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Abstract— This paper studies the sequential object recogni-
tion problem faced by a mobile robot searching for specific
objects within a cluttered environment. In contrast to current
state-of-the-art object recognition solutions which are evaluated
on databases of static images, the system described in this paper
employs an active strategy based on identifying potential objects
using an attention mechanism and planning to obtain images of
these objects from numerous viewpoints. We demonstrate the
use of a bag-of-features technique for ranking potential objects,
and show that this measure outperforms geometric matching for
invariance across viewpoints. Our system implements informed
visual search by prioritising map locations and re-examining
promising locations first. Experimental results demonstrate that
our system is a highly competent object recognition system that
is capable of locating numerous challenging objects amongst
distractors.

I. INTRODUCTION

Finding and recognising common objects in a visual
environment is trivially easy for humans, but remains an
ongoing challenge for mobile robots. Applications which
require human—robot interaction would benefit greatly from
object finding capability, since people communicate largely
using concepts which relate to visible objects. For example,
the command ‘“Robot, bring me my shoes!” is more natural
for a person than guiding a robot based on a geometric map.
This area has recently attracted significant interest within the
robot vision field. At least two robot competitions have been
undertaken: the Semantic Robot Vision Challenge (SRVC)
[1], and RoboCup@Home [2]. Both competitions require
participants to design a platform capable of autonomously
exploring a previously unknown environment and locating
specific objects, based on training data collected by the
robot online or from Internet image searches. The results
of these competitions have demonstrated that, while many
of the component behaviours are available, the design of
a robust recognition system in a quasi-realistic scenario
remains a significant challenge. An earlier version of the
system described in this paper placed first in the SRVC
which was held in July 2007. This paper describes that base
system, as well as several significant technical enhancements
which together produce a highly capable object recognition
platform.

Our system attempts to solve the lost-and-found problem,
which consists of finding a set of objects present in a
scene, like the one shown in figure 1. To achieve this, the
system relies on many recently published robot navigation
techniques to move through the environment safely and
efficiently. As it moves, the robot will use its peripheral
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Fig. 1.
informed visual search technique. The robot has models of a number of
objects, and searches for them in a previously unknown environment during
a limited time.

The handcrafted experimental setup for accurately assessing the

cameras to collect low-resolution visual imagery and employ
an attention scheme that allows it to identify interesting
regions, that correspond to potential objects in the world.
These regions will be focused on with the foveal camera, to
obtain high-resolution information, which may be of suffi-
cient quality to allow the objects contained in the region to be
recognized. Due to sparse training data, and the dependence
of object recognition on viewpoint, however, objects may not
be recognized from the first image in which they are seen
(e.g., if all training images view a shoe from the side, and it is
seen from the front by the robot). Our system uses top-down
information to rank the potential objects it has identified,
and proceeds to actively collect images of these objects from
different viewpoints, so that a useful view will eventually be
obtained.

Our sequential object recognition approach is inspired by
the model of the human visual attention system proposed
by Rensink [3], where so-called proto-objects are detected
sub-consciously in the visual periphery, and attention shifts
between these to allow more detailed consideration. This
approach is well suited to environments cluttered with dis-
tracting objects, because it allows for computation to be
focused on promising regions first, while the remainder of
the visual field can be ignored immediately.

Section II summaries related work in object recognition
and active vision. The remainder of this paper describes
our sequential object recognition system. The overall system
architecture, based on peripheral foveal vision hardware
with active viewpoint control, as well as a potential object
selection strategy for visual attention is presented in section
II. Section IV describes a method for ranking potential
objects using top-down information. The active viewpoint



collection portion of our system is described in section V.
Results based on a fairly general visual search task using a
mobile robot are presented in section VI. Finally, conclusions
and future work will be presented.

