
Heuristic Search Planning to Reduce Exploration Uncertainty

David Meger, Ioannis Rekleitis, and Gregory Dudek

Abstract— The path followed by a mobile robot while map-
ping an environment (i.e. an exploration trajectory) plays a
large role in determining the efficiency of the mapping process
and the accuracy of any resulting metric map of the envi-
ronment. This paper examines some important aspects of path
planning in this context: the trade-offs between the speed of the
exploration process versus the accuracy of resulting maps;and
alternating between exploration of new territory and planning
through known maps. The resulting motion planning strategy
and associated heuristic are targeted to a robot building a map
of an environment assisted by a Sensor Network composed
of uncalibrated monocular cameras. An adaptive heuristic
exploration strategy based on A

∗ search over a combined
distance and uncertainty cost function allows for adaptation
to the environment and improvement in mapping accuracy. We
assess the technique using an illustrative experiment in a real
environment and a set of simulations in a parametric family of
idealized environments.

I. INTRODUCTION

Exploration is a pre-requisite behaviour for many essen-
tial functions of a mobile robot. During localization and
mapping, geometric information is gathered as the robot
enters new areas. During visual search, the locations of
potential objects are identified from images of new territory.
During Sensor Network localization, the robot passes into
the sensing or communication range of additional sensors.
The common thread is that the system begins with no
(or little) information about its environment, and additional
information can only be collected when the agent moves into
new territory.

For active information gathering tasks such as map build-
ing, decision making is an essential component which deter-
mines the quality of information collected. The robot’s path
determines the order and frequency of observation for each
feature, which greatly impacts the accuracy of the final map
produced, as well as the efficiency of the process. While both
speed and accuracy are desired during mapping, these two
goals are often in conflict. On one hand,accuratemapping
is dependent on the robot’s position estimate being corrected
through repeated measurements of the same landmarks. On
the other hand,efficientmapping demands minimizing dis-
tance traveled; thus, making a return to an already explored
landmark undesirable.
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At each exploration step, the environment can be parti-
tioned into known and unknown regions. This suggests a
natural decomposition of the planning problem into two sub-
tasks. First, paths must be planned through the robot’s current
map, which, while errorful and incomplete, provides at least
a rough estimate of the nature of the world. Second, in
order to explore new territory, paths must be planned into or
through the remainder of the environment which is initially
unknown. The current map provides a relatively large amount
of information for decision making, so there is some hope for
selecting favorable paths in this setting. In contrast, planning
through unknown regions is much more challenging, and
appears to require heuristic strategies, unless strong prior
information, or specific task properties are exploited. Fig-
ure 1 illustrates the information available to a robot when
planning its motions in a hospital environment instrumented
with a camera Sensor Network. At every instant, cameras
which have previously observed the robot are candidates for
re-visitation, and paths to these cameras can be planned quite
accurately. Also, regions of so-far unvisited space give the
opportunity for exploration, although the result of moving
into these regions is somewhat less predictable.

This paper adapts and extends exploration techniques
developed for mapping with a mobile robot to the con-
text of camera Sensor Network self-localization - that is,
a network of cameras whose precise positions must be
determined by a mobile robot. Illustrative applications are
building-security systems and traffic-monitoring networks.
Such cameras provide a rich source of visual information
for the regions in which they are emplaced and facilitate
applications such as automated surveillance [1] and detection
of abandoned luggage in airports [2]. These applications
commonly assume a map of camera locations, as well as,
knowledge of the camera imaging properties; or, in other
words, that calibration information is knowna priori. This
is rarely true in practice, but mapping and calibration can
be completed by a mobile robot operating in the same
environment as the camera network, as shown in [3].

