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Summary of Weeks 1 and 2

We used structured prediction to motivate studying UGMs:

Week 1: exact inference:
Exact decoding, inference, and sampling.
Smal graphsl, tree, junction trees, semi-Markov, graph cuts.

Week 2: learning and approximate inference:
Learning based on maximum likelihood.
Approximate decoding with local search.
Approximate sampling with MCMC.
Hidden variables.
Structure learning.

Week 3:
Approximate inference with variational methods.
Approximate decoding with convex relaxations.
Learning based on structured SVMs.
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Variational Inference

“Variational inference”:

Formulate inference problem as constrained optimization.
Approximate the function or constraints to make it easy.

Why not use MCMC?

MCMC works asymptotically, but may take forever.
Variational methods not consistent, but very fast.

(trade off accuracy vs. computation)
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Overview of Methods

“Classic” variational inference based on intuition:

Mean-field: approximate log-marginal i by averaging neighbours,

µk+1
is ∝ φi(s) exp

 ∑
(i,j)∈E

∑
t

µkjt log(φij(s, t))

 ,

comes from statistical physics.

Loopy belief propagation: apply tree-based message passing
algorithm to loopy graphs.
Linear programming relaxation: replace integer constraints with
linear constraints.

But we are developing theoretical tools to understand these:

Has lead to new methods with better properties.

This week will follow the variational inference monster paper:
Wainwright & Jordan. Graphical Models, Exponential Families, and Variational

Inference. Foundations and Trends in Machine Learning. 1(1-2), 2008.
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Exponential Families and Cumulant Function

We will again consider log-linear models:

P (X) =
exp(wTF (X))

Z(w)
,

but view them as exponential family distributions,

P (X) = exp(wTF (X)−A(w)),

where A(w) = log(Z(w)).

Log-partition A(w) is called the cumulant function,

∇A(w) = E[F (X)], ∇2A(w) = V[F (X)],

which implies convexity.
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Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W
{µTw −A(w)}.

E.g., in CPSC 540 we did this for logistic regression:

A(w) = log(1 + exp(w)),

implies that A∗(µ) satisfies w = log(µ)/ log(1− µ).
When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)

= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, A∗(µ) =∞.
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Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[F (X)].

Convex set satisfying these is called marginal polytopeM.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U
{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M
{wTµ+H(pµ)}.

We’ve written inference as a convex optimization problem.
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Detour: Maximum Likelihood and Maximum Entropy

The maximum likelihood parameters w satisfy:

min
w∈IRd

−wTF (D) + log(Z(w))

= min
w∈IRd

−wTF (D) + sup
µ∈M
{wTµ+H(pµ)} (convex conjugate)

= min
w∈IRd

sup
µ∈M
{−wTF (D) + wTµ+H(pµ)}

= sup
µ∈M
{ min
w∈IRd

−wTF (D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless F (D) = µ (e.g., Max Likelihood), so we have

min
w∈IRd

−wTF (D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to F (D) = µ.

Maximum likelihood⇒ maximum entropy + moment constraints.

Converse: MaxEnt + fit feature frequencies⇒ ML(log-linear).
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Difficulty of Variational Formulation

We wrote inference as a convex optimization:

log(Z)) = sup
µ∈M
{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytopeM becomes hard with loops.

Practical variational methods:

Work with approximation to marginal polytopeM.
Work with approximation/bound on entropy A∗.

Comment on notation when discussing inference with fixed “w”:
Put everything “inside” w to discuss general log-potentials:

log(Z) = sup
µ∈M

∑
i

∑
s

µi,s log φi(s) +
∑

(i,j)∈E

∑
s,t

µij,st log φij(s, t)−
∑
X

pu(X) log(pu(X))

 ,

and we have all µ values even with parameter tieing.
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Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.
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Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑
xj |j 6=i

∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).



Mean Field as Non-Convex Lower Bound

SinceMF ⊆M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M
{wTµ+H(pµ)} = log(Z).

SinceMF ⊆M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.
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Mean Field Algorithm

The mean field free energy is defined as

−EMF , wTµ+H(pµ)

=
∑
i

∑
s

µi,swi,s +
∑

(i,j)∈E

∑
s,t

µi,sµi,twij,st −
∑
i

∑
s

µi,s logµi,s.

Last term is entropy, first two terms sometimes called ‘energy’.

Mean field algorithm is coordinate descent on this objective,

−∇i,sEMF = wi,s +
∑

j|(i,j)∈E

∑
t

µi,jwij,st − log(µi,s)− 1.

Equating to zero for all s and solving for µi,s gives update

µi,s ∝ exp(wi,s +
∑

j|(i,j)∈E

∑
t

µi,jwij,st).
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Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Alternative interpretation of mean field:

Minimize KL divergence between independent distribution and p.

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation ofM and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf


Discussion

Variational methods write inference as optimization:

But optimization seems as hard as original problem.

We relax the objective/constraints to obtain tractable problems.

Mean field methods are one way to construct lower-bounds.

For tomorrow, Chapter 4:
Wainwright & Jordan. Graphical Models, Exponential Families, and Variational Inference.

Foundations and Trends in Machine Learning. 1(1-2), 2008.


