Non-Smooth Optimization

Jason Hartford (with slides from Mark Schmidt)

October 2015
Where we’re at...

- We’ve seen **optimisation is hard**, but we can use **gradient methods** to solve high-dimensional problems.
- **Nesterov-style** and **Newton-like methods** allow better performance.
Where we’re at...

- We’ve seen **optimisation is hard**, but we can use **gradient methods** to solve high-dimensional problems.
- **Nesterov-style** and **Newton-like methods** allow better performance.
- To achieve linear convergence rates we made strong assumptions:
 - You can go through the entire dataset on every iteration.
 - The objective is smooth/unconstrained.
Where we’re at...

- We’ve seen **optimisation is hard**, but we can use **gradient methods** to solve high-dimensional problems.
- **Nesterov-style** and **Newton-like methods** allow better performance.
- To achieve linear convergence rates we made strong assumptions:
 - You can go through the entire dataset on every iteration.
 - The objective is smooth/unconstrained.
- Juliette showed us how we could use stochastic sub-gradient methods to relax this.
- Mohammed showed how we could relax this and still achieve linear convergence using **SAG / SVRG**
Where we’re at...

- We’ve seen optimisation is hard, but we can use gradient methods to solve high-dimensional problems.
- Nesterov-style and Newton-like methods allow better performance.
- To achieve linear convergence rates we made strong assumptions:
 - You can go through the entire dataset on every iteration.
 - The objective is smooth/unconstrained. Today!
- Juliette showed us how we could use stochastic sub-gradient methods to relax this.
- Mohammed showed how we could relax this and still achieve linear convergence using SAG / SVRG.
Outline

1. Motivation
2. Smoothing
3. Projected gradient
4. Proximal Gradient
Motivating example: Sparse Regularization

- Consider ℓ_1-regularized least squares,

$$\min_x \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
Motivating example: Sparse Regularization

- Consider ℓ_1-regularized least squares,

$$\min_x \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any $x_i = 0$.
Motivating example: Sparse Regularization

- Consider ℓ_1-regularized least squares,

$$\min_x \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x

- The objective is non-differentiable when any $x_i = 0$.

- More generally: the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda r(x)$$

 data fitting term + regularizer

- Often, regularizer r is used to encourage sparsity pattern in x.

- Subgradient methods are optimal (slow) black-box methods.
Motivating example: Sparse Regularization

- Consider ℓ_1-regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any $x_i = 0$.
- More generally: the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda r(x)$$

 data fitting term + regularizer

- Often, regularizer r is used to encourage sparsity pattern in x.
- Subgradient methods are optimal (slow) black-box methods.
- Are there faster methods for specific non-smooth problems?
Outline

1. Motivation
2. Smoothing
3. Projected gradient
4. Proximal Gradient
Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_ϵ.
- Apply a fast method for smooth optimization.
Smoothing Approximations of Non-Smooth Functions

- **Smoothing**: replace non-smooth f with smooth f_{ϵ}.
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

 $$|x| \approx \sqrt{x^2 + \nu}.$$
Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_ϵ.
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}.$$
Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_ϵ.
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

 $$|x| \approx \sqrt{x^2 + \nu}.$$

- Smooth approximation to the max function:

 $$\max\{a, b\} \approx \log(\exp(a) + \exp(b))$$

- Smooth approximation to the hinge loss:

 \[
 \max\{0, 1 - x\} \approx \begin{cases}
 0 & x \geq 1 \\
 1 - x^2 & t < x < 1 \\
 (1 - t)^2 + 2(1 - t)(t - x) & x \leq t
 \end{cases}
 \]
Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_ϵ.
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:
 \[|x| \approx \sqrt{x^2 + \nu}. \]
- Smooth approximation to the max function:
 \[\max\{a, b\} \approx \log(\exp(a) + \exp(b)) \]
- Smooth approximation to the hinge loss:
 \[
 \max\{0, 1 - x\} \approx \begin{cases}
 0 & x \geq 1 \\
 1 - x^2 & t < x < 1 \\
 (1 - t)^2 + 2(1 - t)(t - x) & x \leq t
 \end{cases}
 \]
- Generic smoothing strategy: strongly-convex regularization of convex conjugate [Nesterov, 2005].
Discussion of Smoothing Approach

- Nesterov [2005] shows that:
 - Gradient method on smoothed problem has $O(1/\sqrt{t})$ subgradient rate.
 - Accelerated gradient method has faster $O(1/t)$ rate.
Discussion of Smoothing Approach

- Nesterov [2005] shows that:
 - Gradient method on smoothed problem has $O(1/\sqrt{t})$ subgradient rate.
 - Accelerated gradient method has faster $O(1/t)$ rate.