This paper presents an exploratory trajectory planning
solution for a robot exploring and localizing the cameras
within a camera Sensor Network, such as the scenario
depicted in Figure 1. Specifically, we propose the use of
a planner based onA∗ search to optimize local sections
of the robot’s path with respect to both distance traveled
and map uncertainty. This method is derived from, but
also extends previous work such as [4] since it provides a
parameter which naturally adapts the levels of exploration
and re-localization. In addition, we evaluate the effects of
our planner when alternated with excursions into unexplored
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Fig. 1. A robot’s progress through an environment during exploration. Paths can be planned through the known map and to the border of unknown
territory (dotted lines). Camera observations (large dots) provide the sensor readings which allow for accurate mapping, particularly when the robot plans
to revisted a camera numerous times.

territory, so that our method can be considered a complete
exploration algorithm.

The next section will review necessary background ma-
terial regarding SLAM as well as previous methods for
planning to reduce map uncertainty. Section III describes the
Localization and Mapping solution for a mobile robot in a
camera Sensor Network considered in this paper. An adap-
tive heuristic search based planner for exploration paths is
introduced in Section IV. Experimental results in Section V
demonstrate the efficacy of the network localization solution
in a large indoor environment and illustrate the performance
of the exploration planning methods in simulation.

II. BACKGROUND

The network localization problem is similar to Simultane-
ous Localization and Mapping (SLAM) since both scenarios
involve estimating the pose of the robot and the positions
of environment features (landmarks or sensor nodes) from
acquired sensor data. Hence, numerous similar estimation
approaches are appropriate. In this paper, the extended
Kalman filter (EKF) as described in [5] for SLAM is adapted

for camera network localization. The EKF computes the
mean µ and covarianceP for each map quantity. Many
other solutions are possible, but the EKF is used here for
computational simplicity and ease of analysis.

Numerous authors have studied the problem of planning
paths through the already known map in order to gather
additional information and to increase mapping accuracy, e.g.
[4], [6], [7], [8]. Many approaches have attempted to reduce
the entropy in the map estimates [9], [10], [11], which is the
measure of the uncertainty in a distribution and is defined
as:

H(p(ξ)) ≡ −

∫
p(ξ) log(p(ξ))dξ (1)

For the Gaussian distributions used by an EKF repre-
sentation of the environment, entropy can be expressed in
closed form. Sim and Roy [4] discuss two different measures
from information theory for which either the trace or the
determinant of the covariance matrix provides the final
measure for entropy.



Early work proposed a single-step, greedy choice of the
action which maximally minimizes the entropy because
optimal planning of multi-step paths requires computational
cost exponential in the path length. Recently, Sim and Roy
[4] have proposed pruning loops during breadth first search in
order to ensure manageable complexity even when planning
longer paths under conditions of idealized sensing and a
rough initial estimate of landmark locations. In addition,[6]
has considered a simulation-based approach which has the
potential to generate multi-step paths at the cost of significant
computation.

In contrast, our approach considers the more general prob-
lem of an unknown environment where the robot dynamically
decides if more time should be spent improving positional
accuracy, or a shorter route to the unknown parts of the world
should be selected. This is achieved by employingA∗ search
for efficient planning.

As mentioned earlier, accuracy and efficiency are conflict-
ing goals during exploration. In order to produce paths that
compromise between the goals, distance and uncertainty have
to be combined into a single cost function. Unfortunately, the
two are incommensurable; that is, they lack common units
for comparison, so care must be taken in combining their
values. Makarenkoet al. [10] have previously proposed a
weighted linear combination of distance and uncertainty for
pathp:

C(p) = ωd length(p) + ωu trace(P (p)) (2)

In this cost function,P is the covariance matrix resulting
from the EKF and its trace is an approximation of the
uncertainty in the map. The choice of weighting factorsωd

andωu represents the compromise between distance traveled
and mapping uncertainty oraccuracyversusefficiency. We
would like to produce a flexible method based on varying the
one intrinsic parameter, so we normalize the contribution of
each quantity by a rough estimate of its maximum possible
value. Once each quantity has been normalized, a single
free parameterα in the range[0, 1] is able to specify the
contribution of each factor. Based on this formulation, the
weights used in our cost function are:

ωd =
α

maxdist
, ωu =

1 − α

maxuncert

By setting α to the two extremes, zero and one, it is
possible to consider only one of the factors at a time: distance
only, by settingα = 1, and uncertainty only, by setting
α = 0. Section IV will discuss the effect of varyingα on
the quality of the resulting paths.

