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_ Abstract— The path followed by a mobile robot while map- At each exploration step, the environment can be parti-
ping an environment (i.e. an exploration trajectory) playsa tjoned into known and unknown regions. This suggests a
large role in determining the efficiency of the mapping procss  ,5ra| decomposition of the planning problem into two sub-

and the accuracy of any resulting metric map of the envi- . \
ronment. This paper examines some important aspects of path [@SKS: First, paths must be planned through the robot'entrr

planning in this context: the trade-offs between the speedfaghe ~ Map, which, while errorful and incomplete, provides at teas
exploration process versus the accuracy of resulting mapsind a rough estimate of the nature of the world. Second, in
alternating between exploration of new territory and planning  order to explore new territory, paths must be planned into or
through known maps. The resulting motion planning strategy  thyoygh the remainder of the environment which is initially
and associated heuristic are targeted to a robot building a rap - .
of an environment assisted by a Sensor Network composed un!(nown. The currenFmap proy|desarelat|\(ely large amount
of uncalibrated monocular cameras. An adaptive heuristic Of information for decision making, so there is some hope for
exploration strategy based on A* search over a combined selecting favorable paths in this setting. In contrastpiag
distance and uncertainty cost function allows for adaptatbn through unknown regions is much more challenging, and
to the environment and improvement in mapping accuracy. We 5550415 to require heuristic strategies, unless strora pri
assess the technique using an illustrative experiment in aeal . . o . . .
environment and a set of simulations in a parametric family @ |nf0rm§1t|0n, or speC|f|c task -propert!es are exploited.- Fig
idealized environments. ure 1 illustrates the information available to a robot when
planning its motions in a hospital environment instrumente
. INTRODUCTION with a camera Sensor Network. At every instant, cameras
Exploration is a pre-requisite behaviour for many esserwhich have previously observed the robot are candidates for
tial functions of a mobile robot. During localization andre-visitation, and paths to these cameras can be plannt qui
mapping, geometric information is gathered as the robefccurately. Also, regions of so-far unvisited space giwe th
enters new areas. During visual search, the locations epportunity for exploration, although the result of moving
potential objects are identified from images of new teryitor into these regions is somewhat less predictable.
During Sensor Network localization, the robot passes into This paper adapts and extends exploration techniques
the sensing or communication range of additional sensorgeveloped for mapping with a mobile robot to the con-
The common thread is that the system begins with n@xt of camera Sensor Network self-localization - that is,
(or little) information about its environment, and addit&dd a network of cameras whose precise positions must be
information can only be collected when the agent moves intgetermined by a mobile robot. lllustrative applications ar
new territory. building-security systems and traffic-monitoring netwsrk
For active information gathering tasks such as map buildsuch cameras provide a rich source of visual information
ing, decision making is an essential component which detefor the regions in which they are emplaced and facilitate
mines the quality of information collected. The robot'stpat applications such as automated surveillance [1] and detect
determines the order and frequency of observation for eagh abandoned luggage in airports [2]. These applications
feature, which greatly impacts the accuracy of the final magommonly assume a map of camera locations, as well as,
produced, as well as the efficiency of the process. While bothowledge of the camera imaging properties; or, in other
speed and accuracy are desired during mapping, these twerds, that calibration information is knowan priori. This
goals are often in conflict. On one haratcuratemapping is rarely true in practice, but mapping and calibration can
is dependent on the robot’s position estimate being ca@dectbe completed by a mobile robot operating in the same
through repeated measurements of the same landmarks. évironment as the camera network, as shown in [3].
the other handefficientmapping demands minimizing dis-  This paper presents an exploratory trajectory planning
tance traveled; thus, making a return to an already explore@lution for a robot exploring and localizing the cameras
landmark undesirable. within a camera Sensor Network, such as the scenario
D. Meger is with the department of Computer Science, Uni-deF)iCtecj in Figure 1. Specifically, we propose the use of
versity of British Columbia, Vancouver, British ColumbigCanada, a planner based oml* search to optimize local sections

dpnmeger @s. ubc. ca . , of the robot’s path with respect to both distance traveled
I. Rekleitis is with the Canadian Space Agency, Saint-Hub@uebec, d . Thi hod is derived f b
Canadayi anni s@i m ncgi |l | . ca and map uncertainty. This method is derived from, but

