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Abstract

This paper presents a technique to locate objects in 3D that adapts visual appear-
ance models using explicit visibility analysis. We formulate a Bayesian model for 3D
object likelihood based on visual appearance, 3D geometry such as that available from
RGB-depth sensors, and structure-from-motion. Learned visual appearance templates
for portions of an object allow for strong discrimination even under occlusion. We de-
scribe an efficient inference procedure based on data-driven sampling with geometric
refinement. Our 3D object detection technique is demonstrated on the publicly avail-
able robot-collected UBC Visual Robot Survey dataset, as well as with data from the
Microsoft Kinect. Results show that our method improves robustness to occlusion when
compared to a state-of-the-art visual category detector.

1 Introduction
Object recognition is a key competency for intelligent systems, as it links sensors to se-
mantic concepts. However, typical operating environments, such as kitchens in homes, are
often cluttered to the point where even humans struggle to find what they are looking for
(e.g. the lost keys scenario). This paper describes a system for locating objects in cluttered
indoor environments using the sensor sequence available from a moving intelligent system.
To overcome the occlusion problem, we use sensed 3D geometry to compute the expected
visibility of objects and compare learned partial-object appearance templates against the vis-
ible regions. Structure-from-motion (SfM) is used to register collected views, which allows
probabilistic data fusion, and increases robustness. As demonstrated by the sample result
in figure 1, the method can be reliably locate objects 3D, even in significant clutter and
occlusion.

Consider the problem of recognizing an object that is partially occluded in an image.
The visible portions are likely to match learned appearance models for the object, but hid-
den portions will not. This is a primary cause of poor recognition performance for modern

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 MEGER D. ET AL.: EXPLICIT OCCLUSION REASONING FOR 3D OBJECT DETECTION

Figure 1: Sample results on two real home scenes (left) and a synthetic lab scene (right).
3D wireframes indicate mugs (red) and bowls (green). Thresholded at 90% precision. All
figures are best viewed in colour.

approaches. The (hypothetical) ideal system would consider only the visible object informa-
tion, correctly ignoring all occluded regions. In purely 2D recognition, this requires inferring
the occlusion present, which is a significant challenge since the number of possible occlu-
sion masks is, in principle, exponential. We simplify the problem, considering only a small
subset of the most likely occlusions (top, bottom, left, and right halves) and noting that some
mis-match is tolerable. We train partial-object detectors tailored exactly to each of these few
cases. In addition, we reason about objects in 3D and incorporate sensed geometry, as from
an RGB-depth camera, along with visual imagery. This allows explicit occlusion masks to
be constructed for each object hypothesis. The masks specify how much to trust each partial
template, based on their overlap with visible object regions. This comes close to the intuition
- only the visible evidence contributes to our object reasoning.

We will continue by discussing related work. Section 2 presents a probabilistic model to
explain 3D object presence. Section 3 describes an efficient inference procedure to optimize
this model. Section 4 describes our datasets and experimental procedures and results are
discussed in section 5.

Previous Work
Our technique fuses information from numerous viewpoints and performs inference of 3D
object locations. Many of the individual components have been previously studied. For
example, for urban scenes (i.e. car-based cameras). Ess et al. [1] utilized stereo as well
as SfM. Wojek et al. [22] perform 3D reasoning for objects tracked over several frames
that have been registered using SfM. Helmer et al. [13] and Meger et al. [15] use regis-
tered visual information from many views to improve performance for indoor scenes, and
[3] applies a similar approach for sports video. The most similar previous approaches are
pedestrian detection methods, such as [5] and Wojek et al. [23], which inspire our mixture-
of-experts formulation to combine partial object detectors. The primary difference is that we
utilize sensed depth information, such as from an RGB-depth camera, while [5] uses motion
discontinuities to pre-segment regions and [23] utilizes inter-object reasoning that requires
all occluders to be detected with an appearance model.
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Figure 2: (a) Partial detectors (shown in white) often respond when full-object models
(shown as red boxes) are missed due to occlusion. (b) An object is projected and associ-
ated with partial detections where available.

A number of authors combine imagery and 3D information from a single view. Sun et al.
developed a depth-aware Hough Transform [18]. Both Lai et al. [14] and Quigly et al. [17]
extract features from both visual and depth imagery for robotic recognition. While indoor
objects are considered in these approaches, the authors do not focus on occlusion. Several
authors have also considered using depth to reduce the set of scales to be searched at each
image pixel [10] [12].

Occlusion reasoning has also been considered based on single images. Desai et al. [4]
reasoned about the depth-ordering of a set of detections to achieve state-of-the-art perfor-
mance on pixel-level segmentation. Vedaldi et al. [20] and Wang et al. [21] consider occlu-
sion during object detection. Both of these methods have motivated us to study occlusion in a
3D context and their improved image-space performance is complementary to our approach.

