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Notation from Last Time

@ We're focusing on pairwise UGMs with discrete states,

[T, 6i(xi) [ jye s Gis (i 75)

P(X) = > ;

where we’ve decomposed object X into ‘parts’ z; € {1,2,...,S}.



Notation from Last Time

@ We're focusing on pairwise UGMs with discrete states,

[T, 6i(xi) [ jye s Gis (i 75)

P(X) = > ;

where we’ve decomposed object X into ‘parts’ z; € {1,2,...,S}.
@ Week 1 considers exact methods for 3 tasks:
@ Decoding: Compute the optimal configuration,

max P(X).
@ Inference: Compute partition function and marginals,

Z=3 PX'), PXi=s)= > pX).

X' X;=s
© Sampling: Generate X’ according to Gibbs distribution:

X'~ P(X).



Computer Science Graduate Markov Model

@ Computer Science Graduate Careers Markov chain:
e Variable z; can be in one of three states:

State Probability||Description

Industry 0.60||They work for a company or own their own company.
Grad School 0.30||They are trying to get a Masters or PhD degree.
Video Games 0.10|They mostly play video games.
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e Variable z; can be in one of three states:

State Probability||Description

Industry 0.60||They work for a company or own their own company.
Grad School 0.30||They are trying to get a Masters or PhD degree.
Video Games 0.10|They mostly play video games.

e Variable z; only depends on z;_1:

'IF:mm\lo |Video G dustry|(Grad School||Video Games (with PhD)|Industry (with PhD)||A
Video Games 0.08 0.80 0.01 0 0 0 0.01
Industry 0.03 0.95 0.01 0 0 0 0.01
Grad School 0.06 0.08 0.75 0.05 0.05 0.02 0.01
Video Games (with PhD); 0 0] 0 0.30 0.60/ 0.08 0.01
Industry (with PhD) 0 0] 0 0.02 0.95 0.02 0.01
Academia 0 0 0 0.01 0.01 0.97] 0.01
Deceased 0 0 i) i) 0] 0] 1
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@ So the probability of a sequence is
p($1,$27 e ,»’Un) = p($1)p($2|$1)p($3|$2,$1) .. -p($n|33n71733n72, e ,331)
= p(z1)p(w2|r1)p(@3|T2) . .. p(@n|Tn_1).

@ Markov property: p(zj|zj—1,zj-2,...,21) = p(xj|T;—1).



Markov Chain Models

@ This is a special case of a UGM

n

p(x1,x2,...,2,) X ¢1(x1) H d(xi, xi—1),

=2

with a chain-structured dependency:

DaOaOaDaOaOC)

@ Homogeneous chain: edge potentials are constant across time.
@ Markov chains are ubiquitous in sequence/time-series models:

9 Applications
9.1 Physics
9.2 Chemistry
9.3 Testing
9.4 Speech Recognition
9.5 Information sciences
9.6 Queueing theory
9.7 Intemet applications
9.8 Statistics
9.9 Economics and finance
9.10 Social sciences
9.11 Mathematical biology
9.12 Genetics
9.13 Games
9.14 Music
9.15 Baseball
9.16 Markov text generators



General Chain-Structured UGM

@ The general class of chain-structured UGMs is
plar, oo, an) o [ dilw) [ [ b (@i, wima),
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(z¢ could depend on future things that might happen)
@ In this case we only have local Markov property,

Z; 1 Tiyeer sy Ti—2,Li42,y .- 7$’n|xi717xi+17
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General Chain-Structured UGM

@ The general class of chain-structured UGMs is

n

plar, oo, an) o [ dilw) [ [ b (@i, wima),
i=1

1=2
(z¢ could depend on future things that might happen)
@ In this case we only have local Markov property,

Ty J— T,y '7mi727mi+27 LR 7$’n|xi717xi+17

@ Local Markov property in general UGMs:
@ given neighbours, conditional independence of other nodes.
(Marginal independence corresponds to reachability.)
@ Includes hidden Markov models (HMMs) and Kalman filters:




