Variational Inference and Mean Field

Mark Schmidt

University of British Columbia

August, 2015

• We used structured prediction to motivate studying UGMs:

Input: Paris

• We used structured prediction to motivate studying UGMs:

- Week 1: exact inference:
 - Exact decoding, inference, and sampling.
 - Smal graphsl, tree, junction trees, semi-Markov, graph cuts.

• We used structured prediction to motivate studying UGMs:

- Week 1: exact inference:
 - Exact decoding, inference, and sampling.
 - Smal graphsl, tree, junction trees, semi-Markov, graph cuts.
- Week 2: learning and approximate inference:
 - Learning based on maximum likelihood.
 - Approximate decoding with local search.
 - Approximate sampling with MCMC.
 - Hidden variables.
 - Structure learning.

• We used structured prediction to motivate studying UGMs:

- Week 1: exact inference:
 - Exact decoding, inference, and sampling.
 - Smal graphsl, tree, junction trees, semi-Markov, graph cuts.
- Week 2: learning and approximate inference:
 - Learning based on maximum likelihood.
 - Approximate decoding with local search.
 - Approximate sampling with MCMC.
 - Hidden variables.
 - Structure learning.
- Week 3:
 - Approximate inference with variational methods.
 - Approximate decoding with convex relaxations.
 - Learning based on structured SVMs.

- "Variational inference":
 - Formulate inference problem as constrained optimization.
 - Approximate the function or constraints to make it easy.

- "Variational inference":
 - Formulate inference problem as constrained optimization.
 - Approximate the function or constraints to make it easy.
- Why not use MCMC?
 - MCMC works asymptotically, but may take forever.
 - Variational methods not consistent, but very fast.

(trade off accuracy vs. computation)

- "Classic" variational inference based on intuition:
 - Mean-field: approximate log-marginal *i* by averaging neighbours,

$$\mu_{is}^{k+1} \propto \phi_i(s) \exp\left(\sum_{(i,j)\in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t))\right),\,$$

- "Classic" variational inference based on intuition:
 - Mean-field: approximate log-marginal *i* by averaging neighbours,

$$\mu_{is}^{k+1} \propto \phi_i(s) \exp\left(\sum_{(i,j)\in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t))\right),\,$$

comes from statistical physics.

 Loopy belief propagation: apply tree-based message passing algorithm to loopy graphs.

- "Classic" variational inference based on intuition:
 - Mean-field: approximate log-marginal *i* by averaging neighbours,

$$\mu_{is}^{k+1} \propto \phi_i(s) \exp\left(\sum_{(i,j)\in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t))\right),\,$$

- Loopy belief propagation: apply tree-based message passing algorithm to loopy graphs.
- Linear programming relaxation: replace integer constraints with linear constraints.

- "Classic" variational inference based on intuition:
 - Mean-field: approximate log-marginal *i* by averaging neighbours,

$$\mu_{is}^{k+1} \propto \phi_i(s) \exp\left(\sum_{(i,j)\in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t))\right),\,$$

- Loopy belief propagation: apply tree-based message passing algorithm to loopy graphs.
- Linear programming relaxation: replace integer constraints with linear constraints.
- But we are developing theoretical tools to understand these:
 - Has lead to new methods with better properties.

- "Classic" variational inference based on intuition:
 - Mean-field: approximate log-marginal *i* by averaging neighbours,

$$\mu_{is}^{k+1} \propto \phi_i(s) \exp\left(\sum_{(i,j)\in E} \sum_t \mu_{jt}^k \log(\phi_{ij}(s,t))\right),\,$$

- Loopy belief propagation: apply tree-based message passing algorithm to loopy graphs.
- Linear programming relaxation: replace integer constraints with linear constraints.
- But we are developing theoretical tools to understand these:
 - Has lead to new methods with better properties.
- This week will follow the variational inference monster paper: Wainwright & Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning. 1(1-2), 2008.

Exponential Families and Cumulant Function

• We will again consider log-linear models:

$$P(X) = \frac{\exp(w^T F(X))}{Z(w)},$$

but view them as exponential family distributions,

$$P(X) = \exp(w^T F(X) - A(w)),$$

where $A(w) = \log(Z(w))$.

