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Abstract

Boolean satisfiability (SAT) solvers have been success-
fully applied to a wide variety of difficult combinato-
rial problems. Many further problems can be solved by
SAT Modulo Theory (SMT) solvers, which extend SAT
solvers to handle additional types of constraints. How-
ever, building efficient SMT solvers is often very diffi-
cult. In this paper, we define the concept of a Boolean
monotonic theory and show how to easily build efficient
SMT solvers, including effective theory propagation
and clause learning, for such theories. We present ex-
amples showing useful constraints that are monotonic,
including many graph properties (e.g., shortest paths),
and geometric properties (e.g., convex hulls). These
constraints arise in problems that are otherwise diffi-
cult for SAT solvers to handle, such as procedural con-
tent generation. We have implemented several mono-
tonic theory solvers using the techniques we present in
this paper and applied these to content generation prob-
lems, demonstrating major speed-ups over SAT, SMT,
and Answer Set Programming solvers, easily solving
instances that were previously out of reach.

1 Introduction
Boolean satisfiability (SAT) solvers have been demonstrated
to be effective in solving NP-hard problems from many ap-
plications, including planning, scheduling and circuit de-
sign. SAT Modulo Theory (SMT) solvers, which extend
SAT with additional types of variables and constraints, can
handle an even broader range of problems.

As an example, consider procedural content generation,
where one might wish to generate terrain subject to short-
est path constraints (e.g., to ensure that the exit from a
videogame level is at a certain minimum distance from the
entrance). SAT solvers perform poorly on shortest path con-
straints, motivating the development of an SMT solver for
graph properties. However, designing efficient SMT solvers
typically requires expertise and deep insight for each theory.

In this work, we identify a class of theories we call mono-
tonic, for which we can create efficient SMT solvers either
partially or entirely automatically. We show that many com-
mon problems can be tackled using these techniques, and
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build efficient SMT solvers that support efficient reason-
ing for many important graph constraints, including reach-
ability, shortest paths, minimum spanning trees, maximum
s− t flow, and geometric constraints related to convex hulls.
These properties are useful for procedural content genera-
tion tasks (e.g., terrain and puzzle synthesis for videogames).

We implement an SMT solver for these theories in our
tool MONOSAT,1 showing order-of-magnitude speed-ups
and greatly improved scalability over the SAT solver MINI-
SAT 2.2 [Eén and Sörensson, 2004], the Answer Set Pro-
gramming (ASP) solver CLASP [Gebser et al., 2007], and
the SMT solver Z3 [De Moura and Bjorner, 2008].

2 Monotonic Theories
We define a Boolean monotonic predicate as follows:

Definition 1 (Boolean Monotonic Predicate) A predicate
p : {0, 1}n 7→ {0, 1} is Boolean monotonic if, and only
if, for all si:

p(. . . , si−1, 0, si+1 . . .)→ p(. . . , si−1, 1, si+1 . . .)

We have given the definition for a positive monotonic
predicate; an analogous definition exists for the negative
case. Notice that the domain of p is restricted to Boolean val-
ues; monotonic functions over the Booleans are also known
as unate functions. A similar definition for monotonic pred-
icates has been previously explored by [Bradley and Manna,
2008] and by [Marques-Silva, Janota, and Belov, 2013],
in the context of finding minimal models and unsatisfiable
cores. We define a Boolean monotonic theory as:

Definition 2 (Boolean Monotonic Theory) A theory T
with signature Σ is Boolean monotonic if and only if:

1. The only sort in Σ is Boolean;

2. all predicates in Σ are monotonic; and

3. all functions in Σ are monotonic.

We allow both positive and negative monotonic functions
(and predicates). As is typical for SMT solvers, we consider
only decidable, quantifier-free, first-order theories. Atypi-
cally for SMT, the only sort in these theories is Boolean.