2 Occlusion-aware 3D Object Model
In this section, we describe our model for the likelihood that an object exists at a given 3D
location, given the available visual imagery, sensed depth information and SfM information
between several viewpoints. Figure 2 demonstrates our system’s view of a scene. Each can-
didate 3D object location projects into all views and is associated to image-space detections
produced by visual category recognizers for the object’s complete appearance as well as for
a subset of the possible occlusions. Fully visible objects are likely to align well with strong
detections in each image. However, occlusion can cause weak detection results, since there
is little matching appearance evidence. If left un-modeled, this would lead to the system re-
jecting the 3D object candidate. Therefore, we use sensed depth information to estimate the
occlusion of each part of the object in each view. The occlusion estimate is incorporated into
the scene score, allowing our system to ignore meaningless appearance information from
occluded regions and more faithfully representing the underlying geometry.

This section explains a model to compute the likelihood of any proposed 3D object, but
does not consider how these objects should be proposed. That is left for following section,
which outlines our sampling-based inference procedure.
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2.1 Top-level Object Likelihood
We model the likelihood of an object o, which has 3D position and scale, given a stream of
observed data gathered over time and space, as the system moves. We assume a synchro-
nized image, It , and point cloud, Ct , are available. Also, we express registration information
obtained from structure-from-motion as a projection matrix, Pt , from a common global co-
ordinate frame into the camera’s coordinate frame in view t. Hence, the observed data from
each view is Zt = {It ,Ct ,Pt}. We use super-script notation to denote the sequence of data
from the beginning of time until the present: Zt = {Z1,Z2, ...Zt}. The likelihood of an ob-
ject given the available data is expressed using Bayes rule and by making the Naive Bayes
assumption to achieve independence between viewpoints:

p(o|Zt) ∝ p(o)p(Zt |o) ≈ p(o)∏
t

p(Zt |o) (1)

= p(o)∏
t

p(It ,Ct ,Pt |o) (2)

= p(o)︸︷︷︸
ob ject prior

∏
t

p(It |o,Ct ,Pt)︸ ︷︷ ︸
appearance

p(Ct |o,Pt)︸ ︷︷ ︸
geometry

p(Pt |o)︸ ︷︷ ︸
registration

(3)

Note that the conditional independence structure between data types has been used to factor
the distribution. We use a delta function centered at the SfM estimate as the registration
model, as this was sufficiently accurate in our experiments. In future work, this could easily
be replaced by a probabilistic model for registration error between views. p(o) represents
a size prior per object category. We model this as a normal distribution on both the height
and radius of the object, which is appropriate given the cylindrical nature of the objects
studied here. Other shape priors can easily be substituted. We will continue by describing
the geometry and appearance likelihood terms for each viewpoint in detail.

2.2 Geometry Model
We model the likelihood of the observed depth data given an inferred object location. As
shown in figure 3(a), inferred 3D object regions are placed in the same coordinate frame
as measured 3D data. This allows us to reason about the agreement between the observed
environment geometry, and our hypothesized object. For each pixel in the depth image within
the projected object region, we note three discrete outcomes:

1. The measured depth is near to the inferred depth: they agree

2. The measured depth is greater than the inferred depth, which indicates the inferred
object region is unoccupied: they conflict

3. The measured depth is less than the inferred depth: the object is occluded at this pixel

The geometry term in equation (3) is constructed from pixels that fall into the first and
second outcome only, as occluded regions cannot tell us anything about the object’s geome-
try. We employ a mixture of two Gaussians to model the expected error in the depth sensor
and the rare occurrence of outliers far from the expected value. We compute the product of
this model over all pixels expected to fall on the object. This model is common in geometric
inference, and has been used previously in robotic mapping, for example in [19].
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(a) (b)
Figure 3: Point clouds and inferred 3D objects, as shown in (a), allow computation of occlu-
sion masks for each object in each image, as in (b). Occluded regions shown in red.

Figure 3(b) shows pixels marked with the third outcome above: occluded. The ratio
of occluded pixels within the region considered by each partial-object appearance template
forms a visibility score v used for the appearance model, as will be described in the next
section.