G. Dudek is a faculty member of the Centre for Intelligentalso extends previous work such as [4] since it provides a
g"&g*g’lleél mMrr%Gg"il | U(’:“;ers'tyv Montreal, ~ Quebec,  Canada,pngrameter which naturally adapts the levels of exploration
All the authors worked at the Centre for Intelligent Maclkin®cGill and re-localization. In addition, we evaluate the effedts o

University during this research. our planner when alternated with excursions into unexplore



Fig. 1. A robot’'s progress through an environment duringl@gpion. Paths can be planned through the known map andetddinder of unknown
territory (dotted lines). Camera observations (large )dptsvide the sensor readings which allow for accurate nrapmparticularly when the robot plans
to revisted a camera numerous times.

territory, so that our method can be considered a complefer camera network localization. The EKF computes the
exploration algorithm. mean p and covarianceP for each map quantity. Many
The next section will review necessary background masther solutions are possible, but the EKF is used here for
terial regarding SLAM as well as previous methods focomputational simplicity and ease of analysis.
planning to reduce map uncertainty. Section Il describest Numerous authors have studied the problem of planning
Localization and Mapping solution for a mobile robot in apaths through the already known map in order to gather
camera Sensor Network considered in this paper. An adaadditional information and to increase mapping accuragy, e
tive heuristic search based planner for exploration paghs [i4], [6], [7], [8]. Many approaches have attempted to reduce
introduced in Section V. Experimental results in Section \the entropy in the map estimates [9], [10], [11], which is the
demonstrate the efficacy of the network localization soluti measure of the uncertainty in a distribution and is defined
in a large indoor environment and illustrate the perforngancas:
of the exploration planning methods in simulation.

II. BACKGROUND H(p(§)) = — / p(€) log(p(€))dé 1)

The network localization problem is similar to Simultane-
ous Localization and Mapping (SLAM) since both scenarios For the Gaussian distributions used by an EKF repre-
involve estimating the pose of the robot and the positionsentation of the environment, entropy can be expressed in
of environment features (landmarks or sensor nodes) frootosed form. Sim and Roy [4] discuss two different measures
acquired sensor data. Hence, numerous similar estimatitiom information theory for which either the trace or the
approaches are appropriate. In this paper, the extendéeterminant of the covariance matrix provides the final
Kalman filter (EKF) as described in [5] for SLAM is adaptedmeasure for entropy.



Early work proposed a single-step, greedy choice of the
action which maximally minimizes the entropy because
optimal planning of multi-step paths requires computation
cost exponential in the path length. Recently, Sim and Roy|
[4] have proposed pruning loops during breadth first searchi |
order to ensure manageable complexity even when planning
longer paths under conditions of idealized sensing and a
rough initial estimate of landmark locations. In additi¢,
has considered a simulation-based approach which has thi
potential to generate multi-step paths at the cost of sianifi
computation.

In contrast, our approach considers the more general prob
lem of an unknown environment where the robot dynamically
decides if more time should be spent improving positional
accuracy, or a shorter route to the unknown parts of the world ) )
Should be selected. This s achieved by employigsearch %2 _ The expermenta seup used toughout tis pagee et
for efficient planning. the cameras in the network (such as the one mounted on a da®r he