1MONOSAT is open-source and freely available online, at
www.cs.ubc.ca/labs/isd/Projects/monosat



This restriction allows us to make some simplifying assump-
tions (described in Section 3) that side-step complications
arising from theory combination, compositions of functions,
and non-ground variables; these are all issues that we expect
could be addressed in future work. However, we will show
that even restricted to the Booleans, monotonic theories can
express many useful predicates.2

As an illustrative example, consider a theory
of graph reachability, with predicates of the form
reachu,v,G(edge1, edge2, edge3, . . .), which are true
if, and only if, node u reaches node v in graph G, where
edge i is included in G if and only if the Boolean edgei
is true. Adding additional edges to G (by assigning edge
variables to true) can make a previously unreachable node
reachable, but cannot make a reachable node unreachable.
Conversely, removing edges from G (by assigning edge
variables to false) can make a reachable node unreachable,
but cannot make an unreachable node reachable.

3 Theory Propagation and Clause Learning
Many successful SMT solvers follow the lazy SMT de-
sign [Sebastiani, 2007; De Moura and Bjorner, 2008], in
which a SAT solver is combined with a set of theory solvers,
and each theory solver supplies (at least) two capabilities:
(1) theory propagation (or theory deduction), which takes a
partial assignment M to the theory atoms for that theory and
checks if any other atoms are implied by that partial assign-
ment (or if M constitutes a conflict in the theory solver), and
(2) clause learning (equivalently, deriving conflict or justifi-
cation sets), where, given a conflict c in M , the theory solver
finds a subset of M sufficient to imply c, which the SAT
solver can then negate and store as a learned clause. The
effectiveness of a lazy SMT theory solver depends on the
ability of the theory solver to propagate atoms and detect
conflicts early, from small assignments M , and to find small
conflict sets in M when a conflict does arise.

Many theories have known, efficient algorithms for de-
ciding the satisfiability of fully specified inputs, but not for
partially specified or symbolic inputs. Continuing with the
reachability example from above, given a concretely speci-
fied graph, one can find the set of nodes reachable from u
simply using a breadth-first-search. In contrast, determining
whether a node is reachable in a graph with symbolically
defined edges is less obvious. We will show how to build
an efficient theory solver (capable of both theory propaga-
tion and clause learning) for any Boolean monotonic theory,
given only a procedure for computing the truth-values of the
predicates from complete, concrete assignments.

First, we introduce a scheme for applying theory propa-
gation to Boolean monotonic theories. For simplicity, we
will assume that the instance has been transformed so as
to convert all (Boolean monotonic) functions into Boolean
monotonic predicates, and that all Boolean monotonic pred-
icates are positive monotonic predicates. A simple, linear-
time transformation can ensure this. Having done so, we can

2To forestall confusion, note that our concept of a monotonic
theory has no direct relationship to the concept of monotonic/non-
monotonic logics.

split the atoms of the formula into two sets: a set of Boolean
monotonic predicates, P , and a set of Boolean variables that
are arguments to those predicates (which we will expose to
the SAT solver as the set of atoms S).

This simplified formula of the monotonic theory T now
has the following useful properties: for any atom p ∈ P , and
any partial truth assignment MS to the atoms of the exposed
Boolean variables S excluding variable s ∈ S,

SATT (MS ∪ {¬s, p}) ⇒ SATT (MS ∪ {s, p}) (1)
SATT (MS ∪ {s,¬p}) ⇒ SATT (MS ∪ {¬s,¬p}) (2)
Given a (partial) truth assignment M , let MS be the corre-

sponding (partial) assignment to just the S-atoms. We form
two completions of MS : one in which all the unassigned S-
atoms are assigned to false (M−S ), and one in which they are
assigned to true (M+

S ). Since M−S contains a complete as-
signment to the S-atoms (which are the Boolean arguments
to the monotonic predicates), we can use it as input to any
standard algorithm for computing the truth-value of atom
p ∈ P from concrete inputs, which will determine whether
M−S =⇒ p. By property (1), if M−S =⇒ p, then MS =⇒ p.
Similarly, by property (2), if M+

S =⇒ ¬p, then MS =⇒ ¬p.
If either case holds, we can propagate p (or ¬p) back to the
SAT solver. Thus, M−S and M+

S allow us to safely under-
and over-approximate the truth value of p. We can apply
this technique iteratively for each P -atom.