II. PREVIOUS WORK

Computer Vision researchers have made impressive
progress on object recognition from still imagery during
recent years [4], [5], [6], [7], but an autonomous robot
performing search in the real world faces numerous addi-
tional challenges. For example, in order to get a clear view,
or to disambiguate an object from distractors with similar
appearance, the robot may often be required to observe the
object from a particular viewpoint. Obtaining these views
has been studied by the Active Vision community. For
example, Laporte et al. [8] and Paletta et al. [9] describe
planning algorithms for obtaining views which would maxi-
mally discriminate objects of various classes and at different
orientations. These systems can be shown to improve classifi-
cation performance and to allow classification with a smaller
number of views when compared to an uninformed image
collection approach; however, both require numerous training
images annotated with orientation information (which in their
setup is available from the image collection apparatus), and
require significant computation which may not be suitable
for real-time systems. In addition, Walther et al. [10] have
studied the use of an attention mechanism as a pre-processing
step for object recognition. They demonstrate that small
attended regions are indeed easier to recognize than large
cluttered scenes but use completely bottom-up information
so that recognized regions may or may not actually be objects
of interest.

Several authors have previously considered performing
object recognition on robot platforms. Kragic and Bjorkman
[11] employ a peripheral-foveal vision system that uses
bottom-up visual saliency and structure from stereo in order
to identify objects; however, this approach does not use top-
down information which would allow it to search for specific
objects. That is, their attention system is not tuned to par-
ticular objects of interest. Gould et al. [12] have built a sys-
tem which does perform targeted object detection; however,
their system emphasises tracking of previously recognised
objects and depends on reasonably reliable recognition in
its peripheral view. Ekvall et al. [13] is the most similar
previous system to our own. Their system utilises top-down
information to guide their visual attention system, by training
a saliency-like visual map to fire at specific objects. They
also utilise a foveal object recognition system based on SIFT
features. Our system extends these previous approaches by
integrating into an autonomous robotic system, both explicit
viewpoint planning, and the use of top-down information to
revisit the most promising potential objects first.

III. SYSTEM CAPABILITIES

Our robot system combines numerous components and
capabilities which allow it to successfully recognise objects
in realistic scenarios. This section will give a high-level

overview of the system as a whole, and will provide brief
descriptions of the capabilities which are not the focus of
the paper (more details on these parts of the system can
be found in [14], [15] and [16]). Capabilities that represent
novel contributions will be described in more detail after this
section.

A. Overview

Our system makes use of a planar laser rangefinder to
map its environment, and to do real-time obstacle avoidance.
During mapping, plans are made and executed to explore
unseen regions in the map. The system has been designed to
recognise objects in a potentially cluttered and challenging
environment, based on training data which may contain only
a single, or a sparse set of views of the objects. As such,
we adopt an approach where a peripheral stereo camera is
used to identify potential objects that are then imaged in
greater detail by the foveal zoom camera. These images are
then passed to the object recognition system, which tries
to determine whether they are likely to contain any of the
sought objects. Plans are regularly executed to actively move
to locations where promising potential objects can be viewed
from novel directions.

B. Peripheral-Foveal Camera System

We employ a peripheral-foveal vision system in order to
obtain both the wide field-of-view needed for visual search
and simultaneously the high resolution required to recognise
objects. The cameras are mounted on a pan-tilt unit that
allows them to quickly change gaze direction. The attention
system identifies potential objects in the peripheral stereo
camera, and changes the pan, tilt and zoom to focus on each
of these objects and collect detailed images of them.

C. Visual Attention

The potential objects are selected in the peripheral cameras
based on depth from stereo, and spectral residual saliency
[17]. Spectral residual saliency gives an output that is similar
to state of the art multi-scale saliency measures, such as
[18], as implemented in [19], but is an order of magnitude
more efficient (0.1 instead of 3sec run-time on our system).
We compute saliency on intensity, red-green, and yellow-
blue channels. The saliency maps obtained from the three
channels are then summed, and regions are detected in their
sum using the Maximally Stable Extremal Region (MSER)
detector [20]. In contrast to most segmentation algorithms,
MSER outputs nested regions, and these come in a wide
range of sizes. The different region sizes map nicely to
different zoom settings on our 6x zoom foveal camera. The
detected MSERs are additionally pruned by requiring that
they have a depth different from that of the ground plane.
We have previously shown [15] that this attention system is
superior to using a wide field-of-view only, and to random
foveations, even when these are on average three times as
many.