As mentioned earlier, accuracy and efficiency are conflict-
ing goals during exploration. In order to produce paths that
compromise between the goals, distance and uncertaingy hav  [1l. LOCALIZATION AND MAPPING IN A
to be combined into a single cost function. Unfortunatdig, t CAMERA SENSORNETWORK
two are incommensurable; that is, they lack common units
for comparison, so care must be taken in combining their An autonomous solution for calibration and mapping of a
values. Makarenket al. [10] have previously proposed a c@mera sensor network by a mobile robot has been previously

weighted linear combination of distance and uncertainty faPresented in [3], [17]. The crucial details of this method wi
path p: be reviewed in this section to provide sufficient background

to enable subsequent discussion of the exploration plgnnin
algorithms.
C(p) = walength(p) +wy trace(P(p))  (2) Given a network of cameras placed inside a building, and a
mobile robot, the goal is to autonomously explore the build-

In this cost function P is the covariance matrix resulting ina: locate each camera. by receiving an alert everv time the
from the EKF and its trace is an approximation of the 9 » Y 9 y

o . N robot enters the field of view (FOV) of the camera; calibrate
uncertainty in the map. The choice of weighting factors : ) )
: . the internal parameters of the camera; and finally, recover
andw, represents the compromise between distance travel .
. . Iy e 3D pose of the camera with respect to the robot. The
and mapping uncertainty accuracyversusefficiency We

would like to produce a flexible method based on varying thfeIrSt step is recognizing the robot when it enters the FOV of

S . .7 .~ acamera. This is accomplished with a specially constructed
one intrinsic parameter, so we normalize the contributibn P P y

; ) . . . target mounted on the robot which can be robustly detected
each quantity by a rough estimate of its maximum possible " ~. . ) . . :
visual imagery; see Figure 2. Our target is comprised of

. . L
value. Once each quantity has been normalized, a sing A .
free parameter in the range[0, 1] is able to specify the XeRTag [18] fiducial markers which have been employed for

o . ; automated camera calibration and pose estimation prdyious
contribution of each factor. Based on this formulation, th . : :
. : . . y [19]. The calibration procudure estimates the pose of the
weights used in our cost function are:

camera with respect to the robot, also known as extrinsic
parameters. This information allows the pose of the camera
oy = & Wy = l1-a to be added to the map. Finally, an EKF tracks the location
maxdist mazxuncert of the robot as it moves between cameras and corrects the
By setting o to the two extremes, zero and one, it isrobot’s location as well as the map of camera locations each
possible to consider only one of the factors at a time: distantime a measurement is collected.
only, by settingae = 1, and uncertainty only, by setting As mentioned above, the decision making aspect of
a = 0. Section IV will discuss the effect of varying on  exploration is crucial to any map building approach, but
the quality of the resulting paths. particularly to mapping a camera Sensor Network. In this
Several authors have considered the collaboration betwestenario, the robot travels over potentially large distanc
a Sensor Network and a mobile robot in different sensingetween camera observations, so odometry error accuraulate
scenarios and in some cases with much more capable robati@stically unless it is corrected actively. That is, camer
agents [12], [13]. In addition, our analysis of a single n@bi positions serve as landmarks for planning which must be
agent within a static network can be viewed as a special cagisited and revisited in order to keep the accumulated uncer
of multi-robot collaboration, which has also been studigd btainty low. Position measurements obtained when a camera
many authors [14], [15], [16]. observes the robot repeatedly allow the estimator to reduce




the positional uncertainty of the robot and of the map. Tbest path found so far from the start to nedeandh(n), the
illustrate this point, and to give a basis for comparisomeuristic function, which is an estimate of the cost fromeod
several hand-crafted methods for planning during explmmat n to the goal based on some, hopefully cheap, approximation.
were considered in this work which explicitly considered th The search procedure expands nodes in order of increasing

compromise between accurate and efficient mapping: expected cosC' which is a combination of the two terms:
« Depth-first exploration: the robot always moves into
unexplored territory, never relocalizing. This strategy Cn) = f(n)+hn) 3)

provides coverage of the environment with minimal dis-

tance traveled, but the uncertainty of the robot position We use Eq. 2 for ourf function as we seek to optimize

grows quickly. It is worth noting that as the environmenpaths based obothdistance and uncertainty. Thefunction

is unknown, DFS is the most efficient method possiblenust be “admissible”. That s, it must be an underestimate fo
« Return-to-Origin: the robot alternates between explorthe remaining cost that will be required to reach the goal.