Exponential Families and Cumulant Function

• We will again consider log-linear models:

$$P(X) = \frac{\exp(w^T F(X))}{Z(w)},$$

but view them as exponential family distributions,

$$P(X) = \exp(w^T F(X) - A(w)),$$

where $A(w) = \log(Z(w))$.

• Log-partition A(w) is called the cumulant function,

$$\nabla A(w) = \mathbb{E}[F(X)], \quad \nabla^2 A(w) = \mathbb{V}[F(X)],$$

which implies convexity.

• The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$

• The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$

• E.g., in CPSC 540 we did this for logistic regression:

 $A(w) = \log(1 + \exp(w)),$

• The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$

• E.g., in CPSC 540 we did this for logistic regression:

$$A(w) = \log(1 + \exp(w)),$$

implies that $A^*(\mu)$ satisfies $w = \log(\mu) / \log(1 - \mu)$.

• The convex conjugate of a function A is given by

$$A^*(\mu) = \sup_{w \in \mathcal{W}} \{\mu^T w - A(w)\}.$$

E.g., in CPSC 540 we did this for logistic regression:

$$A(w) = \log(1 + \exp(w)),$$

implies that $A^*(\mu)$ satisfies $w = \log(\mu) / \log(1 - \mu)$.

• When $0 < \mu < 1$ we have

$$A^{*}(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu)$$

= -H(p_{\mu}),

negative entropy of binary distribution with mean μ .

• If μ does not satisfy boundary constraint, $A^*(\mu) = \infty$.

• More generally, if $A(w) = \log(Z(w))$ then

 $A^*(\mu) = -H(p_\mu),$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

• Convex set satisfying these is called marginal polytope \mathcal{M} .

• More generally, if $A(w) = \log(Z(w))$ then

$$A^*(\mu) = -H(p_\mu),$$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

- Convex set satisfying these is called marginal polytope \mathcal{M} .
- If A is convex (and LSC), $A^{**} = A$. So we have

$$A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \}.$$

• More generally, if $A(w) = \log(Z(w))$ then

$$A^*(\mu) = -H(p_\mu),$$

subject to boundary constraints on μ and constraint:

$$\mu = \nabla A(w) = \mathbb{E}[F(X)].$$

- Convex set satisfying these is called marginal polytope \mathcal{M} .
- If A is convex (and LSC), $A^{**} = A$. So we have

$$A(w) = \sup_{\mu \in \mathcal{U}} \{ w^T \mu - A^*(\mu) \}.$$

and when $A(w) = \log(Z(w))$ we have

$$\log(Z(w)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \}.$$

• We've written inference as a convex optimization problem.

• The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\} \quad \text{(convex conjugate)}$$

$$= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$$

$$= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\} \quad \text{(convex/concave)}$$

• The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\} \quad \text{(convex conjugate)}$$

$$= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$$

$$= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\} \quad \text{(convex/concave)}$$
which is a unchase $D(D)$

which is $-\infty$ unless $F(D) = \mu$ (e.g., Max Likelihood), so we have

• The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\} \quad \text{(convex conjugate)}$$

$$= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$$

$$= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\} \quad \text{(convex/concave)}$$

which is $-\infty$ unless $F(D)=\mu$ (e.g., Max Likelihood), so we have

$$\begin{split} \min_{w \in \mathbb{R}^d} &-w^T F(D) + \log(Z(w)) \\ &= \max_{\mu \in \mathcal{M}} H(p_\mu), \end{split}$$

subject to $F(D) = \mu$.

• The maximum likelihood parameters w satisfy:

$$\min_{w \in \mathbb{R}^d} -w^T F(D) + \log(Z(w))$$

$$= \min_{w \in \mathbb{R}^d} -w^T F(D) + \sup_{\mu \in \mathcal{M}} \{w^T \mu + H(p_\mu)\} \quad \text{(convex conjugate)}$$

$$= \min_{w \in \mathbb{R}^d} \sup_{\mu \in \mathcal{M}} \{-w^T F(D) + w^T \mu + H(p_\mu)\}$$

$$= \sup_{\mu \in \mathcal{M}} \{\min_{w \in \mathbb{R}^d} -w^T F(D) + w^T \mu + H(p_\mu)\} \quad \text{(convex/concave)}$$

which is $-\infty$ unless $F(D)=\mu$ (e.g., Max Likelihood), so we have

$$\begin{split} \min_{w \in \mathbb{R}^d} &-w^T F(D) + \log(Z(w)) \\ &= \max_{\mu \in \mathcal{M}} H(p_\mu), \end{split}$$

subject to $F(D) = \mu$.