This over/under-approximation scheme gives us theory
propagation for P -atoms only; however, because there can
be no theory-conflicts among the atoms of S by themselves
(as each corresponds to an independent Boolean variable),
applying propagation to the P -atoms is sufficient to detect
any conflicting assignment. Furthermore, because all vari-
ables in the formula are included in the SAT solver’s search
space, this technique provides a complete procedure for de-
ciding the satisfiability of Boolean monotonic theory T , so
long as procedures are available for computing each mono-
tonic predicate from complete assignments to their argu-
ments. It allows us to use standard algorithms for solv-
ing the concrete, fully specified and non-symbolic forms of
these theories, to apply theory propagation to the P -atoms.

What about clause learning? In general, given a conflict
on a partial assignment M over the theory’s atoms, a theory
solver can always simply return the clause ¬M , which states
that at least one of the assigned theory atoms must change
in any satisfying assignment. However, for conflicts aris-
ing from the over/under-approximation theory-propagation
scheme above, we can do better. First, as noted before, all
assignments to just the S-atoms are satisfiable, so any con-
flicting assignment must assign at least one P -atom.

Secondly, observe that the over/under-approximations
scheme computes implications from assignments of only the
S-atoms MS to individual P -atoms, and never computes im-
plications from, for example, P -atoms to S-atoms or from
P -atoms to other P -atoms. For this reason, in any conflict
discovered by this scheme, there must exist a single P -atom
p, such that the assignment to the S-atoms, along with the
assignment to p, are together UNSAT. Note that this may not
hold if other techniques are used to apply theory propagation
from, for example, the P -atoms to the S-atoms.



By property (1), if M−S =⇒ p, then the positive theory
atoms in MS are sufficient to imply p by themselves. By
property (2), if M+

S =⇒ ¬p, then the negative theory atoms
in MS are sufficient to imply ¬p by themselves. Therefore,
the positive (resp. negative) assignments to the atoms in MS

alone can safely form justification sets for p (resp. ¬p). This
is already an improvement over simply learning the clause
¬M , but in many cases we can do better.

Many algorithms are constructive in the sense that they
not only compute whether p is true or false, but also produce
a witness (in terms of the inputs of the algorithm) that is a
sufficient condition to imply that property. For example, if
we used a breadth-first search to find that node v is reachable
from node u in some graph, then we obtain as a side-effect a
path from u to v, and the theory atoms corresponding to the
edges in that path (all of which are assigned with positive
polarity in M ) imply that v can be reached from u.

Any algorithm that can produce a witness containing
solely positive (resp. negative) S-atoms can be used to
produce justification sets for any positive (resp. nega-
tive) P -atom assignments propagated by the scheme under-
approximation above. We have usually found that standard
algorithms produce one, and sometimes both, types of wit-
nesses. For missing witnesses, we can always safely fall
back on the strategy of using the positive (resp. negative)
theory atoms of MS as the justification set for p (resp. ¬p).

4 Examples of Monotonic Theories
We now introduce several monotonic predicates and show
how efficient theory solvers can be built for each of them
using the theory propagation and clause learning strategies
from Section 3. First, we will consider some common graph
properties, and then some geometric properties of pointsets.
Section 5 presents applications and results for these theories.

We introduce a set of monotonic graph predicates, col-
lected into a monotonic theory of graphs. Each graph pred-
icate is defined for a graph with a finite set of vertices V
and a finite set of possible edges E ⊆ V × V . For each
predicate, the solver will need to select a subset of the edges
E to include in the graph G such that the predicate does or
does not hold. Each predicate is defined for a fixed graph
G = (E, V ) and will accept |E| arguments: one Boolean
variable for each edge in E, to select whether that edge is
included in the graph or not. Each of those Boolean vari-
ables is exposed to the SAT solver by a corresponding the-
ory atom edgeu,v,G. We will speak of edges being “enabled”
or “disabled” as shorthand for the truth values of these edge
variables and corresponding atoms; if a formula has multiple
predicates for the same graph G, we will assume that those
predicates have as arguments the same edge variables in the
same order (though this is not strictly necessary). The edge
atoms form set S (as defined in Section 3), while the various
graph predicates we consider will form set P .

