
Efficient Modular SAT Solving for IC3
Sam Bayless∗, Celina G. Val∗, Thomas Ball†, Holger H. Hoos∗, Alan J. Hu∗

∗University of British Columbia, {sbayless, vcelina, hoos, ajh}@cs.ubc.ca
†Microsoft Research, tball@microsoft.com

Abstract—We describe an efficient way to compose SAT solvers
into chains, while still allowing unit propagation between those
solvers. We show how such a “SAT Modulo SAT” solver naturally
produces sequence interpolants as a side effect — there is no need
to generate a resolution proof and post-process it to extract an
interpolant. We have implemented a version of IC3 using this
SAT Modulo SAT solver, which solves both more SAT instances
and more UNSAT instances than PDR and IC3 on each of the
2008, 2010, and 2012 Hardware Model Checking Competition
benchmarks.

Index Terms—SAT, IC3, PDR, Interpolants

I. INTRODUCTION

SAT solvers play a central role in many hardware and
software model-checking techniques. In this paper, we intro-
duce three inter-dependent contributions, culminating in an
improved state-of-the-art model-checker. First, we describe a
way to compose multiple SAT solvers into chains and trees,
in order to efficiently solve problems that have an underlying
“modular” structure (for example, instances produced by un-
rolling a transition function). We show that this technique can
be thought of as a nested SAT Modulo Theory (SMT) solver,
and that we can apply techniques from lazy SMT solvers to
improve the performance of this “SAT Modulo SAT” solver.
Our nested SAT solver provides a general-purpose way to
take advantage of locality while solving a CNF with (known)
structure.

Secondly, we show that our SAT Modulo SAT solver pro-
duces sequence interpolants [5], [21], by extending previous
work by Chockler et al. [6]. These sequence interpolants are
produced without requiring explicit proof-traces.

Our third contribution is to demonstrate that our SAT
Modulo SAT solver can be useful in practice, by implement-
ing a variant of IC3 [4] using it (and, implicitly, the se-
quence interpolants we produce).1 We show that the resulting
model checker outperforms both IC3 and PDR [11] on the
2008, 2010, and 2012 Hardware Model Checking Competition
benchmarks.

II. MODULAR SAT SOLVERS

Given a partitioned CNF formula φ0, φ1, . . . φn, where each
φi is a set of clauses, the partitioned Boolean satisfiability
problem consists of determining the satisfiability of

⋃n
i=1 φi.

Here, we will consider only cases where the partitioning into

1Just to forestall a potential point of confusion: Though we apply some
techniques from lazy SMT solvers, we are not extending IC3 to handle theories
other than SAT. This has been done (see, e.g., [7]), but is orthogonal to our
contribution here. Our use of SMT techniques is instead to directly speed up
the core Boolean satisfiability reasoning of IC3.

clause sets is explicitly specified or can be observed directly
from the underlying problem. We will refer to the clause sets
φ0, φ1, . . . as modules, and to any SAT solver that is designed
to solve such a partitioned CNF, as a modular SAT solver.

Obviously, to solve a partitioned CNF one could simply
merge all the partitions and solve the resulting CNF using
a standard SAT algorithm, but doing so loses any structural
information that might have been present in the partitioned
CNF. Real-world problems often possess a high degree of
modular structure (e.g., formulas derived from real-world
circuits or software), so this structural information may be
useful. An approach that has been investigated widely in the
literature is to find the variables that are shared between
modules (we will refer to these as interface variables), and to
assign them first. Because the partitions φi are independent of
each other under any complete assignment to these variables,
each module can then be solved independently [17] (and in
parallel [15]). Unfortunately, this method requires a potentially
exponential number of assignments to the interface variables
to be tested. Alternatively, the interface variables can simply
be used to inform a static decision heuristic. Many strategies
for partitioning a CNF have been investigated for this latter
approach (e.g., [1], [9], [13]).