D. Gaze planning

In order to centre a potential object in the still image
camera, we employ the saccadic gaze control algorithm
described in [16]. This algorithm learns to centre a stereo
correspondence in the stereo camera. To instead centre an
object in the still image camera, we have asked it to centre
the stereo correspondence on the epipoles (the projections
of camera’s optical centre) of the still image camera in
the stereo camera. In order to select an appropriate zoom
level, we have calibrated the scale change between the stereo
camera and the still image camera for a fixed number of
zoom settings. This allows us to simulate the effect of the
zoom, by applying the scale change to a detected MSER.
The largest zoom for which the MSER still fits inside the
image of the still image camera is chosen.

E. Geometric Mapping

As the robot moves from one location to another, it builds
a geometric map of the environment that encodes navigability
and facilitates trajectory planning. In addition, the positions
of potential objects are recorded within the map, so that these
locations can be re-examined from different viewpoints (as
will be discussed later). Our geometric mapping approach is
an implementation of the FastSLAM [21] algorithm. That
is, the robot’s position, as well as the locations of map
quantities are inferred efficiently from noisy laser range
data and odometry measurements by factoring the joint
density into robot’s path and the feature positions. Using this
factorisation, map quantities are conditionally independent
given the robot’s path, which can be estimated by sampling.

F. Navigation

High-level system behaviours, which will be described
later, provide goal locations from which the robot can
collect information (e.g., laser scans of previously uncharted
territory, or an image of a potential object). Two tiers of
lower level navigation enable the robot to move through the
environment and arrive at these locations. The first tier is
A*-search through the occupancy grid map. In order to keep
the robot at a safe distance from obstacles, occupied cells are
dilated and blurred to produce a soft weight function before
planning paths. The second tier uses an implementation of
the Vector Field Histogram algorithm described by Boren-
stein et al. [22] to directly control the robot’s velocity and
avoid dynamic and previously unrecorded obstacles.

IV. OBIJECT RECOGNITION

In order to rank the potential objects detected from bottom-
up visual attention, our system makes use of the top-down
information gathered from training images. It is common
to construct top-down saliency measures to accomplish this
task, see e.g., [23], [24], [25]; however, in its most common
form, top-down saliency is a way to weigh the different
channels used to compute saliency. That is, it can be used to
say that red is more important than blue, or that horizontal
texture is more important than vertical. While being useful
for explaining how people find, e.g., a green shape among a

set of red shapes, this is of limited use for object recognition
in general. Instead, when looking for a specific object, we
note that we have a much more powerful source of top-
down information than this, namely the object model itself.
In this section we will describe our approach to using the
local appearance part of an object model as a top-down
information source to rank the potential objects.

A. Bag-of-features and Geometric matching

Most of the successful object recognition systems in use
today employ local invariant features, such as SIFT [5] and
MSER [7]. Depending on the object in question, there are
two main categories of object recognition systems that use
local features. One category is known as bag-of-features, see
e.g., [26], [27]. Here local features are matched between an
image and memory. To determine how good a match is,
the count of feature matches relative to the total number
of features is used. That is, all geometric structure between
the features is disregarded, except the fact that they exist in
the same image; hence the name bag-of-features. This class
of methods is successful at recognising objects from large
viewpoint changes, and under moderate shape deformations.
Consequently, it is popular in object class recognition prob-
lems.

In our implementation of the bag-of-features approach,
SIFT features [5] from a training image are first matched
to the test image in a nearest neighbour approach. We then
prune these matches by thresholding the ratio of the closest
distance to a feature in the training set, and the closest
distance to a feature in a background dataset, as suggested by
Lowe [5]. Features with a ratio above 0.8 are then discarded.
The bag-of-features score is now computed as the number
of remaining features normalised by the number of features
in the training image.

The methods that do make use of geometric structure,
e.g., in the form of a 2D similarity transform [28], [29]
require more training data to work well, in order to capture
appearance changes due to view changes or deformations.
They are, on the other hand, more reliable once a match has
been found, for the simple reason that they make use of more
information.