ing a new camera position and returning to the firsEomputing a reasonably tight lower bound for the uncer-

camera it mapped, which has the lowest uncertaint§@inty reduction along a path appears to be an exponential

This strategy allows for accurate relocalization, but iproblem in itself. So, noting that* with a less informative

means that the robot must travel increasingly largepeuristic function is still more efficient than breadthfirs

distances as it maps cameras further away, thus, igearch, we simply leave out the contribution of uncertainty

troducing measurements from increasingly inaccurat@stead ourh function is the straight-line distance between
positions. nodes, as is common in traditional planning. This allows

« Return-to-Nearest: in a compromise between the two our algorithm to reduce the number of searched nodes, with

previous methods, the robot alternates between expldittle overhead computation. Note that uncertainty stilicges
ing a new camera position and relocalizing at the neare@r search to some extent, as it is a component of the cost
previously explored camera. The ability to relocalizéfunction f.
accurately depends on the uncertainty of the nearestlt is important to note thatA* in our case is only
camera only, which might not be mapped as accurateBPproximating optimal paths with respect to the chosen
as cameras which are farther from the robot, howeveg0st function because the situation we consider violates th
regressing by only one camera at a time means the exgtgndard assumptions in two aspects. First, paths which con
distance traveled remains small. tain loops can often reduce uncertainty, while traditioAhl
planning techniques assume loops lead to increased cost and
IV. ADAPTIVE HEURISTIC PLANNING FOR MAP 54 are not considered. Second, our cost function uses a scala
BUILDING representation of the EKF covariance matrix. Uncertainty
Exploration of a Sensor Network can be thought of irin subsequent planning steps cannot be predicted based on
terms of the graph formed by nodes corresponding to sensarch a simple value. In other words, theiwce(P) measure
positions connected by edges corresponding to traversabised by our planner is not a sufficient statistic, which
pathways between sensors. This construction will be usefigl required for optimal planning. This lack of optimality
to explain our proposed solution. In graph-based terms, tli® unavoidable since exploration planning is exponentiall
exploration process consists of two steps: 1) selecting tloemplex, but is noted in order to provide a more complete
next node to visit, and 2) planning the best path througbnderstanding and to provide directions for future work. It
the known graph to reach the selected node. The threis-also important to consider the potential for generalirat
hand crafted approaches described earlier undertake the$¢he method. Since our analysis does not explicitly depend
two steps without consideration of the current state of then any properties of the camera sensors used, it could easily
map and estimator. A planning algorithm which examinebe applied to other graph-based exploration problems, such
the current uncertainty of each camera’s estimated pasiti@s, Generalized Voronoi Graphs (GVG) [20] and occupancy
is able to adaptively select paths which allow better rdlocagrids [21].
ization. An optimal solution could be produced by searching Figure 3 shows paths generated for four values ofdhe
the space of all possible paths and choosing the one wiffarameter which weighs the contributions of distance and
the lowest cost as defined by Eq. 2. Unfortunately, we camcertainty. This example illustrates that search is able
show that the number of paths through such a graph-like adapt to the environment and compromise between the
environment has a worst-case boundddf whered is the conflicting goals. The next section provides results from
maximum node degree in the graph ands the path length further experiments which will evaluate the impact of such
[19]. Thus, exhaustively examining all paths is intractabl adaptation on the exploration process.
Insplre_d by the pru_ned _search me_thod of Sim and qu [4] V. EXPERIMENTAL RESULTS
we consider approximating the minimum cost path in a ]
computationally efficient fashion. To avoid exhaustiverska A Hallway Mapping
our planner employs a variant gf* search. As all informed A set of hardware experiments was performed to verify the
search techniquesi* search requires two pieces of infor-underlying calibration and mapping framework. A network
mation about each node in the grapt{n), the cost of the of seven cameras was deployed in an indoor environment
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Fig. 3. Paths generated by* search using a a distance and uncertainty cost functionofarfalues ofa. Dark lines indicate the path followed by the
robot in each case. At (a) only the distance is considered. r&fative contribution of uncertainty increases seqaéntfor (b)-(d).