2.3 Appearance Model

The likelihood of the image appearance given an object is evaluated using a learned model for
the entire object, as well as for a number of sub-parts. We scan the image with each learned
model to obtain a set of object detections: Dt . The 3D object, o, is projected into each
image and assigned to nearby detections (for the whole, and the visible portions) greedily.
Let dit(o) ∈ Dt represent the detection for object part i assigned to object o at time t. We
use the mixture-of-experts model proposed in [23] to express the contribution of each partial
detector (expert) weighted by the visibility in the corresponding region. We also enforce soft
geometric consistency by penalizing error in alignment between the object and an associated
detction. This is written symbolically:

p(It |o,Ct ,Pt) =
1

∑i vitδ (vit > θ) ∑
i

vitδ (vit > θ)Ψs(dit(o))Ψg(Pt ·o,dit(o)) (4)

Recall that visibility, vit , is derived from the sensed depth within the region explained by
the object (or object part). δ is an indicator function to completely discount contributions
of parts that are more occluded than a hand-chosen threshold, θ . Ψs is a potential function
related to the detector’s score. We have implemented Ψs here with a linear mapping of
detector score to the range [−1,1] based on scores on a set of validation data. Platt Scaling,
as in [16], is an alternative that provides a meaningful probabilistic interpretation, but gave
no benefit in our experiments. Ψg measures the geometric agreement between a projected
object, Pt ·o, and its associated detection. It is implemented as a three-dimensional Gaussian
distribution on scale-normalized error in object center (both x and y position) as well as error
in predicted image scale.
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3 3D Object Inference
The 3D object likelihood model relates the presence of an object in a location to the observed
data. However, for every test environment, we must infer the objects that maximize this like-
lihood. Linear search, such as the sliding-window method is often used for image-space
object localization. This approach scales exponentially with dimensionality and we consider
locating objects with 6 dimensions (3D position and 3D scale). So, we employ data-driven
sampling of likely regions, followed by refinement of each sample and non-maxima suppres-
sion. This allows only the most promising regions to be considered and saves considerable
computation. The remainder of this section describes our inference procedure in detail.

Data-Driven Sampling
While it is expensive to search for the global maximum that simultaneously explains all
observed data, we can efficiently compute the local maxima relative to each view by consid-
ering the terms in the product of equation 3 one at a time. First, we draw a detection with
probability proportional to the confidence score and constrain the 3D object center to align
with the center of the detector’s bounding box. This constrains the sampling-space to the ray
in 3D over all (infinte) positive depth values. We must also choose a depth and a scale for
each proposed 3D sample. Depths are drawn from the values in the depth map within the de-
tector’s bounding box. Scales are drawn from the prior on the object’s size. This one sample
is saved for further processing and the process begins again by selecting a new detection.

Position Refinement
After the sampling stage, a set of 3D regions is available, and it is possible to score each
region directly with equation 3. However, unless a large number of samples is used, the
3D localization accuracy is often poor. Therefore, we refine each samples’s location and
scale to locally maximize the likelihood of observed data in all views. This refinement
involves coordinate descent, alternating between two steps. First, the 6 degree-of-freedom
(3D position and scale) object pose is optimized given a fixed data association by descending
the analytically computed gradient of image errors from projection. Second, the greedy
data association is re-computed for the new object location. The projection and greedy data
association portions of our object model are non-linear. Therefore, we can make no guarantee
on the convergence of the optimization, but we have found the procedure works well in our
empirical evaluation.

Non-Maxima Suppression
As with many detectors, our 3D object inference procedure tends to find many slightly shifted
versions of each true object with high likelihood scores. We suppress detections which are
not local maxima based on their overlap in 3D. Note that our approach can tolerate very
cluttered scenes where two objects occupy nearly the same region in image-space. As long
as these objects have different depths, we will be able to maintain both hypotheses (there is
no overlap in 3D). This is in contrast to many detectors that apply image-space non-maxima
suppression which performs poorly when two objects of the same category are nearby in the
image.

4 Experimental Setup
We have implemented a complete 3D object detection system, instantiating each of the model
components described above in a robust fashion in order to evaluate their performance in
realistic, cluttered indoor scenes. This section will describe the practical details of the eval-
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Figure 4: Performance of full and partial detectors for (a) mugs and (b) bowls.

uation including the learned visual recognizers used as input, the physical scenarios used to
gather test data, and the structure-from-motion algorithms employed.

4.1 Visual Detectors
We learn detectors for each of four half-sized templates: top, bottom, left, and right. Each
partial-object detector is trained independently, as this allows the hard negatives for each
template to be included, maximizing resulting detection performance. We employ the De-
formable Parts Model of Felzenszwalb et al. [7] both for appearance learning and also for
test-time detection in images. Both full object models and partial templates are learned from
the same training data, which only requires modifying the positive annotations accordingly.

Figure 4 shows the performance of our full template and partial object recognizers over a
set of validation images containing annotated examples of each category. The clear trend is
that the complete template achieves the best performance overall, which is intuitive because
it considers the largest image region and can therefore most strongly discriminate objects
from background. We note that the performance of a partial detector does not change at all
if an instance is occluded in regions ignored by the template (i.e. a left detector is unaffected
by occlusion on the right), which can be leveraged during 3D inference.