For example, the graph reachability predicate
reachu,v,G(edge0, edge1, edge2, . . .) is true if, and
only if, node v is reachable from node u in graph G, under
a given assignment to the edgei variables. As previously
observed, given a graph (directed or undirected) and some
fixed starting node u, enabling an edge can increase the set

of nodes that are reachable from u, but cannot decrease it.
Disabling an edge in the graph can decrease the set of nodes
reachable from u, but cannot increase it. The other graph
predicates we consider are monotonic with respect to the
edges in the graph in the same way; for example, enabling
an edge can decrease the weight of the minimum spanning
tree, but not increase it.

To apply theory propagation under a partial truth assign-
ment M , we construct two auxiliary graphs, Gunder and
Gover. The graph Gunder is formed from the edge assign-
ments in M−S : only edges that are assigned true in M are
included in Gunder; edges that are either assigned to false
or are unassigned in M are excluded. In the second graph,
Gover, we include all edges that are either assigned to true or
unassigned in M , corresponding to the edge assignments in
M+

S . As Gunder and Gover are completely specified, con-
crete graphs, we can then apply standard graph algorithms
to them during theory propagation, using the over/under-
approximation scheme described in Section 2.

A summary of the shortest paths and reachability theory
solver can be found in the frame below. Two additional
graph properties for which we have implemented monotonic
theory solvers are maximum s–t flow (enabling edges can
increase the maximum flow, but cannot decrease it), and
minimum spanning trees (enabling an edge can decrease the
minimum weight spanning tree, but cannot increase it).

The over/under-approximation theory propagation
scheme makes repeated graph queries in the theory solver
— one for each of Gunder and Gover, for each new partial
assignment generated by the SAT solver. The performance
of this scheme is greatly improved by using dynamic graph
algorithms and data structures, which can be cheaply up-
dated as edges are removed or added to the two graphs. For
computing shortest paths, we use [Ramalingam and Reps,
1996]; for computing minimum weight spanning trees we
use [Spira and Pan, 1975]; while for maximum flow we use
a variant of [Edmonds and Karp, 1972], modified to support
adding edges incrementally, as described by [Korduban,
2012]. Deriving justification sets for these two latter graph
predicates is more involved than for shortest paths; details
can be found on arXiv [Bayless et al., 2014].

Three other generic improvements that we implement are
worth mentioning. The first is that in cases where several
predicates are being checked for the same graph, we can
combine the data structures for the graphs, and (possibly)
also combine the update checks for the predicates. For ex-
ample, if many reachability queries were being computed
for the same graph from the same starting node, a single
breadth-first-search call could compute them all. A second
improvement is to check whether, under the current partial
assignment, either Gunder or Gover is unchanged from the
previous call to theory propagation. If the solver has only
enabled edges (resp. only disabled edges) since the last the-
ory propagation call, then the graph Gover (resp. Gunder)
will not have changed, and so we do not need to recom-
pute properties for that graph. Finally, if a graph predicate
is assigned in M , then we only need to check whether that
assignment is violated; in this case, we can skip one of the
two computations (for either Gunder or Gover).



Graph Reachability & Shortest Paths

Given a finite, weighted, directed graph, the shortest
path between fixed nodes u and v can decrease in
length as edges are added, but cannot increase. If there
is no u − v path, we set the shortest path length to
infinity; then we can compute the graph reachability
predicate reachu,v,G(edges) (as described above) by
testing whether the shortest u−v path length is at most∑

e∈E weighte.

Monotonic Predicate:
shortestPathu,v,G≤C(edges), true iff the
shortest u− v path ≤ C in G, given edges.

Algorithm: Ramalingam-Reps [Ramalingam and
Reps, 1996], with improvements described
by [Buriol, Resende, and Thorup, 2008]. This is a
dynamic variant of Dijkstra’s Algorithm [Dijkstra,
1959].

Justification for shortestPathu,v,G≤C(edges):
Let e1, e2, . . . be the shortest u − v path
in Gunder. The length of this path is
at most C. The justification set is then
{¬e1,¬e2, . . . , shortestPathu,v,G≤C(edges)}.