Applications of HMMs and Kalman Filters

Applications (edi

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:
. Single Molecule Kinetic analysis! 6!
. Cryptanalysis
. Speech recognition
. Speech synthesis
. Part-of-speech tagging
. Document Separation in scanning solutions
. Machine translation
. Partial discharge
. Gene prediction
. Alignment of bio-sequences
. Time Series Analysis
. Activity recognition
. Protein folding!?]
. Metamorphic Virus Detection['€)
. DNA Motif Discovery!!®]

Applications (edi

. Attitude and Heading Reference Systems

. Autopilot

. Battery state of charge (SoC) estimation/3140]

. Brain-computer interface

. Chaotic signals

. Tracking and Vertex Fitting of charged particles in
Particle Detectors!']

. Tracking of objects in computer vision

. Dynamic positioning

. Economics, in particular macroeconemics, time

series analysis, and econometrics!2!

. Inertial guidance system

. Orbit Determination

. Power system state estimation

+ Radar tracker

. Satellite navigation systems

. Seismology!43]

. Sensorless control of AC motor variable-frequency

drives

Also includes conditional random fields.

. Simultaneous localization and mapping
. Speech enhancement

. Visual odometry

. Weather forecasting

. Navigation system

. 3D modeling

. Structural heaith monitoring

. Human sensorimotor processing!**)



Cost of Decoding

@ Last time and in homework, exact inference by table:

Cathy |Heather||Mark |[[Allison| [np(1)|[np{2)||np(3)|np(4)| lep(1)|ep(2)|lep(3)| [prodPaot||Probability
right || right | right || right 1 9 1 9 2 2 2 648 017
wrong|| right || right || right 3 9 1 9 1 2 2 972 0.26
right || wrong || right || right 1 1 1 9 1 1 2 18 0.00
wrong|| wrong || right || right 3 1 1 9 2 1 2 108 0.03
right | right (wrong|| right 1 9 3 9 2 1 1 486 0.13
wrong|| right (wrong|| right 3 9 3 9 1 1 1 729 0.19
right | wrong |jwrong|| right 1 1 3 9 1 2 1 54 0.01
wrong|| wrong (wrong|| right 3 1 3 9 2 2 1 324 0.09
right | right || right ||wrong 1 9 1 1 2 2 1 36 0.01
wrong|| right || right |wrong | 3 9 1 1 1 2 1 54 0.01
right || wrang || right ||wrong 1 1 1 1 1 1 1 1 0.00
wrong|| wrong || right ||wrong | 3 1 1 1 2 1 1 6 0.00
right | right (wrong||wrong 1 9 3 1 2 1 2 108 0.03
wrong|| right |wrong||wrong 3 9 3 1 1 1 2 162 0.04
right || wrong (wrong||wrong 1 1 3 1 1 2 2 12 0.00
wrong|| wrong (wrong||wrong 3 1 3 1 2 2 2 72 0.02




Decoding in Chain-Structured Models

@ Table is too expensive for Markov chain models:

e We can’'t enumerate s™ possible configurations.



Decoding in Chain-Structured Models

@ Table is too expensive for Markov chain models:
e We can’'t enumerate s™ possible configurations.
@ To avoid this use Markov property and dynamic programming:

e Assume you know optimal value at time ¢.
e By Markov property, captures everything about the past.
@ Use this to compute optimal value at time ¢ + 1.



