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Summary. In this paper we examine issues of localization, exploration, and plan-
ning in the context of a hybrid robot/camera-network system. We exploit the ubiq-
uity of camera networks to use them as a source of localization data. Since the Carte-
sian position of the cameras in most networks is not known accurately, we consider
the issue of how to localize such cameras. To solve this hybrid localization problem,
we subdivide it into a local problem of camera-parameter estimation combined with
a global planning and navigation problem. We solve the local camera-calibration
problem by using fiducial markers embedded in the robot and by selecting robot
trajectories in front of each camera that provide good calibration and field-of-view
accuracy. We propagate information among the cameras and the successive positions
of the robot using an Extended Kalman filter. The paper includes experimental data
from an indoor office environment as well as tests on simulated data sets.

1 Introduction
In this paper we consider interactions between a mobile robot and an emplaced
camera network. In particular, we would like to use the camera network to ob-
serve and localize the robot, while simultaneously using the robot to estimate
the positions of the cameras (see Fig. 1a). Notably, networks of surveillance
cameras have become very commonplace in most urban environments. Unfor-
tunately, the actual positions of the cameras are often known only in the most
qualitative manner. Furthermore, geometrically accurate initial placement of
cameras appears to be inconvenient and costly. To solve this hybrid localiza-
tion problem, we will divide it into two interconnected sub-problems. The first
is a local problem of camera-parameter estimation which we solve by using
fiducial markers embedded in the robot and by selecting robot trajectories
before each camera that provide good calibration and field-of-view accuracy.
The second problem is to move the robot over large regions of space (between
cameras) to visit the locations of many cameras (without a priori knowledge
of how those locations are connected). That, in turn, entails uncertainty prop-
agation and planning.

In order for the camera network and the robot to effectively collaborate,
we must confront several core sub-problems:

1. Estimation - detecting the robot within the image, determining the
camera parameters, and producing a metric measurement of the robot
position in the local reference frame of the camera.
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(a) (b) (c)
Fig. 1. (a) The robot with calibration patterns on the target in front of a camera.
(b) An example ARTag marker. (c) A calibration target formed from ARTag markers

2. Local planned behavior - planning the behavior of the robot within
the field of view of a single camera, the robot needs to facilitate its ob-
servability and, ideally, maximize the accuracy of the camera calibration.

3. Data fusion - combining local measurements from different sources in
order to place the cameras and the robot in a common global frame.

The task of computing camera parameters and obtaining metric measure-
ments is referred to as camera calibration and is well-studied in both pho-
togrammetry and computer vision [6, 1]. Typically camera calibration is a
human intensive task. Section 3.1 will detail an automated version where the
robot replaces the human operator in moving the calibration pattern. A sys-
tem of bar-code-like markers (see Fig. 1) is used along with a detection library
[7] so that the calibration points are detected robustly, with high accuracy,
and without operator interaction.

Measurements from the calibration process can be used to localize the
robot and place each camera within a common reference frame. This process
can be formulated as an instance of Simultaneous Localization and Mapping
(SLAM). Typically the robot uses its sensors to measure the relative locations
of landmarks in the world as it moves. Since the measurements of the robot
motion as well as those of the pose of landmarks are imperfect, estimating the
true locations becomes a filtering problem, which is often solved by using an
Extended Kalman filter (EKF). Our situation differs from standard SLAM in
that our sensors are not pre-calibrated to provide metric information. That
is, camera calibration must be performed as a sub-step of mapping.