Justification for ¬shortestPathu,v,G≤C(edges):
Traverse the graph backwards from v in Gover,
following each enabled or unassigned backward
edge. Collect all incoming disabled edges
e1, e2, . . . of the visited nodes. (If node u is
visited during this traversal, neither follow nor
collect u’s incident edges.) The conflict set is
{e1, e2, . . . ,¬shortestPathu,v,G≤C(edges)}.

To illustrate a monotonic theory with a very different
flavour, we now consider geometric theories involving con-
tinuous rather than discrete mathematics. Many common ge-
ometric properties of point sets monotonically increase (or
decrease) as additional points are added. For example, the
area of the convex hull of a point set can increase but cannot
decrease as points are added to the set. Many other com-
mon properties of point sets are also monotonic; examples
include the geometric span (i.e., the maximum diameter),
and the weight of the minimum Steiner tree of a point set,
and the minimum distance between two point sets, but we
restrict our attention to convex hulls (in 2 dimensions) here.

The implementation of our geometric solver is very close
to the graph solver we described above, computing concrete
under- and over-approximations Hunder, Hover of the con-
vex hull of the point set in the same manner as we did for
Gunder and Gover above. This solver can also be used to
model collisions between the convex hull of a point set and
a fixed point, line, or polygon by asserting the points of one
of the pointsets. Details of the theory solver for collisions
between convex hulls can be found in the frame below.

Collision Detection for Convex Hulls

Given two sets of points, PS 1 and PS 2, with two
corresponding convex hulls, adding a point to either
set can cause the corresponding hull to grow such that
the two hulls overlap; however, if the two hulls already
overlap, adding additional points to either set cannot
make the hulls disjoint.

Monotonic Predicate:
overlapPS1,PS2(points1, points2), true iff
the convex hull of the points in PS 1 enabled in
the array of Booleans points1 overlaps the convex
hull of the points of PS 2 enabled in points2.

Algorithm: Andrew’s monotone chain algorithm [An-
drew, 1979] for convex hulls.

Justification overlapPS1,PS2
(points1, points2):

Convex hulls Hunder1 and Hunder2 overlap.
There are two (not mutually exclusive) cases to
consider:

1. Vertex pa of Hunder1 is contained within
Hunder2 (or vice versa). Then there must
exist three vertices pb1, pb2, pb3 of Hunder2

that form a triangle containing pa. So long
as those three points (and pa) are enabled,
the two hulls will overlap. Justification set is
{¬pa,¬pb1,¬pb2,¬pb3, overlapPS1,PS2

}.
2. An edge of Hunder1 intersects an edge

of Hunder2. Let p1a, p1b be points of
Hunder1, and p2a, p2b points of Hunder2,
such that line segments p1a, p1b and
p2a, p2b intersect. So long as these points
are enabled, the hulls of the two point
sets must overlap. Justification set is
{¬p1a,¬p1b,¬p2a,¬p2b, overlapPS1,PS2

}.
Justification ¬overlapPS1,PS2(points1, points2):

Convex hulls Hover1 and Hover2 do not overlap.
There must exist a separating hyperplane Q
between Hover1 and Hover2. Let p1a, p1b, . . . be
the disabled points of PS 1 on the far side of Q
(or exactly on Q) from Hover1; let p2a, p2b, . . . be
the disabled points of PS 2 that are on the far side
of Q (or on Q) from Hover2. At least one of these
points must be enabled, or this hyperplane will
continue to separate the hulls. Justification set is
{p1a, p1b, . . . , p2a, p2b, . . . , ¬overlapPS1,PS2

}.

One important consideration of geometric properties is
numerical precision. We restrict the coordinates of points
to rationals, and use arbitrary precision rational arithmetic
throughout our geometric solver. For efficiency, we handle
intersection with fixed shapes as special cases in our imple-
mentation, but in the interest of space we present only the
general case here.



