
Motivation Smoothing Projected gradient Proximal Gradient

Non-Smooth Optimization

Jason Hartford (with slides from Mark Schmidt)

October 2015



Motivation Smoothing Projected gradient Proximal Gradient

Where we’re at...

We’ve seen optimisation is hard, but we can use gradient
methods to solve high-dimensional problems

Nesterov-style and Newton-like methods allow better
performance.

To achieve linear convergence rates we made strong
assumptions:

Juliette showed us how we could use stochastic sub-gradient
methods to relax this.

Mohammed showed how we could relax this and still achieve
linear convergence using SAG / SVRG
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Motivating example: Sparse Regularization

Consider `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

More generally: the regularized empirical risk minimization
problem:

min
x∈RP

1

N

N∑
i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x .

Subgradient methods are optimal (slow) black-box methods.

Are there faster methods for specific non-smooth problems?
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Smooth approximation to the max function:

max{a, b} ≈ log(exp(a) + exp(b))

Smooth approximation to the hinge loss:

max{0, 1− x} ≈


0 x ≥ 1

1− x2 t < x < 1

(1− t)2 + 2(1− t)(t − x) x ≤ t

Generic smoothing strategy: strongly-convex regularization of
convex conjugate [Nesterov, 2005].
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Discussion of Smoothing Approach

Nesterov [2005] shows that:

Gradient method on smoothed problem has O(1/
√
t)

subgradient rate.
Accelerated gradient method has faster O(1/t) rate.

No results showing improvement in stochastic case.

In practice:

Slowly decrease level of smoothing (often difficult to tune).
Use faster algorithms like L-BFGS, SAG, or SVRG.
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Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑
i

(x+i + x−i ),

or the problems

min
−y≤x≤y

f (x) + λ
∑
i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).
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Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Consider minimizing subject to simple constraints:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Called projected gradient algorithm:

xGDt = x t − αt∇f (x t),

x t+1 = argmin
y∈C

{
‖y − xGDt ‖

}
,
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Projection Onto Simple Sets

Projections onto simple sets:

Bound constraints (l ≤ x ≤ u)

Small number of linear equalities/inequalities.
(aT x = b or aT x ≤ b)

Norm-balls and norm-cones (‖x‖ ≤ τ or ‖x‖ ≤ x0).

Probability simplex (x ≥ 0,
∑

i xi = 1).

Intersection of disjoint simple sets.

We can solve large instances of problems with these constraints.

Intersection of non-disjoint simple sets: Dykstra’s algorithm.
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Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).

Projected Newton needs expensive projection under ‖ · ‖Ht :

Two-metric projection methods are efficient Newton-like
strategy for bound constraints.
Inexact Newton methods allow Newton-like like strategy for
optimizing costly functions with simple constraints.
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Proximal-Gradient Method

Proximal-gradient generalizes projected-gradient for

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Consider the update:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2α
‖y − x t‖2+r(y)

}
Applies proximity operator of r to gradient descent on f :

xGDt = x t − αt∇f (xt),

x t+1 = argmin
y

{
1

2
‖y − xGDt ‖2 + αr(y)

}
,

Convergence rates are still the same as for minimizing f .
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Proximal-Gradient Method

How do we derive that?

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2α
‖y − x t‖2+r(y)

}
= argmin

y

{
< α∇f (x t), (y − x t) > +

1

2
‖y − x t‖2 + αr(y)

}
= argmin

y
{< α∇f (x t), (y − x t) > +

1

2
‖y − x t‖2 + αr(y)

+
α2

2
‖∇f (xk)‖2−α

2

2
‖∇f (xk)‖2}

= argmin
y

1

2
‖y − (x t − α∇f (x t))︸ ︷︷ ︸

xGD

‖2 + αr(y)
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Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y ] = argmin
x∈RP

1

2
‖x − y‖2 + r(x).

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold

0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0
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Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric
subgradient-projection, inexact proximal operators, inexact
proximal Newton, SAG, SVRG).
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Inexact Proximal-Gradient Methods

What about problems where we can not efficiently compute
the proximity operator?

We can efficiently approximate the proximity operator for:
1 Total-variation regularization and generalizations like the

graph-guided fused-LASSO.
2 Nuclear-norm regularization and other regularizers on the

singular values of matrices.
3 Overlapping group l1 -regularization with general groups.
4 Positive semi-definite cone.
5 Combinations of simple functions.

Can still achieve the fast convergence rates, if the errors are
appropriately controlled.
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Summary

No black-box method can beat subgradient methods

For most objectives, you can beat subgradient methods.

You just need a long list of tricks:

Smoothing.
Projected-gradient.
Proximal-gradient.
Proximal-Newton.
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