Several authors have considered the collaboration between
a Sensor Network and a mobile robot in different sensing
scenarios and in some cases with much more capable robotic
agents [12], [13]. In addition, our analysis of a single mobile
agent within a static network can be viewed as a special case
of multi-robot collaboration, which has also been studied by
many authors [14], [15], [16].

Fig. 2. The experimental setup used throughout this paper. The robot
carries a calibration target which can be easily detected inimages taken by
the cameras in the network (such as the one mounted on a door here).

III. LOCALIZATION AND MAPPING IN A
CAMERA SENSORNETWORK

An autonomous solution for calibration and mapping of a
camera sensor network by a mobile robot has been previously
presented in [3], [17]. The crucial details of this method will
be reviewed in this section to provide sufficient background
to enable subsequent discussion of the exploration planning
algorithms.

Given a network of cameras placed inside a building, and a
mobile robot, the goal is to autonomously explore the build-
ing; locate each camera, by receiving an alert every time the
robot enters the field of view (FOV) of the camera; calibrate
the internal parameters of the camera; and finally, recover
the 3D pose of the camera with respect to the robot. The
first step is recognizing the robot when it enters the FOV of
a camera. This is accomplished with a specially constructed
target mounted on the robot which can be robustly detected
in visual imagery; see Figure 2. Our target is comprised of
ARTag [18] fiducial markers which have been employed for
automated camera calibration and pose estimation previously
by [19]. The calibration procudure estimates the pose of the
camera with respect to the robot, also known as extrinsic
parameters. This information allows the pose of the camera
to be added to the map. Finally, an EKF tracks the location
of the robot as it moves between cameras and corrects the
robot’s location as well as the map of camera locations each
time a measurement is collected.

As mentioned above, the decision making aspect of
exploration is crucial to any map building approach, but
particularly to mapping a camera Sensor Network. In this
scenario, the robot travels over potentially large distances
between camera observations, so odometry error accumulates
drastically unless it is corrected actively. That is, camera
positions serve as landmarks for planning which must be
visited and revisited in order to keep the accumulated uncer-
tainty low. Position measurements obtained when a camera
observes the robot repeatedly allow the estimator to reduce



the positional uncertainty of the robot and of the map. To
illustrate this point, and to give a basis for comparison,
several hand-crafted methods for planning during exploration
were considered in this work which explicitly considered the
compromise between accurate and efficient mapping:

• Depth-first exploration: the robot always moves into
unexplored territory, never relocalizing. This strategy
provides coverage of the environment with minimal dis-
tance traveled, but the uncertainty of the robot position
grows quickly. It is worth noting that as the environment
is unknown, DFS is the most efficient method possible.

• Return-to-Origin: the robot alternates between explor-
ing a new camera position and returning to the first
camera it mapped, which has the lowest uncertainty.
This strategy allows for accurate relocalization, but it
means that the robot must travel increasingly larger
distances as it maps cameras further away, thus, in-
troducing measurements from increasingly inaccurate
positions.

• Return-to-Nearest: in a compromise between the two
previous methods, the robot alternates between explor-
ing a new camera position and relocalizing at the nearest
previously explored camera. The ability to relocalize
accurately depends on the uncertainty of the nearest
camera only, which might not be mapped as accurately
as cameras which are farther from the robot, however,
regressing by only one camera at a time means the extra
distance traveled remains small.

IV. ADAPTIVE HEURISTIC PLANNING FOR MAP
BUILDING

Exploration of a Sensor Network can be thought of in
terms of the graph formed by nodes corresponding to sensor
positions connected by edges corresponding to traversable
pathways between sensors. This construction will be useful
to explain our proposed solution. In graph-based terms, the
exploration process consists of two steps: 1) selecting the
next node to visit, and 2) planning the best path through
the known graph to reach the selected node. The three-
hand crafted approaches described earlier undertake these
two steps without consideration of the current state of the
map and estimator. A planning algorithm which examines
the current uncertainty of each camera’s estimated position
is able to adaptively select paths which allow better relocal-
ization. An optimal solution could be produced by searching
the space of all possible paths and choosing the one with
the lowest cost as defined by Eq. 2. Unfortunately, we can
show that the number of paths through such a graph-like
environment has a worst-case bound ofdk, whered is the
maximum node degree in the graph andk is the path length
[19]. Thus, exhaustively examining all paths is intractable.