with a diameter ove0 m and a mobile robot equipped produced by altering the number of nodes so that trends
with the fiducial target described in Section Il traversedn the exploration results could be examined. Two idealized
the environment. This robot passed in front of the camelasses of graphs were used which exemplified near-extremes
eras and followed a path whose length was o¥&® m. in terms of connectivity (though the reader is reminded that
Figure 4(a) shows that the estimate of the robot’s positioour solution is independent of particular graph structure)
based on odometry accumulates error quickly. Figure 4(0)he first class considered wadly connected graphs(i.e.
demonstrates that the calibration and mapping system dques) where every pair of nodes is connected by an edge,
able to correct this error and produce an accurate map which represents a scenario where the robot is able to freely
the environment. For these preliminary experiments, aenaitraverse the environment without obstacles; see Figure 5(a
exploration policy was employed. These experiments servdthe second class examined weaangulated graphs where
to validate the utility of the approach and demonstrate thatdges are chosen by triangulation of the nodes to produce
apparently accurate mapping could be achieved in practieeplanar graph, which again represents obstacle free space,
even with very simple path planning. Moreover, these exsut in this case assumes the robot should move through a
periments provided verification of the EKF implementatiorsequence of nodes along its path; see Figure 5(b). We also
as well as experimentally derived noise statistics for thexamined graphs generated by stochastically samplingla rea
odometry and the camera estimates. More informed trajeenvironment to produce a roadmap. In this case, we used the
tory planning methods will be considered in the remaindétoorplan of an actual hospital and triangulated stochaliyic
of the experimental results. selected sample locations which were mutually visible. We
refer to these afospital graphs see Figure 5(c). In the
remainder of this section, results have been computed over
We used numerical simulation to evaluate the performan@mixture of the graph types.
of the approach over a wide range of parametric variations . o
in the environment. This environment was meant to emulafe: Single Path Results for the Adaptive Heuristic
the properties of camera networks such as the one used in th&he goal of our adaptive heuristic planner is to choose
hallway experiments as closely as possible. To accomplighshort-term path through the known graph that allows the
this, nodes were chosen from a uniform distribution ovee frerobot to arrive at a new node with minimal distance and
space with approximately the same density as the hallwayncertainty. The simulation environment described earlie
setup. The camera heights and distances from the robsés used in order to analyze the performance of our algo-
location were taken as the averages of the hallway tests, anithm. For each randomly generated network, Return-to-
the same EKF implementation was used for state estimatidieareststrategy was executed for a portion of the network
as was used to produce Figure 4(b). Various graph sizes weéneorder to initialize camera estimates in the EKF. A series o

B. Simulation Environment
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Sample Hospital Graph
planners were then executed to find paths between constar
start and goal nodes so that paths returned could be com
pared. The planners evaluated used Mfesearch with four
different values for: (0.1,0.5,0.9,1.0). Note thate = 1.0
produces shortest distance planning.