For the geometric score, we take the accepted matches
from the bag-of-features matching and find a similarity
transformation that best aligns the two images based on these
matches. The score is a measure of how much each training
feature agrees with the transformation. More specifically,
each SIFT feature has a location in the image, a scale,
and a rotation. How much a training feature agrees with a
transformation is a Gaussian weighted function of how far
away the test feature is in location, scale and rotation once
the similarity transformation has been applied.

B. View invariance and ranking experiments

Under object rotation, the features on an object will move
about in the image according to their 3D location relative to
the centre of rotation, and not according to a 2D similarity
transform. It would thus be reasonable to assume that as



the object is rotated, bag-of-features would exhibit a more
gradual drop of the match score than methods that use
geometric structure. To test this, we collected 64 views of
an object at constant distance, rotated between 0° and 360°,
see figure 2. We then computed match scores for five test
images, one containing the object, and four containing other
objects, see figure 3. This was done for all the 64 training
views, to produce the curves shown in figure 4. As can be
seen, the drop in the score as one moves away from the peak
is quite similar for the two measures. Note however that the
bag-of-features score does have one significant advantage: it
produces a higher signal to noise ratio in regions between
the peaks.

Fig. 3. Test images. The first image is an inlier (the Mindstorms model),
the rest are outliers (a stapler, a toy cat, an Aibo, a telephone).
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Fig. 4. Bag-of-features and geometrically constrained matching scores, as
function of viewing angle (64 different angles). Left: Bag-of-features score,
Right: Geometric score. Red * curves are match scores for the test image
containing the correct object, blue - curves are scores for other test images,
see figure 3.

The above result is in agreement with recent results by
Perona and Moreels [30] for feature matching on 3D objects.
They found that for non-planar objects, it is the features
themselves that produce the rapid drop of the score, since
even for affine-invariant features, the range of rotations for
which a feature can be recognised is typically only +15°
[30].

In the following section, we will describe a method for
selecting potential objects based on their rank-order. To
evaluate the ability of various methods to select objects
correctly with this strategy, we have designed a second test.
Instead of using all 64 training views, we now pick just four
views consecutive in angle. For testing, we use 10 object
categories, with 10 views of each. For each test view, the
match scores are computed and sorted in descending order.
The result of this is shown in figure 5. As can be seen in this

plot, the bag-of-features score is slightly better at moving the
inliers to the front of the list.

Bag-of-features ranking

Geometric ranking

summary score = 7 summary score =5

Fig. 5. Ranking performance for bag-of-features and geometric scores.
Left: Bag-of-features rankings, Right: Geometric score rankings. Both use
4 equidistantly spaced training views. Circles below the plot correspond to
inliers, and dots correspond to outliers.

As a criterion for evaluating the score we will use the
number of inliers that are at the top of the list because those
are the ones that would be chosen for closer study by a
robot. For the example in figure 5, this score would be 7 for
the bag-of-features ranking, and 5 for the geometric ranking.
If we average this score over all consecutive groups of 4
training views, we get 4.02 and 2.73 for the two scores
respectively. There is naturally some variation in scores,
since some views contain more features than others, and are
thus better at characterising an object. Such views are known
as characteristic views [31]. The highest scores for the two
methods are 8 and 6 respectively.

C. Using both bag-of-features and geometric approaches

Motivated by the results in the previous section, we will
make use of a bag-of-features score computed on SIFT
features [5] for deciding which of the observed potential
objects are currently the most promising. Since a high score
from the geometric matching method is in general more
reliable, we will use it as a criterion for when an object
ceases to be seen as a potential object, and becomes a trusted
recognition.