Inspired by the pruned search method of Sim and Roy [4]
we consider approximating the minimum cost path in a
computationally efficient fashion. To avoid exhaustive search,
our planner employs a variant ofA∗ search. As all informed
search techniques,A∗ search requires two pieces of infor-
mation about each node in the graph:f(n), the cost of the

best path found so far from the start to noden; andh(n), the
heuristic function, which is an estimate of the cost from node
n to the goal based on some, hopefully cheap, approximation.
The search procedure expands nodes in order of increasing
expected costC which is a combination of the two terms:

C(n) = f(n) + h(n) (3)

We use Eq. 2 for ourf function as we seek to optimize
paths based onbothdistance and uncertainty. Theh function
must be “admissible”. That is, it must be an underestimate for
the remaining cost that will be required to reach the goal.
Computing a reasonably tight lower bound for the uncer-
tainty reduction along a path appears to be an exponential
problem in itself. So, noting thatA∗ with a less informative
heuristic function is still more efficient than breadth-first
search, we simply leave out the contribution of uncertainty.
Instead ourh function is the straight-line distance between
nodes, as is common in traditional planning. This allows
our algorithm to reduce the number of searched nodes, with
little overhead computation. Note that uncertainty still guides
our search to some extent, as it is a component of the cost
function f .

It is important to note thatA∗ in our case is only
approximating optimal paths with respect to the chosen
cost function because the situation we consider violates the
standard assumptions in two aspects. First, paths which con-
tain loops can often reduce uncertainty, while traditionalAI
planning techniques assume loops lead to increased cost and
so are not considered. Second, our cost function uses a scalar
representation of the EKF covariance matrix. Uncertainty
in subsequent planning steps cannot be predicted based on
such a simple value. In other words, thetrace(P ) measure
used by our planner is not a sufficient statistic, which
is required for optimal planning. This lack of optimality
is unavoidable since exploration planning is exponentially
complex, but is noted in order to provide a more complete
understanding and to provide directions for future work. It
is also important to consider the potential for generalization
of the method. Since our analysis does not explicitly depend
on any properties of the camera sensors used, it could easily
be applied to other graph-based exploration problems, such
as, Generalized Voronoi Graphs (GVG) [20] and occupancy
grids [21].

Figure 3 shows paths generated for four values of theα

parameter which weighs the contributions of distance and
uncertainty. This example illustrates thatA∗ search is able
to adapt to the environment and compromise between the
conflicting goals. The next section provides results from
further experiments which will evaluate the impact of such
adaptation on the exploration process.

V. EXPERIMENTAL RESULTS

A. Hallway Mapping

A set of hardware experiments was performed to verify the
underlying calibration and mapping framework. A network
of seven cameras was deployed in an indoor environment
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Fig. 3. Paths generated byA∗ search using a a distance and uncertainty cost function for four values ofα. Dark lines indicate the path followed by the
robot in each case. At (a) only the distance is considered. The relative contribution of uncertainty increases sequentially for (b)-(d).

with a diameter over50 m and a mobile robot equipped
with the fiducial target described in Section III traversed
the environment. This robot passed in front of the cam-
eras and followed a path whose length was over360 m.
Figure 4(a) shows that the estimate of the robot’s position
based on odometry accumulates error quickly. Figure 4(b)
demonstrates that the calibration and mapping system is
able to correct this error and produce an accurate map of
the environment. For these preliminary experiments, a naive
exploration policy was employed. These experiments served
to validate the utility of the approach and demonstrate that
apparently accurate mapping could be achieved in practice
even with very simple path planning. Moreover, these ex-
periments provided verification of the EKF implementation
as well as experimentally derived noise statistics for the
odometry and the camera estimates. More informed trajec-
tory planning methods will be considered in the remainder
of the experimental results.

