
Scalable, High-Quality, SAT-Based
Multi-Layer Escape Routing

Sam Bayless, Holger H. Hoos, and Alan J. Hu
University of British Columbia, Canada

{sbayless,hoos,ajh}@cs.ubc.ca

ABSTRACT
Escape routing for Printed Circuit Boards (PCBs) is an im-
portant problem arising from modern packaging with large
numbers of densely spaced pins, such as BGAs. Single-layer
escape routing has been well-studied, but large, dense BGAs
often require multiple PCB layers to be fully escaped. Unfor-
tunately, multi-layer escape routing is much more challeng-
ing than single-layer escape routing, and currently lacks scal-
able, high-quality, automatic solutions. As a result, multi-
layer escape routing for high-end BGAs typically requires
extensive human intervention in practice.
This paper introduces a novel approach to multi-layer

escape routing. Our approach builds on recent advances
in SAT (Boolean satisfiability) solving, in particular, the
solver MonoSAT, which efficiently supports network-flow
constraints within a general constraint-solving framework.
We formulate multi-layer escape routing in this framework
and demonstrate scalability to the largest BGAs presently in
common use, with more than 2000 pins. Our approach sup-
ports 45- and 90-degree routing, simultaneously places traces
and vias, and supports all commonly used via technolo-
gies, including through-hole, blind, buried, and any-layer
micro-vias. In addition, because our approach is based on
constraint-solving, it can flexibly interoperate with partial
solutions from other routing techniques.
We demonstrate the utility of our technique by finding es-

cape routings for a diverse set of large, commercial BGAs.
Compared to a typical layer-by-layer approach, our approach
produces better routings, often saving one or more PCB lay-
ers for larger BGAs, and in some cases, proving that no so-
lution is possible with fewer layers. Finally, we describe how
our technique can be extended to handle common additional
constraints, such as differential-pair constraints.

1. INTRODUCTION
As integrated circuits have become larger and denser, es-

cape routing for dense packages such as ball grid arrays
(BGAs) has become an increasingly important and challeng-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICCAD ’16 November 07-10, 2016, Austin, TX, USA
c⃝ 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4466-1/16/11.

DOI: http://dx.doi.org/10.1145/2966986.2967072

ing problem. High density BGAs may have 2000 or more
pads, and there may only be room for a single trace be-
tween adjacent pads, requiring the use of multiple layers to
fully escape the part. In fact, escape-routing dense BGAs is
often the single factor that forces extra layers to be added
to printed circuit boards (PCBs) [29].

However, while many prior studies have considered single-
layer escape routing, few have addressed multi-layer escape
routing. Whereas single-layer escape routing can be re-
duced to a network flow problem and solved using linear
programming, multi-layer escape routing — in which both
vias and traces are placed — cannot be modelled as a pure
network flow problem. As a result, most existing solutions
to multi-layer escape routing rely on a greedy, layer-by-layer
approach, which can result in sub-optimal solutions requir-
ing many additional layers.

Here we show how, by making use of the new capabilities
of a state-of-the-art, open-source1 constraint solver, Mono-
SAT [2], we can achieve efficient, fully automatic, and scal-
able multi-layer escape routing. Our approach simultane-
ously places traces and vias in high-density multilayer PCBs,
supporting 45-degree (as well as 90-degree) grid-based rout-
ing, as well as several common via technologies (through-
hole, blind, buried, and any-layer micro-vias). We show that
our approach is appropriate to modern BGAs and modern
PCB printing technology, and demonstrate experimentally
that our approach scales to the largest and densest BGAs in
common use at the time of writing. Across a variety of PCB
technologies and real BGA packages, our technique finds so-
lutions requiring fewer layers than a standard layer-by-layer
approach. Finally, we extend our approach with support for
differential pair routing, providing the first robust solution
for multi-layer escape routing of differential pairs.

2. BACKGROUND
In order to integrate a package onto a PCB, traces must

be routed on the PCB to connect each pin or pad on the
package to its appropriate destination. PCB routing is a
challenging problem that has given rise to a large body of
research (e.g., [18, 43, 17]). However, high-density pack-
ages with large pin-counts, such as ball grid arrays, can be
so difficult to route that a sub-problem, escape routing, al-
ready presents an important challenge. In escape routing,
the goal of connecting each signal pin on the package to its
intended destination is (temporarily) relaxed. Instead, an
easier initial problem is considered: find a path from each

1http://www.cs.ubc.ca/labs/isd/projects/monosat/

signal pin to any location on the PCB on the perimeter of the
BGA. Once such an escape routing has been found, each of
those escaped traces is routed to its intended destination in
a subsequent step (that subsequent routing is not typically
considered part of the escape routing process). Typically,
during escape routing each pin is routed to the perimeter of
the ball grid array, spread over the layers of the PCB.
For our purposes, a printed circuit board consists of one

or more layers, with the package connected to the top-most
layer. Some layers of the PCB are reserved just for ground
or for power connections, while the remaining layers, some-
times including the top-most layer that the package connects
to, are routable layers. Signals along an individual layer are
conducted by metal traces, while signals crossing layers are
conducted by vias. Different manufacturing processes sup-
port traces or vias with different diameters; denser printing
capabilities can allow for multiple traces to fit between adja-
cent BGA pads (or, conversely, can support tighter spacing
between adjacent BGA pads).
Different manufacturing processes also support different

styles of vias, with different restrictions on their use. Four
of the most common via types, all of which are supported
by our approach, are through-hole, blind, buried, and micro-
vias. Through-hole vias are holes drilled straight through
the PCB and then coated with a conductive surface, con-
necting all the layers together at that position. Blind vias
are drilled part-way through the PCB, starting from the top
or bottom of the PCB. Buried vias are similar to through-
vias, but connect inner layers of the PCB rather than the
top-most and bottom-most. Micro-vias connect any two ad-
jacent layers together. Vias are typically substantially wider
in diameter than traces (typically, by a factor of 1.5, 2, or
3). As a result, placing a via has the effect of reducing the
space available for routing traces on the layers that the via
passes through, sometimes substantially.
The literature on escape routing can be roughly divided

into several categories:

1. Analytical or optimal solutions:

A small body of work proposes analytical solutions for
optimal BGA breakout – but often with major limita-
tions that would limit their utility in practice – usually,
that the layout is for a single layer PCB. There are an-
alytical solutions [27], optimal algorithms [42, 25], and
also fast, heuristicly-guided (but not necessarily opti-
mal) algorithms [32], all for variations of single-layer
BGA breakout.

2. Design patterns and heuristics:

Much of the literature on multi-layer escape routing
proposes specific design patterns or heuristics for via
placement and trace routing. For example, [36] pro-
poses routing triangular sub-sections of each layer first,
while [31] proposes a ‘column-by-column’ routing pat-
tern for routing hexagonal (non-grid) pin-arrays. Much
attention has also been given to the question of how to
position BGA pads and vias on the very top layer of
the PCB [16]. (However, in recent years technological
improvements allowing vias to be placed directly un-
derneath the BGA pads may have partially obviated
the utility of such patterns, at least in high-end elec-
tronics [13].) A survey of such design patterns can be
found in [30].

3. Network flow solutions:

Many researchers have modelled single-layer escape rout-
ing as a network flow problem. Although in the general
case, the disjoint-paths problem (in which the goal is
to find disjoint paths in a graph between multiple spe-
cific start and end pairs) is NP-hard [26, 34], the spe-
cial case in which all destinations are the same (or are
interchangeable) can be transformed into a maximum-
flow or a minimum-cost maximum-flow problem, and
solved in polynomial time. Network flow-based single-
layer escape routing has been considered in many stud-
ies [41, 35, 3, 12, 11, 38]; a good survey of these can
be found in [39].

The exact way in which the flow graph is constructed
depends on a number of factors, including whether 45-
degree routing is supported and whether the grid is
rectilinear or hexagonal. Typically, the problem is
modelled as a network flow instance in which each
each edge and each node in the graph have capacity
1. (Node capacity constraints can be converted into
edge capacity constraints by replacing each node with
two nodes, and adding a single, 1-capacity arc between
them.) In order to improve scalability, some encodings
allow higher capacities per node (typically, 2 or 3), in
which case some nodes correspond to multiple traces
[38].

Unfortunately, unless the positions of the vias are fixed
in advance (in which case the problem reduces to a se-
ries of independent single-layer instances), multi-layer
escape routing cannot be directly modelled as a net-
work flow problem; this is because the vias that con-
nect layers together are wider than normal traces. As
a result, flow pushed along an edge representing a via
must occlude any flow along adjacent edges to the via,
on the layers above and below the via. This occlusion
cannot be directly modelled as a pure network flow
instance.

For this and similar reasons, most existing network
flow models of escape routing come with major lim-
itations — typically that only a single layer is being
routed, or that all wires and vias are the same width
— or make strong simplifying assumptions about the
nature of the package to be routed. For the special
case of routing buses, in which two dense pin-arrays
have a set of contiguous signals that must be routed
together in a consistent order between the two pin ar-
rays, an optimal, poly-time, multilayer routing algo-
rithm is known [20, 37, 19].

4. Constraint-based approaches:

Recently, several studies have explored using integer
linear programming (ILP) solvers to combine network
flow encodings with additional constraints. Although
we will use a SAT solver rather than an ILP solver,
these works are the most similar to ours in the liter-
ature (though they all differ from our contribution in
key ways). Both [12] and [14] apply ILP solvers to
single-layer escape routing. In [15], this work was ex-
tended to support multi-layer escape routing for stag-
gered pin arrays, in which pins on alternating rows
of the BGA are assumed to be offset from the previ-
ous row, forming a hexagonal pattern, rather than a

rectlinear grid. Their encoding is specific to staggered
pin grid arrays (just as ours is specific to rectilinear
grid arrays), and so cannot be directly compared to
our approach. Their approach also does not support
differential-pair routing, whereas ours does. Another
recent study, [22], also considered an ILP formulation
for solving multi-layer (grid-based) escape routing as
part of a chip co-design method. This work does sup-
port differential pairs, however, their formulation as-
sumes that the solver can choose the positions of the
signal pins on the package, as opposed to the usual
case where the BGA’s pin-out is given (the case we
consider here), and so this work is also not directly
comparable to our contribution.

Many variants of the escape routing problem have been con-
sidered in the literature. [10, 21, 24, 33] consider (single-
layer) escape routing in the presence of ordering constraints
requiring some of the signals to be routed next to each other
on the perimeter (this is a common requirement for signals
representing contiguous bits of a word or address). [24]
uses a SAT solver to perform ordered, single-layer escape
routing. This approach is likely the most similar to ours in
the literature; however they do not support via-routing or
multi-layer routing, and report scalability only up to ≈ 256
pins, whereas our approach scales to more than 2000 pins
and can route vias over multiple layers. On the other hand,
we do not support ordering constraints. Some approaches
also consider differential pair routing ([40, 23, 22]), which
we will discuss in Section 6, or matched-length routing.
Overall, work on escape routing fits into the broader topic

of trace routing. There is a large body of work addressing
PCB and VLSI wire routing [18, 43, 17], including sev-
eral approaches applying constraint solvers: [7, 6, 8, 4]
applied SAT and answer-set-programming (ASP) solvers to
rectilinear wire routing, and [9] applied an augmented SAT
solver to clock routing. However, while these approaches are
similar to ours in that they apply SAT solvers and related
technologies to wire routing, none of them is appropriate for
escape routing.