V. INFORMED VISUAL SEARCH

Based on the system architecture and analysis described
in the previous sections, we now present a sequential object
recognition strategy which identifies a number of potential
objects in an environment and explicitly collects images from
numerous viewpoints for those objects which appear promis-
ing based on the bag-of-features ranking. Our approach
is a combination of three behaviours: (1) an exploration
behaviour that moves the robot toward unexplored regions
of the environment in order to sweep out new areas with
its range sensor; (2) a coverage behaviour that explores
the environment with the peripheral camera, applies visual
attention, and identifies potential objects; and (3) a viewpoint
selection behaviour, which acquires additional images of
promising objects from novel perspectives. Each of these
three behaviours will be described in detail in the following
sections.



Fig. 6. An illustration of the coverage map which is used to record regions
of the environment which have already been observed with the peripheral
cameras. The interior of the black region represents the reachable map area,
and gray shading indicates a camera field of view.

A. Exploration Behaviour

Initially, the robot’s goal is to produce a geometric map
of the nearby traversable regions. This is accomplished
using a Frontier-based exploration approach, as described by
Yamauchi et al. [32].

B. Potential Object Detection

Once a geometric map is available, the robot attempts to
locate potential objects, and associate these with regions of
the map. Potential objects are discovered by applying the
visual attention algorithm previously described in section III-
C; however, in order to be detected, an object must be located
in the field of view of the camera, and at a suitable scale.
So, it is important to make sure the environment has been
covered by the camera. Figure 6 provides a representation
of camera coverage that was achieved during a typical run
of the system. Once the environment has been fully covered,
numerous potential objects will likely have been identified,
and the system can proceed to perform recognition to identify
the true semantic labels for each of these (if any).

C. Multiple Viewpoint Collection Behaviour

Many sources of training imagery, such as the internet
image searches used in the SRVC [1], contain only sparse
representative views of an object. Most such object views can
only be recognised from a narrow slice of viewing directions.
In order to successfully recognise objects in the face of this
challenge, our system attempts to obtain images from a wide
variety of viewpoints for the most promising N potential
objects from each class, according to the bag-of-features
score, where N is a system parameter. This behaviour is
achieved by storing the geometric locations, visual appear-
ance and previous viewing angles of each potential object and
commanding the robot to locations from which it can obtain
novel views of as many of those objects as possible. This
section will describe the implementation of this behaviour
in detail.

In order to keep the geometric locations of potential
objects consistent even in the case of small drift in mapping,

object locations are recorded relative to the robot’s pose at
a given instant. This pose is kept up-to-date by smoothing
the trajectory periodically, which keeps the pairwise error
between any two poses small. This ensures that the infor-
mation is as accurate as possible. Note that object position
information is stored as an annotation to the map, rather than
as a position measurement for the SLAM algorithm. This is
because the accuracy of potential object locations is orders of
magnitude worse than the accuracy of the laser rangefinder,
and so it would provide no gain in mapping accuracy. The
system stores views from which it has seen a potential object
in an angular histogram. Currently, we discretise horizontal
viewing angle into 36 histogram bins, so that each bin spans
10°. Each time a new view is obtained, the corresponding
bin is incremented.

New potential objects are identified each time the visual
attention algorithm is evaluated on a peripheral image. This
means that, especially in a cluttered environment, the list
of potential objects may grow very large, and a method is
needed for selecting only those which are truly likely to be
objects of interest. The bag-of-features ranking algorithm
is an effective means of performing this selection, due to
its ability to identify images of an object category over
distracting objects and background, as was demonstrated in
the previous section of this paper. Our goal is to ensure that
the list of objects considered by the robot at any instant
remains bounded, so we choose the N images with the
highest bag-of-features score for each object category. A
more adaptive strategy which selects the potential objects
based on the numerical values of the scores is an area of
potential future improvement.

We attempt to select a goal location for the robot which
will provide a novel view for as many of the promising
potential objects as possible. Each object votes for cells in
the occupancy grid map based on the following conditions:
(1) the robot will be physically able to collect an image of
the object from that location; (2) that the cell is reachable by
the robot, this implies that obstacles always have a value of
0; and (3) the view has not been previously collected. The
third criterion is computed from the angular histograms by
applying a soft Gaussian blur weight function over a range of
cells around previously collected views. An example of the
combined scoring function produced by two objects which
have each been seen from a single view is shown in figure
7. In this case, the scores are highest in locations where both
objects can be re-observed from roughly the opposite side,
as the scores are combined in these regions.