- No results showing improvement in stochastic case.

- In practice:
 - Slowly decrease level of smoothing (often difficult to tune).
 - Use faster algorithms like L-BFGS, SAG, or SVRG.
Outline

1. Motivation
2. Smoothing
3. Projected gradient
4. Proximal Gradient
Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.

The problem

$$\min_{x} f(x) + \lambda \|x\|_1,$$

is equivalent to the problem

$$\min x + x \geq 0, \quad x - x \geq 0, f(x + - x) + \lambda \sum_i (x_i + - x_i),$$

or the problems

$$\min -y \leq x \leq y, f(x) + \lambda \sum_i y_i,$$

$$\min \|x\|_1 \leq \gamma, f(x) + \lambda \gamma.$$
Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

$$\min_x f(x) + \lambda \|x\|_1,$$

is equivalent to the problem

$$\min_{x^+ \geq 0, x^- \geq 0} f(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),$$
Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem
 \[
 \min_x f(x) + \lambda \|x\|_1,
 \]
 is equivalent to the problem
 \[
 \min_{x^+ \geq 0, x^- \geq 0} f(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),
 \]
 or the problems
 \[
 \min_{-y \leq x \leq y} f(x) + \lambda \sum_i y_i, \quad \min_{\|x\|_1 \leq \gamma} f(x) + \lambda \gamma
 \]
Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

\[
\min_x f(x) + \lambda \|x\|_1,
\]

is equivalent to the problem

\[
\min_{x^+ \geq 0, x^- \geq 0} f(x^+ - x^-) + \lambda \sum_i (x_i^+ + x_i^-),
\]

or the problems

\[
\begin{align*}
\min_{-y \leq x \leq y} & \quad f(x) + \lambda \sum_i y_i, \\
\min_{\|x\|_1 \leq \gamma} & \quad f(x) + \lambda \gamma
\end{align*}
\]

- These are smooth objective with ‘simple’ constraints.

\[
\min_{x \in \mathcal{C}} f(x).
\]
Recall: gradient descent minimizes quadratic approximation:

\[x^{t+1} = \arg\min_y \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}. \]
Optimization with Simple Constraints

- Recall: gradient descent minimizes quadratic approximation:

\[x^{t+1} = \arg\min_y \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\} . \]

- Consider minimizing subject to simple constraints:

\[x^{t+1} = \arg\min_{y \in C} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\} . \]
Optimization with Simple Constraints

- Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \arg\min_y \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

- Consider minimizing subject to simple constraints:

$$x^{t+1} = \arg\min_{y \in C} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

- Called **projected gradient** algorithm:

$$x_t^{GD} = x^t - \alpha_t \nabla f(x^t),$$

$$x^{t+1} = \arg\min_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}.$$
Gradient Projection
Gradient Projection

Motivation

Smoothing

Projected gradient

Proximal Gradient
Gradient Projection

Motivation

Smoothing

Projected gradient

Proximal Gradient

$$f(x)$$

$$x - \alpha f'(x)$$

Feasible Set
Gradient Projection

\[f(x) \]

\[x - \alpha f'(x) \]

Feasible Set
Gradient Projection

Motivation

Smoothing

Projected gradient

Proximal Gradient
Projection Onto Simple Sets

Projections onto simple sets:

- **Bound constraints** \((l \leq x \leq u)\)
- Small number of linear equalities/inequalities. \((a^T x = b \text{ or } a^T x \leq b)\)
- **Norm-balls and norm-cones** \((\|x\| \leq \tau \text{ or } \|x\| \leq x_0)\).
- **Probability simplex** \((x \geq 0, \sum_i x_i = 1)\).
- **Intersection of disjoint simple sets**.

We can solve large instances of problems with these constraints.
Projection Onto Simple Sets

Projections onto simple sets:

- Bound constraints ($l \leq x \leq u$)
- Small number of linear equalities/inequalities. ($a^T x = b$ or $a^T x \leq b$)
- Norm-balls and norm-cones ($\|x\| \leq \tau$ or $\|x\| \leq x_0$).
- Probability simplex ($x \geq 0, \sum_i x_i = 1$).
- Intersection of disjoint simple sets.

We can solve large instances of problems with these constraints.