3. MAXIMUM FLOW IN SYMBOLIC GRAPHS
As many studies have previously observed (see, e.g., [39]),

single-layer escape routing can be modelled as a maximum-
flow or a minimum-cost maximum-flow problem, and solved
efficiently using either dedicated maximum flow algorithms
or linear programming solvers (for minimum-cost flows). How-
ever, multi-layer escape routing cannot be directly modelled
as a network flow problem if vias can be freely placed, be-
cause the placement of vias will typically occlude the place-
ment of nearby traces on the layers crossed by the via. In
other words, the network topology changes as different via
placements are analyzed. Our answer to this challenge is
to employ symbolic graphs, in which the edges in the graph
or their capacities are variables to be assigned during the
search for a solution. For example, Figure 1 shows a sym-
bolic graph with 3 vertices and between 0 and 3 edges. Each
edge has an associated Boolean variable indicating whether
that edge is in the graph or not, so this symbolic graph
encodes 8 different concrete graphs, corresponding to the 8
possible truth assignments to the variables a, b, and c.
The use of symbolic graphs, however, introduces a new

problem of how to reason about network flows on symbolic

1

2var=a, cap=1

3var=c, cap=4

var=b, cap=2

(a ∨ b) ∧ (¬b ∨ ¬c) ∧ (maxflow1,3 ≥ 1) ∧ (maxflow1,3 ≤ 2)

Figure 1: A symbolic graph G with a logical formula con-
straining it; edge a is in G iff Boolean variable a is assigned
True. Assignment {a, b,¬c} satisfies both the propositional
constraints and also the maximum flow constraints in the as-
sociated graph, while assignment {a,¬b, c} is not satisfying
because the maximum flow from node 1 to node 3 is at least
4 when edge c is in G, violating constraint maxflow1,3 ≤ 2.

graphs. Rather than solving a standard maximum flow prob-
lem (where one is given a graph and source and sink nodes,
and the goal is to find the maximum s-t flow in that graph),
the challenge becomes the inverse problem: given a set of
allowable configurations of the edges in a partially speci-
fied graph G, and one or more constraints on the allowable
maximum s-t flow in G for source and sink nodes s and t,
how does one find a concrete graph with an s-t flow in the
allowable range (or prove that no such graph exists)?

Returning to the example in Figure 1, a propositional for-
mula ϕ constrains a symbolic graph G, and the solver must
find an assignment to the variables that satisfies ϕ. (The
edges are also marked with capacities, which in general can
be integer-valued variables, but for our purposes will be con-
stants.) ϕ includes logical constraints, as well as two maxi-
mum flow constraints. The predicate maxflow1,3 ≥ 1 eval-
uates to True if and only if, under assignment to the edge
atoms in ϕ, the maximum flow from node 1 to node 3 is
at least 1, while the predicate maxflow1,3 ≤ 2 evaluates to
True if and only if the maximum 1 → 3 flow is at most 2.

It is possible to encode symbolic graphs and max-flow con-
straints directly in propositional logic, or, more efficiently,
using SAT modulo theory (SMT) solvers with support for
linear real arithmetic, such as Z3 [5] or CVC [1]. Unfor-
tunately, doing so on graphs of non-trivial size (more than
a few hundred nodes) is prohibitively expensive [2]. How-
ever, in recent work [2] we introduced MonoSAT, a SAT
modulo theory solver for a wide class of ‘monotonic’ the-
ories, including efficient support for many properties from
graph theory, finite state machines, and geometry, which
were previously prohibitively expensive to encode in SAT
solvers. Particularly relevant to our discussion here, Mono-
SAT provides high-performance support for formulas con-
straining the maximum s-t flow of symbolic graphs, reason-
ing about the maximum flow of graphs with on the order
of 10,000 nodes and 100,000 edges. In the next section, we
show how to formulate the multi-layer escape routing prob-
lem using maximum flow on symbolic graphs, thereby en-
abling the use of MonoSAT in a novel and efficient solution
to multi-layer escape routing.

4. MULTI-LAYER ESCAPE ROUTING
In single-layer escape routing methods, the positions of

the vias (and the pads or pins) are generally fixed, allowing
one to remove, in advance, any traces that would be blocked
by pins or vias, and hence reduce the problem to a pure
network-flow problem that can be solved efficiently. In con-

Figure 2: Mutli-layer escape routing with simultaneous via-
placement. On-grid positions are shown as large nodes,
while 45-degree traces pass through the small nodes. This
is a symbolic graph, in which some of the nodes or edges in
this graph are included only if corresponding Boolean vari-
ables in an associated formula ϕ are assigned to True. We
construct ϕ such that nodes connecting adjacent layers (the
central black node, representing a via) are included in the
graph only if the nodes surounding the via (marked in gray)
are disabled. The via nodes (black) are connected to all
nodes around the periphery of the gray nodes, as well as
connected to the central node (interior to the gray nodes).