- Maximum likelihood \Rightarrow maximum entropy + moment constraints.
- Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).

• We wrote inference as a convex optimization:

$$\log(Z)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},\$$

• We wrote inference as a convex optimization:

$$\log(Z)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},\$$

• Did this make anything easier?

• We wrote inference as a convex optimization:

$$\log(Z)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},\$$

- Did this make anything easier?
 - Computing entropy $H(p_{\mu})$ seems as hard as inference.
 - Characterizing marginal polytope \mathcal{M} becomes hard with loops.

• We wrote inference as a convex optimization:

$$\log(Z)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},\$$

- Did this make anything easier?
 - Computing entropy $H(p_{\mu})$ seems as hard as inference.
 - Characterizing marginal polytope \mathcal{M} becomes hard with loops.
- Practical variational methods:
 - Work with approximation to marginal polytope \mathcal{M} .
 - Work with approximation/bound on entropy A*.

• We wrote inference as a convex optimization:

$$\log(Z)) = \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \},\$$

- Did this make anything easier?
 - Computing entropy $H(p_{\mu})$ seems as hard as inference.
 - Characterizing marginal polytope \mathcal{M} becomes hard with loops.
- Practical variational methods:
 - Work with approximation to marginal polytope \mathcal{M} .
 - Work with approximation/bound on entropy A*.
- Comment on notation when discussing inference with fixed "w":
 - Put everything "inside" w to discuss general log-potentials:

$$\log(Z) = \sup_{\mu \in \mathcal{M}} \left\{ \sum_{i} \sum_{s} \mu_{i,s} \log \phi_i(s) + \sum_{(i,j) \in E} \sum_{s,t} \mu_{ij,st} \log \phi_{ij}(s,t) - \sum_{X} p_u(X) \log(p_u(X)) \right\},$$

and we have all μ values even with parameter tieing.

Mean Field Approximation

Mean field approximation assumes

 $\mu_{ij,st} = \mu_{i,s}\mu_{j,t},$

for all edges, which means

$$p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t),$$

and that variables are independent.

Mean Field Approximation

Mean field approximation assumes

 $\mu_{ij,st} = \mu_{i,s}\mu_{j,t},$

for all edges, which means

$$p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t),$$

and that variables are independent.

• Entropy is simple under mean field approximation:

$$\sum_{X} p(X) \log p(X) = \sum_{i} \sum_{x_i} p(x_i) \log p(x_i).$$

Mean Field Approximation

Mean field approximation assumes

 $\mu_{ij,st} = \mu_{i,s}\mu_{j,t},$

for all edges, which means

$$p(x_i = s, x_j = t) = p(x_i = s)p(x_j = t),$$

and that variables are independent.

Entropy is simple under mean field approximation:

$$\sum_{X} p(X) \log p(X) = \sum_{i} \sum_{x_i} p(x_i) \log p(x_i).$$

Marginal polytope is also simple:

$$\mathcal{M}_F = \{ \mu \mid \mu_{i,s} \ge 0, \sum_{s} \mu_{i,s} = 1, \ \mu_{ij,st} = \mu_{i,s} \mu_{j,t} \}.$$

Entropy of Mean Field Approximation

• Entropy form is from distributive law and probabilities sum to 1:

$$\begin{split} \sum_{X} p(X) \log p(X) &= \sum_{X} p(X) \log(\prod_{i} p(x_{i})) \\ &= \sum_{X} p(X) \sum_{i} \log(p(x_{i})) \\ &= \sum_{X} \sum_{X} p(X) \log p(x_{i}) \\ &= \sum_{i} \sum_{X} \prod_{j} p(x_{j}) \log p(x_{i}) \\ &= \sum_{i} \sum_{X} p(x_{i}) \log p(x_{i}) \prod_{j \neq i} p(x_{j}) \\ &= \sum_{i} \sum_{x_{i}} p(x_{i}) \log p(x_{i}) \sum_{x_{j} \mid j \neq i} \prod_{j \neq i} p(x_{j}) \\ &= \sum_{i} \sum_{x_{i}} p(x_{i}) \log p(x_{i}) \sum_{x_{j} \mid j \neq i} \prod_{j \neq i} p(x_{j}) \end{split}$$

Mean Field as Non-Convex Lower Bound

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

$$\sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_\mu) \} \le \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} = \log(Z).$$

Mean Field as Non-Convex Lower Bound

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

$$\sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_\mu) \} \le \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} = \log(Z).$$

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, it is an inner approximation:

Fig. 5.3 Cartoon illustration of the set $M_F(G)$ of mean parameters that arise from tractable distributions is a nonconvex inner bound on $\mathcal{M}(G)$. Illustrated here is the case of discrete random variables where $\mathcal{M}(G)$ is a polytope. The circles correspond to mean parameters that arise from delta distributions, and belong to both $\mathcal{M}(G)$ and $\mathcal{M}_F(G)$.

Mean Field as Non-Convex Lower Bound

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, yields a lower bound on $\log(Z)$:

$$\sup_{\mu \in \mathcal{M}_F} \{ w^T \mu + H(p_\mu) \} \le \sup_{\mu \in \mathcal{M}} \{ w^T \mu + H(p_\mu) \} = \log(Z).$$

• Since $\mathcal{M}_F \subseteq \mathcal{M}$, it is an inner approximation:

Fig. 5.3 Cartoon illustration of the set $M_F(G)$ of mean parameters that arise from tractable distributions is a nonconvex inner bound on $\mathcal{M}(G)$. Illustrated here is the case of discrete random variables where $\mathcal{M}(G)$ is a polytope. The circles correspond to mean parameters that arise from delta distributions, and belong to both $\mathcal{M}(G)$ and $\mathcal{M}_F(G)$.

• Constraints $\mu_{ij,st} = \mu_{i,s}\mu_{j,t}$ make it non-convex.

Mean Field Algorithm

• The mean field free energy is defined as

$$-E_{MF} \triangleq w^{T} \mu + H(p_{\mu}) \\ = \sum_{i} \sum_{s} \mu_{i,s} w_{i,s} + \sum_{(i,j) \in E} \sum_{s,t} \mu_{i,s} \mu_{i,t} w_{ij,st} - \sum_{i} \sum_{s} \mu_{i,s} \log \mu_{i,s}.$$

Last term is entropy, first two terms sometimes called 'energy'.

Mean Field Algorithm

The mean field free energy is defined as

$$-E_{MF} \triangleq w^T \mu + H(p_\mu)$$

= $\sum_i \sum_s \mu_{i,s} w_{i,s} + \sum_{(i,j) \in E} \sum_{s,t} \mu_{i,s} \mu_{i,t} w_{ij,st} - \sum_i \sum_s \mu_{i,s} \log \mu_{i,s}.$

- Last term is entropy, first two terms sometimes called 'energy'.
- Mean field algorithm is coordinate descent on this objective,

$$-\nabla_{i,s} E_{MF} = w_{i,s} + \sum_{j \mid (i,j) \in E} \sum_{t} \mu_{i,j} w_{ij,st} - \log(\mu_{i,s}) - 1.$$

• Equating to zero for all s and solving for $\mu_{i,s}$ gives update

$$\mu_{i,s} \propto \exp(w_{i,s} + \sum_{j|(i,j)\in E} \sum_{t} \mu_{i,j} w_{ij,st}).$$

Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on $\log(Z)$.
- Alternative interpretation of mean field:
 - Minimize KL divergence between independent distribution and p.

Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on $\log(Z)$.
- Alternative interpretation of mean field:
 - Minimize KL divergence between independent distribution and p.
- Structured mean field:
 - Cost of computing entropy is similar to cost of inference.

Discussion of Mean Field and Structured MF

- Mean field is weird:
 - Non-convex approximation to a convex problem.
 - For learning, we want upper bounds on $\log(Z)$.
- Alternative interpretation of mean field:
 - Minimize KL divergence between independent distribution and p.
- Structured mean field:
 - Cost of computing entropy is similar to cost of inference.
 - Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

More edges means better approximation of \mathcal{M} and $H(p_{\mu})$:

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

- Variational methods write inference as optimization:
 - But optimization seems as hard as original problem.
- We relax the objective/constraints to obtain tractable problems.
- Mean field methods are one way to construct lower-bounds.

For tomorrow, Chapter 4:

Wainwright & Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning. 1(1-2), 2008.