Intersection of non-disjoint simple sets: Dykstra’s algorithm.
Discussion of Projected Gradient

- Projected gradient has same rate as gradient method!
Discussion of Projected Gradient

- **Projected gradient has same rate as gradient method!**
- Can do many of the same tricks (i.e. line-search, acceleration, Barzilai-Borwein, SAG, SVRG).
Discussion of Projected Gradient

- **Projected gradient has same rate as gradient method!**
- Can do many of the same tricks (i.e. line-search, acceleration, Barzilai-Borwein, SAG, SVRG).
- Projected Newton needs expensive projection under \(\| \cdot \|_{H_t} \):
 - Two-metric projection methods are efficient Newton-like strategy for bound constraints.
 - Inexact Newton methods allow Newton-like strategy for optimizing costly functions with simple constraints.
Outline

1. Motivation
2. Smoothing
3. Projected gradient
4. Proximal Gradient
Proximal-Gradient Method

- **Proximal-gradient** generalizes projected-gradient for

\[
\min_x f(x) + r(x),
\]

where \(f \) is smooth but \(r \) is a general convex function.
Motivation

Smoothing

Projected gradient

Proximal Gradient

Proximal-Gradient Method

- **Proximal-gradient** generalizes projected-gradient for

\[
\min_x f(x) + r(x),
\]

where \(f\) is smooth but \(r\) is a general convex function.

- Consider the update:

\[
x^{t+1} = \arg\min_y \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha} \|y - x^t\|^2 + r(y) \right\}
\]

- Applies **proximity** operator of \(r\) to gradient descent on \(f\):

\[
x^t_{GD} = x^t - \alpha_t \nabla f(x_t),
\]

\[
x^{t+1} = \arg\min_y \left\{ \frac{1}{2} \|y - x^t_{GD}\|^2 + \alpha r(y) \right\},
\]

- Convergence rates are still the same as for minimizing \(f\).
How do we derive that?

\[x^{t+1} = \arg\min_y \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha} \|y - x^t\|^2 + r(y) \right\} \]

\[= \arg\min_y \left\{ \langle \alpha \nabla f(x^t), (y - x^t) \rangle + \frac{1}{2} \|y - x^t\|^2 + \alpha r(y) \right\} \]

\[= \arg\min_y \left\{ \langle \alpha \nabla f(x^t), (y - x^t) \rangle + \frac{1}{2} \|y - x^t\|^2 + \alpha r(y) + \frac{\alpha^2}{2} \|\nabla f(x^k)\|^2 - \frac{\alpha^2}{2} \|\nabla f(x^k)\|^2 \right\} \]

\[= \arg\min_y \left\{ \frac{1}{2} \|y - (x^t - \alpha \nabla f(x^t)) \|^2 + \alpha r(y) \right\} \]
Proximal Operator, Iterative Soft Thresholding

- The **proximal operator** is the solution to

\[
\text{prox}_r[y] = \arg\min_{x \in \mathbb{R}^P} \frac{1}{2} \|x - y\|^2 + r(x).
\]

Example with \(\lambda = 1\):

<table>
<thead>
<tr>
<th>Input</th>
<th>Threshold</th>
<th>Soft-Threshold</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
0 & -1.2075 \\
0 & 1.6302 \\
0 & 0.4889
\end{pmatrix}
\]| \[
\begin{pmatrix}
0 & -1.2075 \\
0 & 1.6302 \\
0 & 0.6302
\end{pmatrix}
\]| \[
\begin{pmatrix}
0 & 0 \\
0 & 1.6302 \\
0 & 0.6302
\end{pmatrix}
\]
Proximal Operator, Iterative Soft Thresholding

- The **proximal operator** is the solution to

\[
\text{prox}_r[y] = \arg\min_{x \in \mathbb{R}^P} \frac{1}{2} \|x - y\|^2 + r(x).
\]

- For L1-regularization, we obtain **iterative soft-thresholding**:

\[
x^{t+1} = \text{softThresh}_{\alpha \lambda}[x^t - \alpha \nabla f(x^t)].
\]
Proximal Operator, Iterative Soft Thresholding

- The \textbf{proximal operator} is the solution to

\[
\text{prox}_r[y] = \arg\min_{x \in \mathbb{R}^P} \frac{1}{2} \|x - y\|^2 + r(x).
\]

- For L1-regularization, we obtain \textbf{iterative soft-thresholding}:

\[
x^{t+1} = \text{softThresh}_{\alpha \lambda}[x^t - \alpha \nabla f(x^t)].
\]

- Example with $\lambda = 1$:

<table>
<thead>
<tr>
<th>Input</th>
<th>Threshold</th>
<th>Soft-Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{bmatrix} 0.6715 \ -1.2075 \ 0.7172 \ 1.6302 \ 0.4889 \end{bmatrix}</td>
<td>\begin{bmatrix} 0.6715 \ -1.2075 \ 0.7172 \ 1.6302 \ 0.4889 \end{bmatrix}</td>
<td>\begin{bmatrix} 0.6715 \ -1.2075 \ 0.7172 \ 1.6302 \ 0.4889 \end{bmatrix}</td>
</tr>
</tbody>
</table>
Proximal Operator, Iterative Soft Thresholding