trast, we will allow the constraint solver to choose where to
place vias. As a result, except for the top-most layer of the
PCB (in which the positions blocked by pads are fixed), the
positions of the vias will not be known in advance.
In order to support the placement of vias, we will model

multi-layer escape routing as a formula ϕ over a constrained,
symbolic graph G, in which some of the edges are included in
G only conditionally, depending on the assignment of vari-
ables in ϕ (as described in the previous section). This will
allow us to model mutually exclusive edges for vias and the
traces they occlude.
Figure 2 illustrates the symbolic flow graph we propose to

model multi-layer escape routing. Each layer of this flow-
graph is similar to typical single-layer network flow-based
escape routing solutions (see, e.g., [38]), except that in our
graph all positions are potentially routable, with no spaces
reserved for vias or pads. Each node in the graph has a node
capacity of 1 (with node capacities enforced by introducing
pairs of nodes connected by a single edge of capacity 1).
Instead of choosing the pads or vias in advance, we in-

clude potential vias in the graph, spaced at regular intervals,
that the solver may choose to include or exclude from the
graph. Potential vias are shown as black nodes in Figure
2, with neighbouring nodes shown in gray, indicating that
they would be blocked by that via. In Figure 2, we show in
gray the nodes that would be blocked by a via with a radius
roughly 1.5 times the width of a trace. However, different
via widths can be easily supported by simply altering the
pattern of gray nodes to be blocked by the via.
Each via node is connected to the nodes surrounding the

gray nodes that are blocked by the via, as well as the central
node interior to the gray nodes (see Figure 3). These rep-
resent routable connections on the layer if the via is placed,
allowing traces to be routed from the via nodes to the nodes
surrounding the blocked nodes, or allowing the via to route
through the layer and down to the next layer below. Each
via node is associated with a Boolean variable (via2 in Figure
3), such that the via node is included in the graph if and only
if via2 is True in ϕ. The potentially blocked nodes around
each via are also associated with variables (for clarity, drawn

b

b
b

b
b

b

cc c c c c c

b

a
a

a
a

aa
a

a

via2

via3

via2 → ¬ai

via3 → ¬ai

(via2 ∧ ¬via3) ↔ bi

(¬via2 ∧ via3) ↔ ci

Figure 3: Detail from layer 2 of Fig. 2, showing some
symbolic nodes and edges controlled by Boolean variables
(ai, bi, ci, via2, via3) in formula ϕ. To avoid clutter, the pic-
ture shows multiple edges with labels a, b, and c, but for-
mally, each edge will have its own Boolean variable ai, bi,
and ci. All nodes and edges have capacity 1, however, nodes
and edges with associated variables are only included in the
graph if their variable is assigned True. Two via nodes
are shown, one connecting from the layer above, and one
connecting to the layer below. Nodes in the layer that are
occluded if a via is placed in this position are shown in gray
(in this case, the via has a diameter twice the width of a
trace, but any width of via can be modelled simply by ad-
justing the pattern of nodes blocked by the via). The first
two constraints shown enforce that if either via node is in-
cluded in G, then the nodes in the layer that would be oc-
cluded by the via (in gray) must be disabled. The remaining
constraints allow the nodes surrounding the blocked nodes
to connect to the via if and only if the via begins or ends
at this layer (rather than passing through from an upper to
a lower layer). These constraints are included in ϕ for each
potential via location at each layer in G.

as a in Figure 3, however in ϕ each edge will actually have
a unique variable ai). For each via, we include constraints
via → ¬ai in ϕ, disabling all the immediate neighbouring
nodes if the via is included in the graph. Any satisfiable
assignment to these constraints in ϕ selects a subset of the
nodes of G representing a compatible, non-overlapping set
of vias and traces.

Four configurations are possible for the two via nodes
shown in Figure 3: (a) neither via node is enabled, allowing
traces to be routed through the gray nodes on this layer, (b)
the via enters from above, and connects to this layer, (c)
the via begins at this layer, connecting to a layer below, and
(d) the via passes through this layer, connecting the layer
above to the layer below. By adding constraints restricting
the allowable configurations of vias, as described in Figure
4, our approach can model vias as either through-hole vias,
buried vias, blind vias, or any-layer micro-vias. With mi-
nor adjustments to the constraints, these different via types
can be combined into a single model or can be restricted to
specific layers of the PCB, allowing a wide variety of PCB
manufacturing processes to be supported.

We add an additional source node s and sink node t to
the graph, with directed, capacity-1 edges connecting the s
to each signal in the graph, and directed, capacity-1 edges
connecting all nodes on the perimeter of each layer to t.
Finally, a single flow constraint maxflows,t ≥ |signals| is
added to ϕ, ensuring that in any satisfying assignment, the
subset of edges included in the graph must admit a flow
corresponding to a valid escape routing for all of the signal
pins.

Via Type Constraint

Through-hole viaj → (¬a1
i ∧ ¬a2

i ∧ . . .¬an
i)

Blind viaj → (¬a1
i ∧ ¬a2

i ∧ . . .¬aj
i)

Buried viaj → (¬as
i ∧ ¬as+1

i ∧ . . .¬at
i)

Micro —

Figure 4: Constraints enforcing different via models in ϕ,
for via1 . . . vian, where variables ak

i control the potentially
blocked nodes of viaj . (For variable ak

i , the index k indi-
cates the layer number, and the constraint is enforced for
all values of i of neighbouring nodes to the via.) For buried
vias, s and t are the allowable start and end layers for the
buried via, determined by the type of buried via. Micro-vias
allow any two adjacent layers to be connected and require no
additional constraints (the default behaviour); if only a sub-
set of the layers support microvias, then this can be easily
enforced. Each of these via types can also be combined to-
gether in one routing or (excepting through-holes) restricted
to a subset of the layers.

A solution to this formula will correspond to a feasible
multi-layer escape routing, including via and trace place-
ment. However, as MonoSAT only supports maximum
flow constraints, and not minimum-cost maximum flow con-
straints, the trace routing in this solution is typically far
from optimal (with traces making completely unnecessary
detours, for example). For this reason, once MonoSAT has
produced a feasible escape routing, including a placement
of each via, we then apply an off-the-shelf minimum-cost
maximum flow solver [28] to find a corresponding locally
optimal trace routing for each individual layer of the feasi-
ble routing. This can be solved using completely standard
linear-programming encodings of minimum-cost maximum-
flow, as the vias are already placed and the layer that each
signal is to be routed on is already known.

5. EVALUATION
We evaluate our procedure on a wide variety of dense ball

grid arrays from four different companies, ranging in size
from a 28x28 pad ARM processor with 382 routable signal
pins to a 54x54 pad FPGA with 1755 routable signal pins.
These parts, listed in Tables 1 and 2, include 32-bit and 64-
bit processors, FPGAs, and SoCs. The first seven of these
packages use 0.8mm pitch pads, while the remainder use
1mm pitch pads. Each part has, in addition to the signal
pins to be escaped, a roughly similar number of power and
ground pins (for example, the 54x54 Xilinx FPGA has 1137
power and ground pins, in addition to the 1755 signal pins).
Most parts also have a small number of disconnected pins,
which are not routed at all. Typically, power and ground
pins are routed to a number of dedicated power and ground
layers in the PCB, separately from the signal traces; we
assume that the bottom-most layers of the PCB contain the
power and ground layers, and route all power and ground
pins to those layers with through-hole vias. This leaves only
the routable signal pins to be escaped in each part on the
remaining layers.
For comparison, we implemented a simple network-flow

based single-layer escape routing algorithm, similar to the
one described in [38]. We then implemented a greedy, layer-
by-layer router by routing as many signals as possible on the
top-most layer (using maximum flow), and, while unrouted

signals remain, adding a new layer with vias connecting to
each unrouted signal. This process repeats until no unrouted
signals remain. As can be seen in Table 1, this layer-by-
layer routing strategy is simple but effective, and has been
previously suggested for multi-layer escape routing in sev-
eral works in the literature (for example, [36] combines this
strategy with their single-layer routing heuristic to create a
multi-layer escape routing method).

In Table 1, we compare our approach to the layer-by-layer
strategy using blind vias, and, in Table 2, using through-hole
vias. All experiments were run on a 2.67GHz Intel x5650
CPU (12Mb L3, 96 Gb RAM), in Ubuntu 12.04. Although
our approach supports buried and micro-vias, we found that
all of these instances could be solved by MonoSAT with just
2 or 3 signal layers, even when using the more restrictive
through-hole and blind via models, and so we omit evalua-
tions for these less restrictive models (which, in two or three
layer PCBs, are nearly equivalent to blind vias).

In Tables 1 and 2, MonoSAT finds many solutions requir-
ing fewer layers than the layer-by-layer strategy (and in no
case requires more layers than the layer-by-layer approach).
For example, in Table 1, MonoSAT finds a solution us-
ing blind vias (for the TI AM5K2E04 processor, packaged
in a dense, 33x33 pad, 0.8mm pitch BGA) which requires
only 3 signal layers, whereas the layer-by-layer approach re-
quires 4 signal layers for the same part. In this case, Mono-
SAT was also able to prove that no escape routing using 2
or fewer layers was possible for this circuit (assuming the
same grid-model is used). In Table 2, using more restrictive
through-vias, there are several examples where MonoSAT
finds solutions using 1 or even 2 fewer signal layers than the
layer-by-layer approach. We can also see, in Tables 1 and 2,
that MonoSAT tends to find solutions with slightly longer
net lengths on average.

A multi-layer routing produced by MonoSAT is shown in
Figure 5. This escape routing, for an ARM processor, re-
quired 2 fewer signal layers than the solution found by greedy
layer-by-layer routing. Examining Figure 5 suggests a likely
explanation for how MonoSAT was able to reduce the layer
count: in several places near the periphery of the escape
routing, MonoSAT has left channels open at lower layers
by routing several adjacent pads at the top layer (which
does not require vias), instead of routing them at lower lay-
ers using through-vias. These channels then allowed large
numbers of traces to be routed through the spaces left open
at lower layers, which would otherwise have been mostly
blocked by through vias.

6. EXTENSIONS
One common requirement in practical escape routing is

to support differential pair routing, in which some of the
signals are pairs that should be routed together wherever
possible (and, in particular, should be routed on the same
layer and to adjacent positions in the escape routing).

Because our approach relies on a general purpose con-
straint solver, it can be augmented with additional con-
straints. We extend our approach to support differential
pair routing for through-vias in two steps. First, for each
differential pair (A,B), we add a constraint enforcing that
they be routed to the same layer (while still allowing the
solver to choose which layer to route them on). This is done
simply by forcing the through-vias for the paired signals to
be assigned to the same value at each layer (while still al-

Part Size #Signals Layer-by-Layer MonoSAT
Layers Length (mm) Time (s) Layers Length (mm) Time (s)

TI AM5716 28x28 382 3 8.2 5.4s + 63.6s 2* 8.5 54.4s + 81.2s
TI AM5718 28x28 390 3 8.2 5.4s + 70.4s 2* 8.3 47.4s + 118.4s
TI AM5726 28x28 477 3 6.8 5.3s + 49.7s 3 7.5 53.3s + 492.8s
TI AM5728 28x28 485 3 6.7 5.3s + 48.6s 3 7.2 53.8s + 387.2s
TI TMS320C 29x29 533 4 8.0 7.7s + 81.5s 3 8.8 75.0s + 497.7s
TI AM52E02 33x33 676 4 8.9 9.5s + 107.7s 3 9.6 103.8 + 921.8
TI AM5K2E04 33x33 690 4 8.7 9.2s + 96.8s 3* 9.9 114.7s + 962.0s
TI 66AK2H1 39x39 876 3 16.0 24.0s + 508.0s 2* 16.8 338.4s + 878.1s
Lattice M25 32x32 601 2* 11.8 10.4s + 160.5s 2* 12.3 140.1s + 306.7s
Lattice M40 32x32 687 3 11.6 114.6s + 205.6s 2* 12.0 194.0s + 364.4s
Lattice M40 34x34 729 3 13.0 18.5s + 300.0s 2* 13.1 254.3s + 425.2s
Lattice M80 34x34 785 3 12.1 17.8s + 266.5s 2* 13.0 411.3s + 505.8s
Lattice M80 42x42 1133 3 14.4 27.0s + 499.0s 3 15.0 810.3s + 882.4s
Lattice M115 34x34 785 3 12.1 16.9s + 274.1s 2* 13.0 392.9s + 578.2s
Lattice M115 42x42 1171 3 14.1 27.4s + 461.4s 3 14.6 242.5s + 254.7s
Altera 10AX048 28x28 448 2* 10.2 8.0s + 109.3s 2* 11.3 85.1s + 183.4s
Altera 10AX066 34x34 636 2* 12.7 13.1s + 218.3s 2* 13.7 151.1s + 371.2s
Altera 10AX115 34x34 652 2* 13.2 13.9s + 286.8s 2* 13.6 168.5s + 501.9s
Altera 10AT115 44x44 994 3 16.7 29.6s + 579.5s 3 17.4 384.8s + 928.8s
Altera EP4S100 44x44 1008 3 16.9 31.0s + 698.6s 3 17.6 401.8s + 1154.6s
Xilinx XCVU160 46x46 981 3 17.5 34.3s + 617.9s 3 18.3 414.3s + 977.5s
Xilinx XCVU440 49x49 1536 4 19.2 52.2s + 1167.5s 3* 20.1 1246.9s + 2133.7s
Xilinx XCVU440 54x54 1755 4 20.0 60.9s + 1438.1s 3* 21.6 1597.3s + 2726.9s

Table 1: Multi-layer escape routing with blind vias. Run-times are reported as a + b, where a is the time to find a
feasible multi-layer routing, and b is the time to post-process that feasible solution using minimum-cost maximum flow routing.
Boldface highlights when our approach required fewer layers; solutions that use a provably minimal number of layers are marked
with *. Length shows the average trace length in mm. These solutions ignore differential pair constraints (routing differential
signals as if they were normal signals).

Figure 5: A multi-layer (3 signal layers + power and ground)
escape routing produced by MonoSAT, using through-hole
vias, for the TI TMS320C, a 29x29, 0.8mm pitch BGA. This
routing required 238 seconds, and required 2 fewer signal lay-
ers than a greedy layer-by-layer approach. Pads and traces
on the top layer are in blue, vias and traces on layer 2 are
in red, and on layer 3 are in green. Ground and power vias
(yellow) are routed to layers not shown.

Figure 6: A multi-layer (3 signal layers + power and ground
layers) escape routing for the TI AM5728 ARM processor,
produced by MonoSAT. As in Figure 5, traces on layer 1
are blue, on layer 2 are red, and on layer 3 are green. This
escape routing uses blind vias (allowing traces on layer 3 to
be routed beneath vias to layer 2), supports differential pairs
(pairs shown in gray), and required just over 200 seconds.

Part Size #Signals Layer-by-Layer MonoSAT
Layers Length (mm) Time (s) Layers Length (mm) Time (s)

TI AM5716 28x28 382 3 8.2 5.4s + 58.9s 2* 7.8 35.8s + 62.9s
TI AM5718 28x28 390 3 8.2 5.1s + 61.8s 2* 7.5 46.0s + 69.1s
TI AM5726 28x28 477 4 7.1 7.7s + 63.1s 3 7.2 97.6s + 80.2s
TI AM5728 28x28 485 4 6.8 6.8s + 56.7s 3 7.4 110.1s + 85.4s
TI TMS320C 29x29 533 5 8.2 10.9s + 106.1s 3 9.2 109.6s + 128.4s
TI AM52E02 33x33 676 5 8.9 13.4s + 133.3s 3 9.6 203.2s + 180.4s
TI AM5K2E04 33x33 690 5 8.8 12.7s + 125.4s 3* 9.5 291.3s + 187.8s
TI 66AK2H1 39x39 876 3 16.1 24.9s + 495.1s 2* 16.6 347.9s + 510.7s
Lattice M25 32x32 601 2* 11.8 10.7s + 143.7s 2* 12.0 132.3s + 278.7s
Lattice M40 32x32 687 3 11.6 15.3s + 183.1s 2* 12.2 161.5s + 311.3s
Lattice M40 34x34 729 3 13.0 18.0s + 270.2s 2* 13.7 183.9s + 405.6s
Lattice M80 34x34 785 3 12.1 17.7s + 238.4s 3 12.6 304.8s + 638.2s
Lattice M80 42x42 1133 3 14.5 26.2s + 478.4s 3 15.1 810.3s + 882.4s
Lattice M115 34x34 785 3 12.1 16.8s + 227.1s 3 12.6 364.2s + 358.7s
Lattice M115 42x42 1171 3 14.3 27.8s + 457.3s 3 15.1 945.9s + 1500.3s
Altera 10AX048 28x28 448 2* 10.2 8.2s + 98.2s 2* 10.5 109.2s + 115.8s
Altera 10AX066 34x34 636 2* 12.7 14.0s + 212.3s 2* 14.0 203.5s + 282.9s
Altera 10AX115 34x34 652 2* 13.2 13.3s + 235.1s 2* 13.6 198.2s + 293.7s
Altera 10AT115 44x44 994 3 16.7 28.9s + 455.2s 3 16.9 616.1s + 992.9s
Altera EP4S100 44x44 1008 3 17.0 28.5s + 589.2s 3 17.5 733.5s + 834.5s
Xilinx XCVU160 46x46 981 3 17.6 32.5s + 538.3s 3 18.2 646.6s + 1216.4s
Xilinx XCVU440 49x49 1536 4 19.1 53,7s + 1051.1s 3 20.1 3457.5s + 1284.5s
Xilinx XCVU440 54x54 1755 4 19.9 600s + 1373.6s 3 21.2 6176.9s + 1861.9s