The path that the robot follows in front of a single camera during cali-
bration will allow a variety of images of the target to be taken. During this
local exploration problem, the set of captured images must provide enough
information to recover camera parameters. The calibration literature [22] de-
tails several cases where a set of images of a planar target does not provide
sufficient information to perform the calibration. The robot must clearly avoid
any such situation, but we can hope for more than just this simple guarantee.
Through analysis of the calibration equations, and the use of the robot odom-
etry, the system discussed here has the potential to perform the calibration
optimally and verify the results.
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The following section discusses related research. Section 3 details camera
calibration using marker detection and a 6 degree of freedom (DOF) EKF for
mapping in our context. Section 4 continues the discussion of local calibration
paths. Section 5 provides experimental results to examine the effect of different
local paths and shows the system operating in an office environment of 50 m
in diameter. We finish this paper with concluding remarks.

2 Related Work

Previous work on the use of camera networks for the detection of moving
objects has often focused on person tracking in which case the detection and
tracking problem is much more difficult than that of our scenario (due to lack
of cooperative targets and a controllable robot) [9, 4, 5]. Inference of camera
network topology from moving targets has been considered [4, 13]. Ellis et al.
depend on cameras with overlapping fields of view. Marinakis et al. deal with
non-overlapping cameras, but only topological information is inferred here
while we are interested in producing a metric map of the cameras. Batalin
and Sukhatme [2] used the radio signals from nodes in a sensor network only
for the localization of the robot. Cooperative localization among robots has
been considered [11, 15, 17, 10], where instead of camera nodes a robot is
observed by other robots.

Camera calibration is a well studied problem; a good summary paper by
Tsai [19] outlines much of the previous work, and [22] presents improvements
made more recently. A series of papers by Tsai et al. [21, 20] use a 3-D target
and a camera mounted on the end of a manipulator to calibrate the manipula-
tor as well as the camera. Heuristics are provided in [21] to guide the selection
of calibration images that minimizes that error. However, these methods only
deal with a single camera and use manipulators with accurate joint encoders,
i.e., odometry error is not a factor.

One important step in the automation of camera calibration is the accurate
detection of the calibration pattern in a larger scene. Fiducial markers are
engineered targets that can be detected easily by a computer vision algorithm.
ARToolkit [14] and ARTag [7] are two examples. ARTag markers are square
black and white patches with a relatively thick solid outer boundary and
an internal 6 by 6 grid (see Fig. 1b,c). The advantages of this system are
reliable marker detection with low rates of false positive detection and marker
confusion. ARTag markers have been previously used for robot localization
in [8] where a camera from above viewed robots, each of which had a marker
attached on top.

The EKF is used for mapping in the presence of odometry error, a method
that was detailed by [18],[12] and others to form the now very mature SLAM
field. An example of previous use of camera networks for localization and map-
ping is [16]. Our work extends this previous method by using ARTag markers
for much more automated detection of calibration target points, performing
SLAM with 3-D position and orientation for cameras and examining the effect
of local planning. This gives our system a higher level of autonomy and allows
mapping of much larger environments.
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3 Mapping and Calibration Methods

Our approach to the general problem of mapping a camera sensor network is
divided into two sub-problems: acting locally to enhance the intrinsic param-
eter estimation; and moving globally to ensure coverage of the network while
maintaining good accuracy. As it visits each location for the first time, the
robot is detected by a camera. Thus, it can exploit its model of its own pose,
and the relative position of the camera to the robot to estimate the camera
position. In order to recover the coordinate system transformation between
the robot and the camera, it is necessary to recover the intrinsic parameters
of the camera through a calibration procedure. This process can be facilitated
by appropriate local actions of the robot. Finally, over the camera network as
a whole, the robot pose and the camera pose estimates are propagated and
maintained using a Kalman filter.