We also include two additional improvements in our ge-
ometry solver. First, when detecting whether a point is con-
tained in either the under- or over-approximation convex
hull, or whether the hull intersects another polygon, we ini-
tially compute axis-aligned bounding boxes, and use those
to cheaply eliminate many collision detections. Secondly,
when a collision between two hulls is detected, we find a
small (not necessarily minimal) set of points which are suffi-
cient to guarantee that overlap. For example, when a point is
found to be contained in a convex hull, we find three vertices
of that hull that together form a triangle that contains that
point (such a containing triangle is guaranteed to exist by
Carathéodory’s theorem [Eckhoff and others, 1993] for con-
vex hulls). While the points composing that triangle remain
in the hull, even if other points are removed from the hull
the point will remain contained. This can be checked very
cheaply, sometimes allowing us to skip collision checks.

A wide body of techniques exists for speeding up the
computation of dynamic geometric properties, especially
with regards to collision detection, and we have only im-
plemented the most basic of these (bounding boxes); a more
sophisticated implementation could make use of more ef-
ficient data structures (such as hierarchical bounding vol-
umes or trapezoidal maps) to obviate many of the collision
checks. As before, because collision detection is performed
on concrete under- and over-approximation hulls, standard
algorithms and libraries may be used.

5 Applications and Results
Many popular videogames — including the hits Dwarf
Fortress and Minecraft — rely on procedurally generated
content. Recently, there has been interest in using logic pro-
gramming for declarative content generation (e.g., [Boenn
et al., 2008; Nelson and Smith, 2014]), in which the arti-
fact to be generated is specified as the solution to a formula.
These approaches are typically less scalable than traditional
procedural content generation, however, they make it conve-
nient to guarantee important properties of the content, such
as that all points are reachable in generated terrain.

To demonstrate our graph theory solver, we add short-
est path and maximum flow constraints to the open-source,
videogame terrain generation tool Diorama [Schanda and
Brain, 2009]. Diorama considers a set of undirected, pla-
nar edges arranged in a grid. Each position on the grid is
associated with a height; the solution to the constraints is a
heightmap that realises a complex combination of desirable
characteristics, such as the positions of mountains, water,
cliffs, and players’ bases. Edges from this grid are only in-
cluded in the graph where the heightmap does not have a
sharp elevation change or impassable zone (e.g., water).

Diorama expresses its constraints via Answer Set Pro-
gramming (ASP) [Baral, 2003] — a logic formalism closely
related to SAT, and with efficient solvers [Gebser et al.,
2007] based on state-of-the-art CDCL SAT solvers. Un-
like SAT, ASP can encode reachability constraints in cyclic
graphs in linear space and can solve the resulting formulae
efficiently. Partly for this reason, ASP solvers have been
more widely used than SAT solvers in recent content gener-

Figure 1: Diorama heightmaps generated by MONOSAT.
Numbers correspond to elevations (bases are marked ‘B’),
with impassable cliffs marked in black. On the left, a dis-
tance constraint between bases; on the right, a maximum
s–t flow constraint between the top and bottom of the map.

Shortest Paths MONOSAT CLASP MINISAT
8x8,Distance 8-16 <1s <1s 9s
16x16,Dst.16-32 4s 7s >3600s
16x16,Dst.32-48 4s 23s 2096s
16x16,Dst.32-64 4s 65s >3600s
16x16,Dst.32-96 4s >3600s >3600s
16x16,Dst.32-128 4s >3600s >3600s
24x24,Dst.48-64 46s 30s >3600s
24x24,Dst.48-96 61s 1125s >3600s
32x32,Dst.64-128 196s >3600s >3600s

Maximum Flow MONOSAT CLASP MINISAT
8x8, Flow 16 2s 2s 1s
16x16, Flow 8 9s 483s >3600s
16x16, Flow 16 8s 27s >3600s
16x16, Flow 24 14s 26s >3600s
24x24, Flow 16 81s >3600s >3600s
32x32, Flow 16 450s >3600s >3600s

Tables 1 & 2: Diorama runtimes, extended with varying
shortest-path and maximum flow constraints. We can see

that for small shortest path and maximum flow constraints,
CLASP and MONOSAT both perform well, while for large

constraints, MONOSAT greatly outperforms CLASP.

ation applications; Refraction [Smith and Mateas, 2011] and
Variations Forever [Smith and Mateas, 2010] also use ASP.