B. Simulation Environment

We used numerical simulation to evaluate the performance
of the approach over a wide range of parametric variations
in the environment. This environment was meant to emulate
the properties of camera networks such as the one used in the
hallway experiments as closely as possible. To accomplish
this, nodes were chosen from a uniform distribution over free
space with approximately the same density as the hallway
setup. The camera heights and distances from the robot
location were taken as the averages of the hallway tests, and
the same EKF implementation was used for state estimation
as was used to produce Figure 4(b). Various graph sizes were

produced by altering the number of nodes so that trends
in the exploration results could be examined. Two idealized
classes of graphs were used which exemplified near-extremes
in terms of connectivity (though the reader is reminded that
our solution is independent of particular graph structure).
The first class considered wasfully connected graphs(i.e.
cliques) where every pair of nodes is connected by an edge,
which represents a scenario where the robot is able to freely
traverse the environment without obstacles; see Figure 5(a).
The second class examined wastriangulated graphs where
edges are chosen by triangulation of the nodes to produce
a planar graph, which again represents obstacle free space,
but in this case assumes the robot should move through a
sequence of nodes along its path; see Figure 5(b). We also
examined graphs generated by stochastically sampling a real
environment to produce a roadmap. In this case, we used the
floorplan of an actual hospital and triangulated stochastically
selected sample locations which were mutually visible. We
refer to these ashospital graphs; see Figure 5(c). In the
remainder of this section, results have been computed over
a mixture of the graph types.

C. Single Path Results for the Adaptive Heuristic

The goal of our adaptive heuristic planner is to choose
a short-term path through the known graph that allows the
robot to arrive at a new node with minimal distance and
uncertainty. The simulation environment described earlier
was used in order to analyze the performance of our algo-
rithm. For each randomly generated network, theReturn-to-
Neareststrategy was executed for a portion of the network
in order to initialize camera estimates in the EKF. A series of



−1500 −1000 −500 0 500 1000 1500 2000 2500 3000 3500

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

X (cm)

Y
 (

cm
)

Raw Odometry Path

(a)

−1500 −1000 −500 0 500 1000 1500 2000 2500 3000 3500

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

X (cm)

Y
 (

cm
)

EKF Filtered Path

Estimated Camera Position

Filtered EKF Path Estimate

(b)

Fig. 4. (a) Odometry Readings for Hallway Path. (b) EKF Estimate of the
Hallway Path. Estimated camera positions with uncertaintyellipses are in
red where color is available.

planners were then executed to find paths between constant
start and goal nodes so that paths returned could be com-
pared. The planners evaluated used theA∗ search with four
different values forα: (0.1, 0.5, 0.9, 1.0). Note thatα = 1.0
produces shortest distance planning.

Figure 6(a) illustrates the distance traveled for the four
choices ofα, over twenty instances for each network size.
As expected, largerα values produce shorter path lengths
since distance is weighted more heavily in the cost function.
The relatively graceful increase in distance traveled asα

decreases indicates the ease with which the planners are
able to find slightly longer paths that perform better with
respect to final uncertainty. That is, there is no catastrophic
degradation in distance performance as the weighting is
changed.

Figure 6(b) shows the final robot uncertainty upon arrival
at the chosen goal node for three of the fourα values used.
Results forα = 0.5 are excluded because the results for
this method lie extremely close toα = 0.1 and α = 0.9,
which makes visualization difficult. Settingα < 1 manages
to reduce the uncertainty drastically over theα = 1 case,
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Fig. 5. Example graphs from each of the three types considered. Dotted
lines indicate edges between nodes. Camera positions are shown as blue
crosses where color is available.



where only distance is considered. In fact, the improvement
in uncertainty betweenα = 1 and α = 0.9 is much
larger than that betweenα = 0.9 and α = 0.1. These
results are of particular importance since they indicate that
by considering uncertainty in the planning process, quality
increased dramatically as can be seen in Figure 6(b).