Figure 6(a) illustrates the distance traveled for the four
choices ofa, over twenty instances for each network size.
As expected, largetr values produce shorter path lengths
since distance is weighted more heavily in the cost function
The relatively graceful increase in distance traveledoas
decreases indicates the ease with which the planners ar
able to find slightly longer paths that perform better with

150

respect to final uncertainty. That is, there is no catastooph X (em)
degradation in distance performance as the weighting is (©)

changed.
. 9 b) sh he final rob . . Fig. 5. Example graphs from each of the three types consid&etted
Figure 6( ) shows the final robot uncertainty upon arr“’ﬁ'nes indicate edges between nodes. Camera positions avensiis blue

at the chosen goal node for three of the fauvalues used. crosses where color is available.
Results fora = 0.5 are excluded because the results for

this method lie extremely close t0 = 0.1 anda = 0.9,

which makes visualization difficult. Setting < 1 manages

to reduce the uncertainty drastically over the= 1 case,



where only distance is considered. In fact, the improvement VI. CONCLUSIONS

in uncertainty betweem: = 1 and a = 0.9 is much Robot path planning has been considered for reduction of

larger than that between = 0.9 and o = 0.1. These .5 ncertainty in the context of a mobile robot calibrating

results are of particular importance since they indicag th 4 mapping a camera Sensor Network. An adaptive heuris-

by considering uqcertalnty in the plann_lng Process, ualitic \which produces relocalization trajectories based am th

increased dramatically as can be seen in Figure 6(b). current state of the estimator has been shown to improve
performance over a variety of intuitive hand-crafted ap-
proaches. This adaptive heuristic planning is able to pi@vi

D. Global Exploration Results a compromise between efficiency and accuracy in planning
relocalization paths. This translates to favorable pentorce

The previous section indicates that the adaptive heuistic " 9/0Pal mapping when compared to less adaptive strategies

able to produce relocalization paths with intuitively faeable however, :}here is sill rof‘f’_”_‘ forl mprgvemelnt.tlo the teggmqu
and adaptive properties. This method is extended to globgy se”arc Ing more ‘€ iciently and explicitly considering
exploration which requires iterating two steps: followingOvera map uncertainty.

a previously untraversed arc from a frontier node of the Perhaps the most promising area of future work is the

known graph and selecting a relocalization path througﬂse of adaptive heuristic trajectory planning in different
calization and mapping domains. The state of the art in

nodes which have previously been mapped to arrive at tfll% X X ) )
next frontier node. The first step, which poses a problerﬂ anning for reduction of map uncertainty consists of many

similar to that solved by the Frontier-Based Exploratiorgreedy planners base_d on entropy redu(_:tion te_chniques._By
strategy [22] in occupancy-grid SLAM, is challenging sincd?ature, greedy planning IS far from thlmal, given t_hat It
no measurements have yet been made about the destinaﬁl&?s not attempt to exploit all of the information available

camera location. We are not able to compute expected'© 4~ search method presented here provides for greater
distance or uncertainty for this exploratory section of th@daptation, while managing to limit computation througé th
-use of a heuristic function to guide the search for solutions

path. Under this condition, several hand-crafted strategi ~>- - , -
have been attempted for choosing the next explorationmcti(?u'd'ng a stochastic or sampling-based approach such as [6]

to take. These include a breadth-first search method whdfe@ Similar fashion would allow combination of the benefits

nodes closest to the origin are explored first and a spir@l Poth methods. o o
search method. In future work, we plan more detailed The authors believe similar methods can be applied in

analysis of the effects of each of these strategies as weiher mappi”g domains su_ch as the landmark based EK_F'
as more sophisticated methods such as the use ofithe occupancy grid representations such as FastSLAM, and in

search algorithm to evaluate each frontier node. For tact any repres_entation where uncertainty is ex_plicitlydmo_
purposes of evaluating the relocalization strategies ia th€'€d in the estimator. The use of such adaptive heuristics
section, the same breadth-first exploration ordering wagl us*ill allow robotic mapping to occur with lower error and

for each method. The second step in exploration involvét®ntribute to the autonomy of robotic agents in general.

selecting the path through the known graph ending at the
next destination node for exploration, which allows for

accurate robot relocalization with minimal distance ttede  [1] O- Javed, Z. Rasheed, O. Alatas, and M. Shah, "Knight al re
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used ir?Ste_ad in Qr_der to provide the additiona_‘l ﬂeXibi”tbd? environments,” irProceedings of the 9th IEEE International Workshop
relocalization ability that was demonstrated in the praesio on Performance Evaluation of Tracking and Surveillanisew York,
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ey Distance vs Graph Size