Table 2: Multi-layer escape routing with through-vias. Run-times are reported as a+ b, where a is the time to find a
feasible multi-layer routing, and b is the time to post-process that feasible solution using minimum-cost maximum flow routing.
Boldface highlights when our approach required fewer layers; solutions that use a provably minimal number of layers are marked
with *. Length shows the average trace length in mm. These solutions ignore differential pair constraints (routing differential
signals as if they were normal signals).

lowing the solver to select which of those layers to route the
pair to):

∧n
i=1 viaAi = viaBi.

In the second step, we combineMonoSAT with the single-
layer differential pair routing method from [40], by repeat-
edly solving the routing formula ϕ while adding extra con-
straints until MonoSAT’s solution admits a valid differen-
tial routing, as follows: MonoSAT initially finds a feasible
escape routing that does not route the differential pairs to-
gether, but which does (because of the above constraint)
route both signals of each pair on the same layer. Next, on
each layer where MonoSAT has placed differential pairs, we
apply the single-layer differential pair routing technique de-
scribed in [40]. If this technique fails, then there must exist
a layer in which at least one differential pair failed to route,
or, after successfully routing the differential pairs, at least
one non-differential signal could no longer be escaped. We
find one such unrouted signal or differential pair, and collect
all the signals between that unrouted signal and the near-
est edge of the package on the same layer. We then add a
new constraint to MonoSAT, asserting that this unrouted
differential pair (or unrouted signal) must be placed on a
different layer than at least one of those nearby signals. Af-
ter adding this constraint to ϕ, we re-solve with MonoSAT
and repeat.
By repeatedly forcing the differential pairs and signals

that fail to route to separate layers, as described above, this
process will eventually find a valid differential routing, given
enough routable layers. In the worst case, this may require
an exponential number of constraint solver calls. However,
in practice we found that it converges quickly. For example,

Figure 6 shows a multi-layer escape routing produced by the
above technique for an ARM processor, the TI AM5728, in
which more than 20 pairs of signals have been routed dif-
ferentially by MonoSAT while also escaping the remaining
signals, across 3 layers. This solution required only 2 itera-
tions of the above process to solve, and 204 seconds of total
compute time.

7. CONCLUSION
We have introduced a fully automatic, constraint-solver

based technique for efficient multi-layer escape routing and
shown that in a wide variety of dense, commercial ball grid
arrays, our technique can find escape routings using fewer
layers than greedy, layer-by-layer escape routing. Our tech-
nique runs in just a few hours even for very dense packages
with more than 2000 pins. Finally, we have shown that our
technique can be extended to handle multi-layer escape rout-
ing with differential pairs, which, to the best of our knowl-
edge, we are the first to support.

8. ACKNOWLEDGMENTS
This work was supported in part by grants from the Nat-

ural Sciences and Engineering Research Council of Canada.
We also thank Jacob Bayless for his assistance, and for
bringing this subject to our attention.

9. REFERENCES
[1] Clark Barrett, Christopher L Conway, Morgan Deters,

Liana Hadarean, Dejan Jovanović, Tim King, Andrew
Reynolds, and Cesare Tinelli. CVC4. In CAV, 2011.

[2] Sam Bayless, Noah Bayless, Holger Hoos, and Alan
Hu. SAT Modulo Monotonic Theories. In AAAI, 2015.

[3] Wun-Tat Chan, Francis YL Chin, and Hing-Fung
Ting. Escaping a grid by edge-disjoint paths.
Algorithmica, 2003.

[4] Elvin Coban, Esra Erdem, and Ferhan Ture.
Comparing ASP, CP, ILP on two challenging
applications: Wire routing and haplotype inference.
LaSh, 2008.

[5] Leonardo De Moura and Nikolaj Bjorner. Z3: An
efficient SMT solver. In TACAS. 2008.

[6] Deborah East and Miroslaw Truszczynski. More on
wire routing with ASP. In Workshop on ASP, 2001.

[7] Esra Erdem, Vladimir Lifschitz, and Martin DF
Wong. Wire routing and satisfiability planning. In
Computational Logic. 2000.

[8] Esra Erdem and Martin DF Wong. Rectilinear steiner
tree construction using answer set programming. In
ICLP, 2004.

[9] Amit Erez and Alexander Nadel. Finding bounded
path in graph using SMT for automatic clock routing.
In CAV, 2015.

