard as original problem.
- We relax the objective/constraints to obtain tractable problems.
- Mean field methods are one way to construct lower-bounds.

For tomorrow, Chapter 4: