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Summary of Weeks 1 and 2

@ We used structured prediction to motivate studying UGMs:

et (P )(a)(r J(i (5]

Output: "Paris"

@ Week 1: exact inference:
e Exact decoding, inference, and sampling.
e Smal graphsl, tree, junction trees, semi-Markov, graph cuts.
@ Week 2: learning and approximate inference:
e Learning based on maximum likelihood.
e Approximate decoding with local search.
e Approximate sampling with MCMC.
e Hidden variables.
e Structure learning.
@ Week 3:
e Approximate inference with variational methods.
e Approximate decoding with convex relaxations.
e Learning based on structured SVMs.
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Variational Inference

@ “Variational inference”:
e Formulate inference problem as constrained optimization.
e Approximate the function or constraints to make it easy.
@ Why not use MCMC?
e MCMC works asymptotically, but may take forever.
e Variational methods not consistent, but very fast.
(trade off accuracy vs. computation)
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Overview of Methods

@ “Classic” variational inference based on intuition:
e Mean-field: approximate log-marginal ; by averaging neighbours,

k+1

pis o gi(s)exp | D> philog(di(s, b)) |

(i,j)eE t

comes from statistical physics.
o Loopy belief propagation: apply tree-based message passing
algorithm to loopy graphs.
e Linear programming relaxation: replace integer constraints with
linear constraints.
@ But we are developing theoretical tools to understand these:
@ Has lead to new methods with better properties.

@ This week will follow the variational inference monster paper:
Wainwright & Jordan. Graphical Models, Exponential Families, and Variational

Inference. Foundations and Trends in Machine Learning. 1(1-2), 2008.
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Exponential Families and Cumulant Function

@ We will again consider log-linear models:

Plx) - expuzuz“uzj)(X)),

but view them as exponential family distributions,
P(X) = exp(w” F(X) — A(w)),

where A(w) = log(Z(w)).

@ Log-partition A(w) is called the cumulant function,
VA(w) = E[F(X)], V?A(w) = V[F(X)],

which implies convexity.
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Convex Conjugate and Entropy

@ The convex conjugate of a function A is given by

A*(n) = sup {n"w — A(w)}.

@ E.g., in CPSC 540 we did this for logistic regression:
A(w) = log(1 + exp(w)),

implies that A*(u) satisfies w = log(u)/ log(1 — ).
e When 0 < 1 < 1 we have

A" () = plog(p) + (1 — ) log(1 — p)
= 7H(pﬂ)a

negative entropy of binary distribution with mean .
e If u does not satisfy boundary constraint, A*(u) = cc.
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Convex Conjugate and Entropy

@ More generally, if A(w) =log(Z(w)) then

A*(p) = —H(py),
subject to boundary constraints on ;. and constraint:
p=VAw)=E[F(X)].

@ Convex set satisfying these is called marginal polytope M.
@ If Ais convex (and LSC), A** = A. So we have

Aw) = ilelg{wTu — A*(w)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = Sél/}i)/t{’wTﬂ + H(p,)}

@ We've written inference as a convex optimization problem.
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Detour: Maximum Likelihood and Maximum Entropy

@ The maximum likelihood parameters w satisfy:

min —w? F(D) + log(Z(w))

welR?
= min —w’ F(D) + sup {w'pu+ H(p,)} (convex conjugate)
welR4 HnEM
= min_ sup {~w ' F(D)+w"pu+ H(p,)}
welR? ;e M
= sup { min —w? F(D) +w’p+ H(p,)} (convex/concave)
peM welRd

which is —co unless F(D) = u (e.g., Max Likelihood), so we have
min —w? F(D) + log(Z(w))
welR?

= H
;E%aMX (pu)a

subject to F(D) = p.
@ Maximum likelihood = maximum entropy + moment constraints.
@ Converse: MaxEnt + fit feature frequencies = ML(log-linear).
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Difficulty of Variational Formulation

@ We wrote inference as a convex optimization:

log(Z)) = félﬁ{wTu + H(pu)},

@ Did this make anything easier?

e Computing entropy H (p, ) seems as hard as inference.
e Characterizing marginal polytope M becomes hard with loops.

@ Practical variational methods:

e Work with approximation to marginal polytope M.
e Work with approximation/bound on entropy A*.

@ Comment on notation when discussing inference with fixed “w”:
e Put everything “inside” w to discuss general log-potentials:

log(2) = sup {ZZ# slogi(s)+ D D pajerlogdii(s,t) — Z;vu(X) log(pu(X))},

(i,j)EE s,t

and we have all i, values even with parameter tieing.
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Mean Field Approximation

@ Mean field approximation assumes

Hij,st = i sljts

for all edges, which means

p(x; = s,z; =1t) = p(z; = s)p(z; = 1),
and that variables are independent.
@ Entropy is simple under mean field approximation:
> p(X)logp(X) =Y > p(xi)logp(xi).
X i
@ Marginal polytope is also simple:

Mp={p | pis >0, pis =1, pija = hislljs}-

S



Entropy of Mean Field Approximation

@ Entropy form is from distributive law and probabilities sum to 1:
> p(X)logp(X) =Y p(X)log(] [ p(=:))
X X %
= Zp(X ) Zlog(p(:vi))
= ZZP )log p(
_ zznp 2;) log p(as)
_ zzp ) logp(a:) [[ ply)

J#i

—ZZP zi)logp(z:) Y ] plx;)

xj|jFi A

:ZZp x;) log p(x;).
i x4
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@ Since Mp C M, yields a lower bound on log(Z):

Sup {w"p+ H(p,)} < sup {w"p + H(p,)} = log(2).

@ Since Mp C M, itis an inner approximation:

M)
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distributions I8 & nonconves b

@ Constraints p;; s = pi,spt5,c Make it non-convex.



Mean Field Algorithm

@ The mean field free energy is defined as
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Mean Field Algorithm

@ The mean field free energy is defined as

—Eyr £ wTU + H(pu)

722#1 9w19+ Z ZML sti tWij st — ZZﬂzslogMzs

(i,J)EE st

@ Last term is entropy, first two terms sometimes called ‘energy’.

@ Mean field algorithm is coordinate descent on this objective,

~VisEyr = w;i s + Z Zum‘wij,st — log(ps,s) — 1.
JlE)eE t

@ Equating to zero for all s and solving for 4; s gives update

Hi,s o exp(wj s + Z Zm,jwij,st)-

ilgeE t



Discussion of Mean Field and Structured MF

@ Mean field is weird:

e Non-convex approximation to a convex problem.
o For learning, we want upper bounds on log(Z).

@ Alternative interpretation of mean field:

e Minimize KL divergence between independent distribution and p.
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Discussion of Mean Field and Structured MF

@ Mean field is weird:

e Non-convex approximation to a convex problem.

o For learning, we want upper bounds on log(Z2).
@ Alternative interpretation of mean field:

e Minimize KL divergence between independent distribution and p
@ Structured mean field:

e Cost of computing entropy is similar to cost of inference.
e Use a subgraph where we can perform exact inference.

Coupled HMM

Structured MF approximation
I >__,/\ ' (with tractable chains)
{ &; (-

http://courses.cms.caltech.edu/csl55/slides/csl155-14~-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(p,,):

original G (Naive) MF H, structured MF H;

o o o
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Discussion

@ Variational methods write inference as optimization:
e But optimization seems as hard as original problem.

@ We relax the objective/constraints to obtain tractable problems.

@ Mean field methods are one way to construct lower-bounds.

For tomorrow, Chapter 4:
Wainwright & Jordan. Graphical Models, Exponential Families, and Variational Inference.
Foundations and Trends in Machine Learning. 1(1-2), 2008.