[10] Jia-Wei Fang, Chin-Hsiung Hsu, and Yao-Wen Chang.
An integer-linear-programming-based routing
algorithm for flip-chip designs. TCAD, 2009.

[11] Jia-Wei Fang, I-Jye Lin, Yao-Wen Chang, and
Jyh-Herng Wang. A network-flow-based RDL routing
algorithmz for flip-chip design. TCAD, 2007.

[12] Jia-Wei Fang, I-Jye Lin, Ping-Hung Yuh, Yao-Wen
Chang, and Jyh-Herng Wang. A routing algorithm for
flip-chip design. In ICCAD, 2005.

[13] Frank Grano, Felix Bruno, Dana Korf, Eamon
OKeeffe, Cheryl Kelley, and NH Salem. Impact of
microvia-in-pad design on void formation. In SMTA,
2003.

[14] Yuan-Kai Ho, Hsu-Chieh Lee, and Yao-Wen Chang.
Escape routing for staggered-pin-array PCBs. TCAD,
2011.

[15] Yuan-Kai Ho, Xin-Wei Shih, Yao-Wen Chang, and
Chung-Kuan Cheng. Layer minimization in escape
routing for staggered-pin-array PCBs. In ASP-DAC,
2013.

[16] Michio Horiuchi, Eiji Yoda, and Yukiharu Takeuchi.
Escape routing design to reduce the number of layers
in area array packaging. Advanced Packaging, 2000.

[17] Chin-Hsiung Hsu, Huang-Yu Chen, and Yao-Wen
Chang. Multi-layer global routing considering via and
wire capacities. In ICCAD, 2008.

[18] Richard M Karp, Frank Thomson Leighton, Ronald L
Rivest, Clark D. Thompson, Umesh V Vazirani, and
Vijay V Vazirani. Global wire routing in
two-dimensional arrays. Algorithmica, 1987.

[19] Hui Kong, Tan Yan, and Martin DF Wong. Optimal
simultaneous pin assignment and escape routing for
dense PCBs. In ASP-DAC, 2010.

[20] Hui Kong, Tan Yan, Martin DF Wong, and
Muhammet Mustafa Ozdal. Optimal bus sequencing
for escape routing in dense PCBs. In ICCAD, 2007.

[21] Yukiko Kubo and Atsushi Takahashi. A global routing
method for 2-layer ball grid array packages. In ISPD,
2005.

[22] Seong-I Lei and Wai-Kei Mak. Optimizing pin
assignment and escape routing for blind-via-based
PCBs. TCAD, 2016.

[23] Tai-Hung Li, Wan-Chun Chen, Xian-Ting Cai, and
Tai-Chen Chen. Escape routing of differential pairs
considering length matching. In ASP-DAC, 2012.

[24] Lijuan Luo and Martin DF Wong. Ordered escape
routing based on Boolean satisfiability. In ASP-DAC,
2008.

[25] Qiang Ma, Hui Kong, Martin DF Wong, and
Evangeline FY Young. A provably good
approximation algorithm for rectangle escape problem
with application to PCB routing. In ASP-DAC, 2011.

[26] Matthias Middendorf and Frank Pfeiffer. On the
complexity of the disjoint paths problem.
Combinatorica, 1993.

[27] Leonidas Palios. Connecting the maximum number of
nodes in the grid to the boundary with nonintersecting
line segments. Journal of Algorithms, 1997.

[28] Laurent Perron. Operations research and constraint
programming at Google. In CP. 2011.

[29] Charles Pfeil. BGA breakout challenges. PCB
Fabrication Magazine, pages 10–13, 2007.

[30] Charles Pfeil. BGA breakouts and routing. 2010.

[31] Rui Shi and Chung-Kuan Cheng. Efficient escape
routing for hexagonal array of high density I/Os. In
DAC, 2006.

[32] Xiaoyu Song, Shaodi Gao, and Tejasvi P
Chakravarthy. An efficient ball grid array router.
International Journal of Electronics, 2002.

[33] Yoichi Tomioka and Atsushi Takahashi. Monotonic
parallel and orthogonal routing for single-layer ball
grid array packages. In ASP-DAC, 2006.

[34] Jens Vygen. NP-completeness of some edge-disjoint
paths problems. Discrete Applied Mathematics, 1995.

[35] Dongsheng Wang, Ping Zhang, Chung-Kuan Cheng,
and Arunabha Sen. A performance-driven I/O pin
routing algorithm. In ASP-DAC, 1999.

[36] Renshen Wang, Rui Shi, and Chung-Kuan Cheng.
Layer minimization of escape routing in area array
packaging. In ICCAD, 2006.

[37] Tan Yan, Hui Kong, and Martin DF Wong. Optimal
layer assignment for escape routing of buses. In
ICCAD, 2009.

[38] Tan Yan and Martin DF Wong. A correct network
flow model for escape routing. In DAC, 2009.

[39] Tan Yan and Martin DF Wong. Recent research
development in PCB layout. In ICCAD, 2010.

[40] Tan Yan, Pei-Ci Wu, Qiang Ma, and Martin DF
Wong. On the escape routing of differential pairs. In
ICCAD, 2010.

[41] Man-Fai Yu and Wayne Wei-Ming Dai. Pin
assignment and routing on a single-layer pin grid
array. In ASP-DAC, 1995.

[42] Man-Fai Yu and Wayne Wei-Ming Dai. Single-layer
fanout routing and routability analysis for ball grid
arrays. In ICCAD, 1995.

[43] Man-fai Yu, Joel Darnauer, and Wayne Wei-Ming Dai.
Planar interchangeable 2-terminal routing. Technical
Report, UCSC, 1995.