Once the grid of novel view values has been constructed,
it can be used in a number of ways. For example, one could
normalise the values and draw random locations weighted
by the values, or simply choose the cell with maximum
score. One of the goals of our system is to recognise objects
quickly, and therefore we make use of a value/cost-type
function, where the value is the novel view value for a cell.
The cost should ideally be the time required to reach the
cell plus the estimated time the robot will spend at the new
location. In practice we use a cost proportional to the length



Fig. 7. An example novel view scoring function for two objects with one
view each. The robot’s location is shown with a ) and the borders of the
map are represented with a white line. Inside the map, black represents zero
scores, which result from uninteresting or geometrically impossible views,
or the presence of obstacles in the map. Lighter colours represent more
favourable locations.

of the path from the robot’s current location to the cell, plus
an offset. The planner then greedily selects the cell with the
greatest score.

D. Decision Making Strategy

During the visual search task, the robot must periodically
decide which objects to look back at, and from what location.
At some point it should also decide that it has collected
sufficient information. Sequential decision making is a well
studied problem and principled methods exist for deciding
when to stop collecting information about the label of an
object, see for example [33], [34], [35]. In our target scenario,
it is difficult to construct such strong probabilistic models
accurately, so we rely on several task-dependent heuristic de-
cision making policies. For example, the coverage behaviour
is iterated until a sufficient ratio of the reachable space has
been observed. Similarly, when solving the lost-and-found
problem, we continue to look back at the top N promising
objects for each class until one of the images scores above a
threshold on the geometric matching test. This is considered
a strong match, and the system moves on to search for objects
of other categories. For data collection tasks, the stopping
criteria can be based on sufficiently dense coverage of the
viewing direction histogram.

VI. EXPERIMENTS

The system has been evaluated experimentally in several
different scenarios in order to demonstrate its capacity as
a general object recognition system, and to analyse the be-
haviour of the informed visual search procedure described in
this paper. The SRVC contest provided a carefully refereed,
public, and challenging scenario, and will be described in
section VI-A. A slightly more engineered setup was con-
structed in our laboratory to enable collection of additional
ground truth information, and to carefully examine the effects
of the informed visual search behaviours. These experiments
will be described in section VI-B. We have also recently [15]

published an evaluation of the attention system described in
section III-C.

A. SRVC Performance

The Semantic Robot Vision Challenge was held at the
Association for the Advancement of Artificial Intelligence
(AAAI) in July 2007. At the start of the competition, robots
were given a text file containing a list of object category
names. The robots were allowed to connect to the Internet in
order to gather training data from image searches. Using the
images gathered, the robots were required to autonomously
search for the objects inside a contest environment which
contained the objects from the list, as well as numerous
distracting objects, in addition to tables and chairs. Finally,
the robots reported their results as a set of bounding-box-
annotated images and the results were compared to a human’s
interpretation of the location of the objects within the images.

As with any task requiring object recognition in cluttered
natural scenes, confounding factors such as figure/ground
segmentation, viewpoint, navigation, and lighting had to
be dealt with. Unlike many scenarios, this task was made
significantly more difficult due to the presence of mislabelled
images, cartoon depictions, and other distracting factors
which are present in the imagery that can be obtained from
the Internet.

An earlier version of the system described in this paper
competed in the SRVC [1] and successfully recognised 7 out
of 15 objects within this challenging scenario. (Compare this
to 2 and 3 objects for the second and third ranked teams.) For
example, our system correctly recognised the objects “Tide
box”, “red pepper”, and “Gladiator DVD” during the official
contest run.

e i

Fig. 8. Example of training data for robot experiment. The four views that
were used of the object ’shoe’.

B. Informed Visual Search

In order to evaluate the performance of the informed visual
search technique, we constructed a testing area containing
numerous evenly spaced objects in an enclosed area in our
lab. Figure 1 gives an overview of this experimental setup.
We chose to space the objects evenly so that we could
clearly identify which objects the robot was attempting to re-
examine during the multiple viewpoint collection behaviour,
and provide accurate ground-truth.