We provide comparisons of our solver MONOSAT (based
on the SAT solver MINISAT 2.2) against MINISAT and
the ASP solver CLASP 3.10 (for the graph predicates) and
against the SMT solver Z3 4.3.1 [De Moura and Bjorner,
2008] (for the geometric predicates, which rely on arbi-
trary precision arithmetic and cannot be concisely encoded
in SAT or ASP). Experiments were conducted on an Intel
X5650 CPU, 2.67GHz (12MB L3), in Ubuntu 12.04, 64-bit,
with 16 GB RAM, limited to 3600 seconds (walltime).4

One important factor in this comparison is how the vari-
ous graph and geometry constraints are encoded into SAT,
ASP, and (for Z3), the theory of linear rational arithmetic

4CLASP comes with a set of pre-built configurations to choose
from; we ran all of them and in each case report the best results.



(LRA). The obvious encodings for shortest path constraints
and maximum flow, into both SAT and ASP, encode dis-
tances (and flows) in unary, and are O(|V | · |E|); how-
ever, by encoding distances in binary, an O(log(|V |) · |E|)
encoding is possible. The unary encodings effectively un-
roll the Bellman-Ford algorithm [Bellman, 1956] and allow
the solver to directly compute the shortest paths in a fixed
graph using unit-propagation. In contrast, the binary en-
codings for shortest paths require the solvers to guess the
distances to each node non-deterministically, introducing a
search problem. For shortest paths, we show only results
for the unary encodings, as we found that the more con-
cise binary encoding always performed very poorly. For
maximum flows, both encodings require the solver to guess
flows non-deterministically, and here the binary encodings
perform better (and we present those results). For the
SMT convex-hull encoding, we used an encoding that non-
deterministically guesses separating axes between hulls; it
compares all pairs of points and requires quadratic space.5

Shortest Paths: We considered a modified version of
the Diorama terrain generator, replacing Diorama’s existing
constraint limiting the number of cliffs with a new constraint
that the distance (as the cat runs, not as the crow flies) be-
tween bases fall within certain ranges. Table 1 shows that
while CLASP performs as well or better on small constraints,
MONOSAT performs much better on larger constraints.

Maximum-Flow: The theory of maximum s–t
flows/minimum s–t cuts can be used to create, or to
prevent, chokepoints in a map, and be used, for example, to
control traffic flow or create defensible locations. We assign
each edge a fixed edge capacity (in this case, 4), and modify
the Diorama constraints to enforce that the minimum cut
between the top and bottom of the map must be exactly
equal to a fixed multiple of that edge capacity (e.g., 8,16,
or 24). This requires chokepoints of a certain size between
the top and bottom of the map. Table 2 shows that, as
with shortest paths, MONOSAT outperforms CLASP and
MINISAT on moderate-to-large instances.

Convex Hulls: To demonstrate our theory of convex hulls
of pointsets, we consider the problem of synthesizing “art
galleries”, subject to constraints. The Art Gallery prob-
lem [Chvatal, 1975] is a classic NP-hard problem [Lee and
Lin, 1986], in which (in the decision version) one must de-
termine whether it is possible to surveil the entire floor plan
of a multi-room building with a limited set of fixed cam-
eras. There are many variations of this problem; we con-
sider a common (still NP-hard) variant in which cameras are
restricted to being placed on vertices, and only the vertices
of the room must be watched (but not the walls between the
vertices). We define the Art Gallery Synthesis problem to

5We are deeply indebted to Adam M. Smith for suggesting im-
proved encodings for shortest paths, and providing the maximum-
flow encoding for ASP. While we have made a significant effort to
find good encodings, we do not claim that the ASP, CNF, or SMT
encodings we compare against are optimal – in general, there are
no known proofs of optimal encodings for these constraints.

Figure 2: Artificial ‘art galleries’ synthesized by MONO-
SAT. White-space is open floor, while colored regions are
walls. Cameras are large black circles; potential vertices
are gray dots. Each polygon is the convex hull of a sub-
set of the gray dots, selected by the solver. The cameras
have been placed such that the vertices of all polygons can
be seen, some along very tight angles or only from one side
(sight lines have been drawn in dashed lines for two cam-
eras). Sometimes cameras are placed to cover a single vertex
that is completely embedded in adjacent polygons.