Decoding in Chain-Structured Models

@ Viterbi decoding algorithm:

e Forward phase:
Vis = 1(s),  Vis = max{¢i(s)bi,i—1(s,8)Vi1,5},

e Backward phase: backtrack through argmax values.
e Solves the decoding problem in O(ns?) instead of O(s™).
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Decoding in Chain-Structured Models

@ Viterbi decoding algorithm:

e Forward phase:
Vis = 1(s),  Vis = max{¢i(s)bi,i—1(s,8)Vi1,5},

e Backward phase: backtrack through argmax values.
e Solves the decoding problem in O(ns?) instead of O(s™).
@ For the CS grad student Markov model with n = 60:
e Optimal decoding is ‘industry’ for each year.
e Optimal decoding might not look like ‘typical’ state.
e Optimal decoding would be different with inhomogeneous chain.
e Optimal decoding would be different if we changed n.



Inference in Chain-Structured Models

@ Chapman-Kolmogorov equations for inference in Markov chains:
e Dynamic programming to sum up all paths to state s at time ¢,

‘/1$—p st—zp |5 i—1,8" Z = ZVTL37

and get marginal p(z; = s) by normalizing V; s across s.
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Inference in Chain-Structured Models

@ Chapman-Kolmogorov equations for inference in Markov chains:
e Dynamic programming to sum up all paths to state s at time ¢,

Vls:p st—zp |5 i—1,8" Z = ZVTL37

and get marginal p(z; = s) by normalizing V; s across s.
e Needs marginals/conditionals: can’t apply to general
chain-structured UGMs.

@ Forward-backward algorithm for general case:
e Forward phase (sums up paths from the beginning):

Vls*ﬁi)l %s*ngl ¢zz 155)‘/1 1,s’ Z = Zvns

e Backward phase: (sums up paths to the end):

Bns=1, Bis= Zd’%kl YPit1,i( s’ S)Bi+1,s’~

e Marginals are given by p(z; = s) x V;,sB;,s.



Marginals in CS Grad Markov Chain




Sampling in Chain-Structured Models

@ Sampling is easy in Markov chains:
e Sample time 1 based on p(z1).
e Sample time t based on time ¢t — 1 using p(x¢|x¢—1).
e Simulates the process forward from the beginning.



Sampling in Chain-Structured Models

@ Sampling is easy in Markov chains:
e Sample time 1 based on p(z1).
e Sample time t based on time ¢t — 1 using p(x¢|x¢—1).
e Simulates the process forward from the beginning.
@ Forward-filter backward-sample algorithm for general case:
e Forward phase (same as before):

Vls—¢1 %s—z(m (1511 155)‘/1 1,8’

e Backward phase: sample z,, now that we have p(z,,), then sample
time (¢t — 1) based on V;_1 s and xx.
e Simulates the process backwards from the end.



Samples in CS Grad Markov Chain

Samples are more informative about what the model looks like:

Graduate

30 40
Year after graduation

Could use samples to guide refining model.



Tree-Structured UGMs

@ Decoding/inference/sampling in chains is O(ns?).



Tree-Structured UGMs

@ Decoding/inference/sampling in chains is O(ns?).

@ We can get the same runtime for trees (graph with no loops)

Forward phase idea: start from the leaves and work your way in.

o Call belief propagation, special case of message passing.



Belief Propagation

@ For decoding (“max-product”), message from j to i has the form

mji(xi) :mfax ¢J(x] ¢u x%x] H My x]
! EEN()\i

@ For inference (“sum-product”), message from j to i has the form

mji<xi) = Z {¢](xj d)zg mﬂm] H mMp; x] }

zj keN(j)\i

@ Once one node has all information, backtrack out to the leaves.



Homework: Third and Fourth UGM demos

For tomorrow, read/run the third and fourth demos:

Condition UGM Demo
Tree UGM Demo

Inthe.

e

Water Turbidity Problem

In some cites,
some locatons.

9 safe o dink For ts

Wo wil assumo that turbicty s measurod on a scal of 110 4, whero 1 represants very safe, and 4 roprosonts very unsao’ Wo will
by:

Reviews/expands on material from today, introduces conditioning.



Discussion

@ Exact decoding/inference/sampling is intractable in general.
@ But it's very efficient for graphs without loops.

@ Tomorrow: ‘simple’ loops and conditional UGMs.