—©— Depth First *
=3 -Return to Origin ,
Return to Nearest .
O A-Star Planning ‘

3k

Total Distance Traveled (cm)

L L L
10 15 20 25 30 3
Number of Landmarks

@)

Total Uncertainty vs Graph Size
= Depth First

eturn to Origin
Return to Nearest
O A-Star Planning

Square Root of Trace of Map Covariance

25 30
Number of Landmarks

(b)

Fig. 7. Results for various exploration strategies: (a) idtal distance required to explore the environment for egfcte strategies considered. (b) The
final map uncertainty for each of the strategies considered.

(8]
El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

D. Fox, W. Burgard, and S. Thrun, “Active markov localimen for
mobile robots,"Robotics and Autonomous Systerh398.

C. Stachniss, D. Haehnel, and W. Burgard, “Exploratioithvactive
loop-closing for fastslam,’International Conference on Intelligent
Robots and System2004.

A. Makarenko, S. Williams, F. Bourgault, and H. Durrakthyte,
“An experiment in integrated explorationfhternational Conference
on Intelligent Robots and Systen2002.

S. Hang, N. Kwok, G. Dissanayake, Q. Ha, and G. Fang, tMul
step look-ahead trajectory planning in slam: Possibilitd aecessity,”
International Conference on Robotics and Automati®805.

M. Batalin and G. S. Sukhatme, “Coverage, exploratiod deploy-
ment by a mobile robot and communication networkglecommuni-
cation Systems Journal, Special Issue on Wireless Sendwoig
vol. 26, no. 2, pp. 181-196, 2004.

P. Corke, R. Peterson, and D. Rus, “Localization andig@ion
assisted by cooperating networked sensors and roldatsfhational
Journal of Robotics Researchiol. 24, no. 9, 2005.

K. O'Hara and T. Balch, “Distributed path planning foohots in
dynamic environments using a pervasive embedded netwiarKhird
International Conference on Autonomous Agents and Mgé&m
Systems (AAMAS2004.

A. Mourikis and S. Roumeliotis, “Performance analysfsmultirobot
cooperative localization,”JEEE Transactions on Roboticsol. 22,
no. 4, to appear - Aug. 2006.

I. M. Rekleitis, G. Dudek, and E. Milios, “Multi-robot atlaboration
for robust exploration,” inProceedings of International Conference

[17]

(18]

[19]

[20]

[21]

[22]

in Robotics and AutomatignSan Francisco, USA, April 2000, pp.
3164-3169.

I. Rekleitis, D. Meger, and G. Dudek, “Simultaneous rpieg, lo-
calization, and mapping in a camera sensor netwdRqgbotics and
Autonomous Systemeol. 54, no. 11, pp. 921-932, November 2006.
M. Fiala, “Artag revision 1, a fiducial marker system ngidigital
techniques,” inNational Research Council Publication 47419/ERB-
1117 Nov. 2004.

D. Meger, “Planning, localization, and mapping for a bite robot

in a camera network,Master of Science Thesis - supervisors loannis
Rekleitis and Gregory Dudel2007.

H. Choset and J. Burdick, “Sensor based planning, pdridremental
construction of the generalized voronoi graph,” Broc. of IEEE
Conference on Robotics and AutomatioNagoya, Japan: IEEE Press,
May 1995, pp. 1643 — 1648.

H. Moravec and A. Elfes, “High-resolution maps from widngle
sonar.” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRABt. Louis, MO, USA, 1985, pp.
116-121.

B. Yamauchi, A. C. Schultz, and W. Adams, “Mobile robapéoration
and map-building with continuous localization,” IEEE Int. Conf. on
Robotics and AutomatiorLeuven, Belgium, 1998, pp. 2833-2839.