Art Gallery Synthesis MONOSAT Z3
10 points, 3 hulls, ≤3 cameras 2s 7s
20 points, 4 hulls, ≤4 cameras 36s 433s
30 points, 5 hulls, ≤5 cameras 187s > 3600s
40 points, 6 hulls, ≤6 cameras 645s > 3600s
50 points, 7 hulls, ≤7 cameras 3531s > 3600s

Table 3: Art gallery synthesis results.

be to design a floor plan that can be completely surveilled
by at most a given number of cameras, subject to aesthetic
constraints on the floor plan. One example application for
this problem would be to construct mazes or levels that can
be guarded by a specified number of computer-controlled
characters (while also respecting other design constraints).

Formally, given a box containing a fixed set of (2 di-
mensional) points, we must find N non-overlapping convex
polygons with endpoints selected from those points, such
that a) the area of each polygon is greater than some fixed
constant (to prevent unrealistically slim walls from being
created), b) the polygons may meet at an edge, but may not
meet at just one vertex (to prevent forming wall segments of
infinitesimal thickness), and c) all vertices of all the poly-
gons, and all 4 corners of the room, can be seen by a set of
at most N cameras (placed at those vertices).

There are many ways that one could constrain the
art gallery synthesis problem; we chose these constraints
mostly to exhibit all of the features of our convex hull theo-
ries, but also to produce visually interesting and sufficiently
complex galleries; however, these are not intended to be re-
alistic instances. Real-world applications would likely com-
bine these with more complex constraints (interesting possi-
bilities would be to incorporate safety regulations or crowd-
flow optimizations into the floor plan constraints). For the
constraints we considered here, Table 3 shows that MONO-
SAT is able to solve much larger instances than Z3.



6 Conclusion
We have introduced the concept of a Boolean monotonic the-
ory and provided a systematic technique to build efficient
SAT Modulo Monotonic Theory (SMMT) solvers incorpo-
rating such theories. Our technique leverages common-
place, highly efficient algorithms for fully specified problem
instances, in order to achieve efficient theory propagation
and clause learning. We demonstrated the generality of the
monotonic theory concept by providing several predicates
drawn from graph theory and geometry. These example the-
ories are expressive — permitting compact encodings for
problems arising from procedural content generation and ge-
ometry — and the SMT solvers we produce using the tech-
niques described in this paper perform well in practice on
a range of instances, scaling much better to large instances
than other solvers.

Moreover, the techniques we have introduced should gen-
eralize well beyond the small number of graph and geomet-
ric properties discussed in this paper. In particular, many ad-
ditional graph predicates of interest are Boolean monotonic,
including constraints on graph planarity, graph connectivity,
graph diameter, global minimum-cut size, and many vari-
ants of network flow constraints. We expect each of these to
yield efficient solvers following the techniques in this paper.

Recent work introduced SAT and ASP solvers with sup-
port for detecting acyclicity in graphs [Gebser, Janhunen,
and Rintanen, 2014a; 2014b]. To the best of our knowl-
edge, this is the only other major work on dedicated graph
SMT solvers, outside of the general purpose graph solving
capabilities of ASP solvers discussed above. Acyclicity is
Boolean monotonic with respect to the edges of a graph,
and so could be supported by our monotonic theory solver
techniques (although we have not yet implemented such a
theory solver). Although the techniques introduced by Geb-
ser, Janhunen, and Rintanen are substantially different from
ours, we believe they are compatible with ours, and we look
forward to incorporating their techniques in the future. Con-
versely, SMMT is a general framework that could provide
an avenue to extend their work beyond just acyclicity predi-
cates to the large set of graph theories we have introduced.

There are several ways we can envision relaxing the re-
striction to Boolean sorts, for example to allow monotonic
predicates over the integers or reals; doing so would allow a
much wider set of useful theories to be handled (and allow a
more natural presentation of the theories in this paper), but
comes with a number of challenges (in particular, for sup-
porting theory combination).

The most immediate direction for future work, however, is
to discover additional Boolean monotonic theories and new
application domains that can benefit from them.
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