A target constructed from 6 grids of AR-Tag markers is used for automated
detection and calibration. When the robot moves in front of a camera, the
markers are detected, and the corner positions of the markers are determined.
A set of images is collected for each camera, and the corner information is
used to calibrate the camera. Once a camera is calibrated, each subsequent
detection of the robot results in a relative camera pose measurement. The
following sub sections provide details about the steps of this process.
3.1 Automated Camera Calibration
A fully automated system is presented for the three tasks involved in camera
calibration: collecting a set of images of a calibration target; detecting points
in the images which correspond to known 3-D locations in the target reference
frame; and performing calibration, which solves for the camera parameters
through non-linear optimization. The key to this process is the calibration
target mounted atop a mobile robot as shown in Fig. 1a. The marker locations
can be detected and the robot can then move slightly, so that different views
of the calibration targets are obtained until a sufficient number is available
for calibration. Six panels, each with 9 markers, are mounted on three vertical
metal planes. The 3-D locations of each marker corner in the robot frame can
be determined through simple measurements.

The ARTag detection algorithm relies on identification of the fine internal
details of the markers. This requires the marker to occupy a large portion of
the image and limits the maximum detection distance to about 2 m in our
setup. Of course higher-resolution camera hardware and larger calibration
patterns will increase this distance.

The non-linear optimization procedure used for camera calibration [22]
warrants a brief discussion. A camera is a projective device, mapping infor-
mation about the 3-D world onto a 2-D image plane. A point in the world
M = [X, Y, Z]T is mapped to pixel m = [u, v, 1]T in the image, under the
following equation:
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In matrix A, fx and fy represent the focal lengths in pixel related coordi-
nates, α is a skew parameter and ux and uy are the coordinates of the center
of the image. Collectively, these are referred to as intrinsic camera parameters.
s is a projective scale parameter. The T matrix is a homogeneous transfor-
mation made up of rotation R and translation t, and it expresses the position
and the orientation of the camera with respect to the calibration-target coor-
dinate frame. The elements of T are referred to as extrinsic parameters and
change every time the camera or the calibration target moves to describe the
position of the target relative to the camera. We will use the T matrix as a
measurement in the global mapping process described in detail in Section 3.2.

The calibration images give a number of correspondences (u, v) → (X, Y, Z),
which are related by (1). This relation allows the intrinsic camera parameters
and the extrinsic parameters of each image to be jointly estimated using a
two-step process. The first step is a linear solution to find the most likely
intrinsic parameters. The second step is a non-linear optimization which in-
cludes polynomial distortion parameters. Zhang [22] mentions “degenerate
configurations” where a set of calibration points do not provide enough infor-
mation to solve for A and T . This occurs when all of the points lie in a lower
dimensional linear subspace of R3. To avoid this situation, several different
local motion strategies are discussed in Section 4.

In conclusion, from a set of images of the robot-mounted target, the camera
intrinsic and extrinsic parameters are estimated. The next section will discuss
the use of an Extended Kalman filter to combine these estimates with robot
odometry in order to build a map of camera positions.
3.2 Six-DOF EKF
The measurements of the extrinsic camera parameters can be used to build
a consistent global map by adding the camera position to the map when ini-
tial calibration finishes and by improving the estimate each time the robot
returns to the camera. To maintain consistent estimates in this global map-
ping problem, an Extended Kalman filter is used to combine noisy camera
measurements and odometry in a principled fashion. The robot pose is mod-
eled as position and orientation on the plane: (x, y, θ). However, the cameras
may be positioned arbitrarily; so, their 3-D position and orientation must be
estimated. Roll, pitch, and yaw angles are used to describe orientation, thus
the state of each camera pose is a vector Xc = [x, y, z, α, β, γ]T (for more
information, see [3]).

The EKF tracks the states of the robot and the cameras in two steps: the
propagation step tracks the robot pose during motion, and the update step
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(a) (b)
Fig. 2. (a) Measurement Coordinate Frame Transformations. (b) The world (at
[0,0,0]), robot (denoted by a circle and a line for the orientation), target grid (dashed
lines G1,G2) and camera (solid lines C1,C2) coordinate frames. The trajectory of
the robot is marked by a dotted line.

corrects the robot and the camera poses based on the measurements from
the calibration process. For the propagation phase, the state vector and the
covariance matrix are updated as in [18].