D. Global Exploration Results

The previous section indicates that the adaptive heuristicis
able to produce relocalization paths with intuitively favorable
and adaptive properties. This method is extended to global
exploration which requires iterating two steps: following
a previously untraversed arc from a frontier node of the
known graph and selecting a relocalization path through
nodes which have previously been mapped to arrive at the
next frontier node. The first step, which poses a problem
similar to that solved by the Frontier-Based Exploration
strategy [22] in occupancy-grid SLAM, is challenging since
no measurements have yet been made about the destination
camera location. We are not able to compute expected
distance or uncertainty for this exploratory section of the
path. Under this condition, several hand-crafted strategies
have been attempted for choosing the next exploration action
to take. These include a breadth-first search method where
nodes closest to the origin are explored first and a spiral
search method. In future work, we plan more detailed
analysis of the effects of each of these strategies as well
as more sophisticated methods such as the use of theA∗

search algorithm to evaluate each frontier node. For the
purposes of evaluating the relocalization strategies in this
section, the same breadth-first exploration ordering was used
for each method. The second step in exploration involves
selecting the path through the known graph ending at the
next destination node for exploration, which allows for
accurate robot relocalization with minimal distance traveled.
Each of the hand-crafted trajectories solves this problem by
making a generic choice of node to use for relocalization
at each stage. The adaptive relocalization strategy can be
used instead in order to provide the additional flexibility and
relocalization ability that was demonstrated in the previous
section. Repeated simulated explorations were conducted
to compare the hand-crafted trajectory methods mentioned
earlier to the adaptive strategy.

Figure 7(a) illustrates the total distances traveled. These
results are not surprising; theDepth-first strategy covers the
environment with the least robot motion,Return-to-Nearest
requires slightly more motion, the adaptive heuristic slightly
more again, andReturn-to-Origin requires the largest dis-
tance traveled. Figure 7(b) presents the final map uncertainty
results. The adaptive global strategy is able to produce maps
with lower uncertainty than any of the static methods due
to the fact that it uses all of the information available in
order to choose paths which exploit properties of the current
estimate.

VI. CONCLUSIONS

Robot path planning has been considered for reduction of
map uncertainty in the context of a mobile robot calibrating
and mapping a camera Sensor Network. An adaptive heuris-
tic which produces relocalization trajectories based on the
current state of the estimator has been shown to improve
performance over a variety of intuitive hand-crafted ap-
proaches. This adaptive heuristic planning is able to provide
a compromise between efficiency and accuracy in planning
relocalization paths. This translates to favorable performance
in global mapping when compared to less adaptive strategies;
however, there is still room for improvement to the technique
by searching more efficiently and explicitly considering
overall map uncertainty.

Perhaps the most promising area of future work is the
use of adaptive heuristic trajectory planning in different
localization and mapping domains. The state of the art in
planning for reduction of map uncertainty consists of many
greedy planners based on entropy reduction techniques. By
nature, greedy planning is far from optimal, given that it
does not attempt to exploit all of the information available.
The A∗ search method presented here provides for greater
adaptation, while managing to limit computation through the
use of a heuristic function to guide the search for solutions.
Guiding a stochastic or sampling-based approach such as [6]
in a similar fashion would allow combination of the benefits
of both methods.

The authors believe similar methods can be applied in
other mapping domains such as the landmark based EKF,
occupancy grid representations such as FastSLAM, and in
fact any representation where uncertainty is explicitly mod-
eled in the estimator. The use of such adaptive heuristics
will allow robotic mapping to occur with lower error and
contribute to the autonomy of robotic agents in general.
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Fig. 6. Results of adaptive relocalization: (a) The distance required to reach a goal node in a partially explored graph is shortest withα = 1 representing
shortest path planning and increases asα is decreased. (b) The uncertainty with with the robot reaches the goal node in a partially explored graph is largest
with α = 1 representing shortest path planning and decreases asα is decreased.
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Fig. 7. Results for various exploration strategies: (a) Thetotal distance required to explore the environment for eachof the strategies considered. (b) The
final map uncertainty for each of the strategies considered.
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