- The **proximal operator** is the solution to

 \[
 \text{prox}_r[y] = \arg\min_{x \in \mathbb{R}^p} \frac{1}{2} \|x - y\|^2 + r(x).
 \]

- For L1-regularization, we obtain **iterative soft-thresholding**:

 \[
 x^{t+1} = \text{softThresh}_{\alpha \lambda}[x^t - \alpha \nabla f(x^t)].
 \]

- Example with \(\lambda = 1 \):

<table>
<thead>
<tr>
<th>Input</th>
<th>Threshold</th>
<th>Soft-Threshold</th>
</tr>
</thead>
</table>
 | \[
 \begin{bmatrix}
 0.6715 \\
 -1.2075 \\
 0.7172 \\
 1.6302 \\
 0.4889
 \end{bmatrix}
 \] | \[
 \begin{bmatrix}
 0 \\
 -1.2075 \\
 0 \\
 1.6302 \\
 0
 \end{bmatrix}
 \] |
Proximal Operator, Iterative Soft Thresholding

- The **proximal operator** is the solution to

\[
\text{prox}_r[y] = \arg \min_{x \in \mathbb{R}^P} \frac{1}{2} \|x - y\|^2 + r(x).
\]

- For L1-regularization, we obtain **iterative soft-thresholding**:

\[
x^{t+1} = \text{softThresh}_{\alpha \lambda}[x^t - \alpha \nabla f(x^t)].
\]

- **Example with $\lambda = 1$:**

<table>
<thead>
<tr>
<th>Input</th>
<th>Threshold</th>
<th>Soft-Threshold</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
0.6715 \\
-1.2075 \\
0.7172 \\
1.6302 \\
0.4889
\end{bmatrix}
\] | \[
\begin{bmatrix}
0 \\
-1.2075 \\
0 \\
1.6302 \\
0
\end{bmatrix}
\] | \[
\begin{bmatrix}
0 \\
-0.2075 \\
0 \\
0.6302 \\
0
\end{bmatrix}
\] |
Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 1. L1-Regularization.
 2. Group ℓ_1-Regularization.
Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 1. L1-Regularization.
 2. Group ℓ_1-Regularization.
 3. Lower and upper bounds.
 4. Small number of linear constraint.
 5. Probability constraints.
 6. A few other simple regularizers/constraints.
Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 1. L1-Regularization.
 2. Group \(\ell_1 \)-Regularization.
 3. Lower and upper bounds.
 4. Small number of linear constraint.
 5. Probability constraints.
 6. A few other simple regularizers/constraints.

- Can solve these non-smooth/constrained problems as fast as smooth/unconstrained problems!
Exact Proximal-Gradient Methods

- For what problems can we apply these methods?

 - We can efficiently compute the proximity operator for:
 - 1. L1-Regularization.
 - 2. Group ℓ_1-Regularization.
 - 3. Lower and upper bounds.
 - 4. Small number of linear constraint.
 - 5. Probability constraints.
 - 6. A few other simple regularizers/constraints.

- Can solve these non-smooth/constrained problems as fast as smooth/unconstrained problems!

- We can again do many of the same tricks (line-search, acceleration, Barzilai-Borwein, two-metric subgradient-projection, inexact proximal operators, inexact proximal Newton, SAG, SVRG).
Inexact Proximal-Gradient Methods

What about problems where we can not efficiently compute the proximity operator?
What about problems where we can not efficiently compute the proximity operator?

We can efficiently approximate the proximity operator for:

1. Total-variation regularization and generalizations like the graph-guided fused-LASSO.
2. Nuclear-norm regularization and other regularizers on the singular values of matrices.
3. Overlapping group l_1 -regularization with general groups.
5. Combinations of simple functions.
Inexact Proximal-Gradient Methods

What about problems where we can not efficiently compute the proximity operator?

We can efficiently approximate the proximity operator for:

1. Total-variation regularization and generalizations like the graph-guided fused-LASSO.
2. Nuclear-norm regularization and other regularizers on the singular values of matrices.
3. Overlapping group l1-regularization with general groups.
5. Combinations of simple functions.

Can still achieve the fast convergence rates, if the errors are appropriately controlled.
Summary

- No black-box method can beat subgradient methods.
- For most objectives, you can beat subgradient methods.
Summary

- No black-box method can beat subgradient methods.
- For most objectives, you can beat subgradient methods.
- You just need a long list of tricks:
 - Smoothing.
 - Projected-gradient.
 - Proximal-gradient.
 - Proximal-Newton.