X̂k|k−1 = FX̂k−1|k−1 (2)

Pk|k−1 = FPk−1|k−1F
T + Cv (3)

where F is obtained by linearizing the non-linear propagation function f(X, u)
at state X and control actions u, and Cv is a matrix representing odometry
error. For the update phase, the measurement equation is a non-linear expres-
sion of the state variables so we must again linearize before using the Kalman
filter update equations. The measurement equation relates two coordinate
frames, so that the language of homogeneous coordinates transformations is
used in order to express the relation [3].

The calibration process estimates the calibration panel in the camera
frame, that is C

P T . Using P
RT which is measured initially this can be trans-

formed into a relation between the camera and robot: C
RT =C

P TP
R T . This

is the measurement z. Next, the measurement is expressed in terms of the
EKF states Xr and Xcthrough which we obtain the transformations for the
robot and the camera in world coordinates: W

R T and W
C T . Fig. 2 shows the

relationships between the EKF state variables and the information obtained
from camera calibration which jointly form the measurement equation:
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Equation 4 provides the measurement equation ẑ = h(X̂). To use this in a
Kalman filter, we must differentiate h with respect to each parameter to obtain
a first-order linear approximation z = h(X̂)+HX̃ where H is the Jacobian of
vector function h. Measurement noise Cω expresses the uncertainty of trans-
formation parameters from camera calibration. The EKF update equations
can be applied as usual:
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X̂k|k = X̂k|k−1 + K(z − h(X̂k|k−1)) (5)

Pk|k =
[
I −KHT

]
Pk|k−1 (6)

K = Pk|k−1H(HPk|k−1H
T + Cω)−1 (7)

4 Local Calibration Procedures

Using a robot-mounted target provides a unique opportunity to collect cali-
bration images in an intelligent fashion by controlling the robot motion. How-
ever, it is not immediately clear what the best motion strategy will be. There
are numerous sources of error including detecting the original pixels, approxi-
mating the linear parameters, and convergence of the non-linear optimization
all of which should be minimized if possible. As mentioned previously, [22]
showed that it is essential to avoid having only parallel planes. [21] discussed
heuristics for obtaining images to calibrate a manipulator system. Also, the
accumulated odometric error is an important factor for the overall accuracy
of the system.

As an initial investigation into this problem, five motion strategies were
examined. These were chosen to cover the full spectrum of expected calibration
accuracy and odometry buildup:
• Stationary - the robot moves in the camera field of view (FOV) and stays

in one spot. Due to the target geometry, this allows for two non-parallel
panels to be observed by the camera, which provides the minimal amount
of information necessary for calibration.

• One Panel Translation-only - the robot translates across the camera
FOV with only a single calibration panel visible always at the same angle.
This is a degenerate case and produces inconsistent results.

• Multi-Panel Translation-only - the robot translates across the camera
FOV with two panels visible. This provides numerous non-parallel planes
for calibration and accumulates minimal odometry error.

• Rotation-only - the robot rotates in place in the center of the camera
FOV allowing the panels to be detected at different angles.

• Square Pattern - the robot follows a square-shaped path in front of
the camera. Since there is variation in the detected panel orientation and
in depth, this method achieves good calibration accuracy. However, the
combination of rotation and translation accumulates large odometry error.

5 Experimental Results

Two separate sets of experiments were conducted using the camera sensor
network (see [16] for a detailed description of the experimental setup) which
dealt with the mapping and the calibration aspects of our system. First, the
five different local motion strategies were examined with respect to the result-
ing intrinsic parameters and position accuracy. Second, to show that mapping
is feasible in a real-world environment, a robot equipped with the calibration
target moved through one floor of an office building which was over 50 m in
diameter. We show that the robot path estimate is improved through the use
of position measurements from a set of cameras present in the environment.
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5.1 Local Calibration Paths
A set of experiments was performed to test the effects of the local calibration
paths suggested in Section 4. The goal was to study the motion strategies
in terms of reliable camera calibration as well as magnitude of odometry
error. This test was done inside our laboratory with a Nomadics Scout robot
mounted with a target with six calibration patterns. The 5 strategies were
performed for 10 trials, with 30 calibration panels detected per trial. The
automated detection and calibration system allowed for these 50 trials and
1500 pattern detections to occur in under 3 hours (using a Pentium IV 3.2
GHz CPU running linux for both image and data processing).