The system was provided with 4 uniformly-spaced training
views of each object, so that the viewpoint invariance of
the potential object ranking algorithm could be evaluated.
That is, when an object was observed from an intermediate
viewpoint (up to 45° from the closest training view) it
might still rank highly and be re-examined. Eight object
categories were specified for search: ‘phone’, ‘mindstorm’,



‘book’, ‘aibo’, ‘keg’, ‘toy cat’, ‘shoe’, and ‘robosapien’. See
figure 8 for several examples of the training data used. We
had the robot execute informed visual search, with N = 2 as
the limit on potential objects for each category. We manually
examined the resulting images and recorded their correct
labels for comparison. We also recorded the robot’s state (i.e.,
the instantaneous list of best potential objects). This allowed
us to determine whether or not the robot had decided to look
back at the correct potential object for each class at discrete
points during the trial.

Figure 9 summarises the results of one trial of this
experiment. The horizontal axis of this plot represents the
image sequence number. A solid green bar displayed in a
row indicates that the top-ranked potential object was in
fact a view of the correct category for the time indicated.
Note that we should not expect the system to be correct
for all timesteps, because this would imply that the system
has achieved perfect recognition even from poor viewpoints.
Rather, we would hope that the number of correct objects
increases as more views are collected, as this demonstrates
that our bag-of-features score is able to correctly rank objects
once suitable views are available.

The top line in the graph displays the frequency at which
pictures taken with the foveal camera actually contain the
desired objects. The fact that this line is densely populated,
especially after the robot begins to look back at objects
indicates that the viewpoint collection behaviour is operating
successfully. At the end of the experiment, 6 out of 8 of the
objects have correctly top-ranked views (as can be seen at
the right of the graph), which indicates the robot will be
obtaining many novel views. The top-ranked objects upon
completion of the experiment are shown in figure 10.

The final evaluation method used was to examine the
goal locations produced by the multiple viewpoint collection
behaviour, and verify that these did indeed allow for novel
views to be collected. Figure 11 is one example of a path
generated by this method. In this case, the end of the path
provides a significantly different viewpoint for many objects,
as desired.

VII. PERFORMANCE ISSUES

Our current implementation collects images at the rate
of approximately 5 per minute during coverage and 2 per
minute during the look-back behaviour. If desired, the system
could be made to run much faster. For example, the matching
of features in captured images with memory is done using
an exhaustive search. This search could be speeded up by
orders of magnitude by organising the features in memory
in a tree structure. E.g. kD trees [36], ball-trees and k-means
trees [37] can be used here. These algorithms have access
times that are logarithmic in the memory size, an essential
property if a method is to scale to memories consisting of
thousands of objects.

VIII. CONCLUDING REMARKS

We have demonstrated that actively collecting images from
various viewpoints enhances object recognition. Regions
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Fig. 9. Evaluation of look-back behaviour. Each black dot signifies that the
corresponding image contains the object in this row. E.g. image number 33
contains both the book and the shoe, and thus has black dots in two rows.
The green bars signify that the robot’s currently best guess for a particular
object is correct. The black vertical line indicates the switch between the
coverage behaviour and the look-back behaviour, which occurred when the
coverage threshold reached 0.9 in this experiment.

Fig. 10.
out images are incorrect.

The robot’s best guesses at the end of the experiment. Crossed

identified by bottom-up saliency are ranked using top-down
information, in the form of bags of features from the models
of the sought objects. In the future, we plan to make even
better use of the high level information, by using it to im-
prove object segmentation. Also, we have shown some initial
results on obtaining useful viewpoints, but there is more work
to be done in this area. For example, we are currently only
planning for horizontal view coverage, but plan to also add
vertical view planning. The approach described in this paper
is already an important step towards solving the lost-and-
found problem. With future enhancements, it could form the
basis for a domestic robot companion capable of responding
to “Robot, fetch me my shoes!”
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