4.2 Evaluation Scenarios
We evaluate our method on two scenarios involving indoor clutter and occlusion. First,
we locate objects in a publicly available robot-vision dataset named The UBC Visual Robot
Survey1. For each scene in this collection, depth information is available from the robot’s
tilting laser-rangefinder. The robot surveys the scenes by moving in a trajectory through
the environment and collecting both images and point cloud data roughly every five degrees.
Each object of interest is manually annotated as both a 2D bounding box and as a 3D location,
although all evaluation was done in image-space for this paper using the Pascal [6] evaluation
criteria. The UBC VRS dataset is described in more detail in [15].

Our second method for evaluation involves novel data collected for this paper with the
Microsoft Kinect sensor in a number of real homes. Here, the sensor was hand-held and
we performed marker-less position registration, as will be described below. We present

1http://www.cs.ubc.ca/labs/lci/vrs/index.html
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Figure 5: Sample results of our 3D object detection method, thresholded at 90% precision.
The leftmost image is from the Kinect sensor, the remainder are robot-collected.

our results from this portion of the data qualitatively, as insufficient annotations have been
collected so-far to achieve meaningful quantitative comparison.

4.3 Structure from Motion

Our experiments include two separate structure-from-motion techniques. The robot-collected
images in the UBC VRS are registered using a target made of Artag fiducial markers [8] to
obtain exact point correspondences with a vanishingly small chance of false matches. In this
case, a non-robust position estimator is initialized with the direct linear transform (DLT) and
refined by iteratively minimizing re-projection error. Due to the nearly noiseless point corre-
spondences, this simple method yields registration accurate to within one pixel. This enables
careful study of detection performance without undue challenge to the system in recovering
the camera’s path.

Our Microsoft Kinect data contains unstructured, real home scenarios and no calibration
target has been used. Here, we have employed an off-the-shelf technique named RGBD-
SLAM - 6DOF SLAM for Kinect-style cameras2. Like many SfM solutions for hand-held
cameras, Speeded-Up Robust Feature (SURF) [2] points are tracked between frames, and a
set of geometrically consistent inliers is found with Randomized Sampling and Consensus
(RANSAC) [9]. Long-range performance and loop-closure is achieved by refining poses
globally using the technique described by [11]. Registration is not sub-pixel accurate in this
scenario, which demonstrates robustness to errors in our geometry model.

5 Results

5.1 Qualitative Results

Figure 5 shows a number of example results from our method. In many scenes, our technique
can leverage the reliable information available from visible parts of objects, and confidently
locate their position in 3D, even in clutter. However, our system returns false positives on
objects whose visual appearance and structure are similar to the searched category. The
rightmost image in figure 5 shows a soap dispenser and the top of a bottle which are both
labeled “mug”. Additional geometric constraints may be able to filter these objects as being
in unlikely positions (not resting on table).
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Figure 6: (Top) The performance of our method evaluated over 5 viewpoints vs. the state-
of-the-art DPM model by [7]. (Bottom) Full model performance vs. number of viewpoints.
Columns: (a) mugs, (b) bowls. The summary statistic is Average Precision.

5.2 Comparison to Visual Recognition
Figure 6(top) shows the results of our 3D object recognition approach, a variant without
partial detectors, and the purely image-space DPM model [7]. In all cases, evaluation is on
the test set of the UBC VRS dataset. For the 3D detection methods, object volumes are pro-
jected to form bounding boxes for scoring. In some cases, our complete model detects 40%
more of the annotated objects, for the same miss rate, than the visual detector. The effect of
partial detections is shown by the improvement of the complete model over the variant using
only full appearance templates. Further inspection reveals that partial detections improve
performance primarily on occluded objects.

5.3 Altering the Number of Viewpoints
Figure 6(bottom) shows the results of our method as the number of views considered is in-
creased from two to six. The method must generally observe four or more views of the scene
before it outperforms the image-space detector (although all multi-view models perform bet-
ter at high precision). Visual inspection shows that the issue is poor 3D location of objects
when only two or three views is available. We note that the baseline available to our system
in this case is only five degrees, the spacing between consecutive frames in UBC VRS data.
When 3D locations are poorly estimated, objects project to incorrect image-space locations,
degrading performance. We have run a similar 2-view experiment allowing our method to
observe non-consecutive views, in this case separated by ninety degrees. The performance

2http://openslam.org/rgbdslam.html
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in this trial was 0.75 AP for mugs and 0.72 AP for bowls, which improves upon the DPM
score, and rivals the four view approach run on consecutive frames.

6 Conclusion

We have developed a method to relate 3D objects to incoming image and geometry data
from many views, including explicit occlusion reasoning and learned partial-object appear-
ance models. This approach has the potential to perform robust detection in home scenar-
ios, where intelligent systems will soon be deployed. Our approach is integrated with a
structure-from-motion system, and in combination the techniques form a semantic mapping
system suitable for object-centric tasks such as scene description to disabled users or mobile
manipulation.
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