Table 1. Mean Value and percentage of Standard Deviation of the Intrinsic Param-
eters for each strategy over 10 trials. Deviations are with respect to the mean.

Path Mean Values Std. Deviation (% of mean value)

fx fy ux uy fx fy ux uy

Stationary 903.2 856.0 233.5 190.6 6.3 5.6 30.9 17.1
2 Panel Translation 785.8 784.3 358.0 206.4 2.7 2.3 3.6 5.0
Rotation 787.7 792.0 324.1 236.6 1.6 1.6 3.9 10.3
Square 781.2 793.1 321.4 274.2 1.2 2.0 2.4 13.9

(a) (b)
Fig. 3. (a) Sample Images from Square Pattern. (b) Odometry Error Accumulation
for 3 Local Calibration Paths

Table 1 summarizes the intrinsic parameters obtained for each method.
The lack of data for the One Panel Translation-only path is due to that, as
expected, calibration diverged quite badly in all trials with this method. Other
than the stationary method, statistically, the mean parameter estimates are
not significantly different between methods.

To examine the difference between odometry buildup among the different
paths, each of the three paths which involved motion was simulated. To ensure
a fair comparison, path parameters (distance and rotation angles) were scaled
accordingly for each trajectory. Fig. 3(b) shows the trace of the covariance
matrix as each method progresses. The square pattern accumulates much
more odometry error than the other two methods, as expected.
5.2 Mapping an Office Building

To demonstrate the effectiveness of the system when mapping a large space, we
instrumented an office environment with 7 camera nodes. The environment
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(a) (b)
Fig. 4. (a) Odometry Readings for Hallway Path. (b) EKF Estimate of the Hallway
Path. Estimated camera positions with uncertainty ellipses (in red)

consisted of a rectangular loop and a triangular loop connected by a long
hallway with length approximately 50 m. The same robot as the previous
experiment was used to perform the full calibration and mapping procedure
described in Section 3. The robot traversed the environment 3 times and trav-
eled in excess of 360 m in total. The Rotation-only local calibration strategy
described in Section 4 was used for simplicity.

From Figs. 4a and b, it is visually clear that the use of camera measure-
ments was able to correct for the buildup of odometry error. However, there
are some regions where the filtered path is still a rough approximation since
the regions between cameras are traveled without correction of the odometry
error. This is most obvious on the far right of the image where there is a
very noticeable discontinuity in the filtered path. Since the system does not
provide a means for odometry correction between the camera fields of view,
this type of behavior is unavoidable without additional sensing.

6 Conclusion

We have outlined an automated method for calibrating and mapping a sen-
sor network of cameras such that the system can be used for accurate robot
navigation. The experimental methods show that a system with a very simple
level of autonomy can succeed in mapping the environment relatively accu-
rately. A preliminary study was done on local calibration trajectories, which
can have a profound effect on the accuracy of the mapping system. Further
work in planning and autonomy will likely be the key enhancement in further
iterations of this system. The reliance on detection of the calibration target
means the robot must move intelligently in order to produce a map of the
environment and localize itself within that map.

In this work, we propose the use of a 6-DOF EKF for global mapping.
While this approach worked quite well even in a large experiment, it assumes
that the system is linear and Gaussian which is a poor approximation in some
cases. In particular, the robot builds large odometry errors between cameras
and the linearization procedure is only a good approximation when errors are
small. A probabilistic method such as Particle Filtering might give improved
results in this context, since linearization is not necessary for such a technique.
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