In this paper, we describe a new modular SAT algo-
rithm. This algorithm relies upon three existing capabilities
of typical incremental SAT solvers (such as MiniSat [10] and
PicoSat [2]), namely:

1) Incremental SAT solvers allow for a CNF to be solved
repeatedly as new clauses are added (maintaining heuris-
tic values and learned clauses between runs).

2) They allow for the temporary addition (and subsequent
removal) of unit clauses in the CNF. Equivalently, they
allow for the CNF to be solved repeatedly under the
temporary assumption of different partial assignments.

3) When the CNF is not satisfiable under such a partial
assignment, they can return a concise clause over just
the assumed unit clauses that ‘explains’ why those units
cannot be mutually true in the CNF. This clause will
include only variables that are common to both the
assumed unit clauses and to the CNF being solved under
the assumption.

A simple, recursive algorithm is shown in Alg. 1. To our
knowledge, we are the first to propose solving a general
partitioned CNF in this way; however, this algorithm is very
closely related to several other approaches, as we will discuss
below. Subsequently, we will build on this algorithm and arrive

Algorithm 1 (Unoptimized) Modular SAT Solver

Input: Partial assignment αi, set of clauses φi.
Output: TRUE if

⋃i
j=0 φj is SAT under αi, else

a conflict-clause which is inconsistent with αi and
contains only variables common to αi and

⋃i
j=0 φj .

//The (initially empty) sets of conflict-clauses Lφi maintain
//the invariant

⋃i−1
j=0 φj ⇒ Lφi

.
function MODULARSOLVE(αi, φi)

loop
if φi ∪ Lφi

∪ αi is SAT then
αi−1 ← satisfying assignment to φi ∪ Lφi ∪ αi
if i = 0 then

return TRUE
else

c← MODULARSOLVE(αi−1, φi−1)
if c = TRUE then

return TRUE
else

Lφi
← Lφi

∪ {c}
else

c← conflict-clause for φi ∪ Lφi ∪ αi
return c

end loop

at a new, improved method: our SAT Modulo SAT solver,
described in Alg. 3.

Alg. 1 operates progressively over the modules, first at-
tempting to solve module φn, which will either be unsatis-
fiable, or will provide us with an assignment αn−1 (Figure 1).
It then recursively solves φn−1 under assignment αn−1. Note
that while αi−1 is a complete assignment to φi, it may be a
partial assignment to φn−1.

If a module φi cannot be satisfied under αi, the incremental
SAT interface produces a learned clause c over the variables
in αi. We will refer to such a clause as an interface clause.
We add this interface clause c into the set Lφi , which will be
conjoined with φi when solving it in all subsequent iterations.
With the addition of c, the conjunction φi ∧ Lφi

will now
either be unsatisfiable (in which case we are done), or force
the solver into a new solution with a different assignment to
the interface variables.

Correctness of Alg. 1 follows from straightforward induc-
tion on i; termination is guaranteed, because Lφi

is strength-
ened at every call (unless a satisfying assignment is found, in
which case the algorithm terminates and returns TRUE).

One feature of Alg. 1 is that it expects an ordering over
the modules. The specific ordering chosen is effectively a
heuristic, and in some cases a good choice may be obvious
from the problem context (e.g., bounded model checking); the
algorithm is correct even if the order is chosen arbitrarily
(though this would impact the meaning of the interpolants
produced by the algorithm, examined in the next section),
and is also correct if the ordering is changed dynamically
at runtime. Though we do not explore it here, one could
consider randomly permuting the order, or applying a dynamic
heuristic to adjust the order as the algorithm proceeds, rather

Modules are
solved top to
bottom, passing
temporary
assignments αi
down the chain
from φi+1 to
φi.

y

ϕ3 ∪ Lϕ3

ϕ2 ∪ Lϕ2

 α2

ϕ1 ∪ Lϕ1

 α1

ϕ0

 α0

x

When a mod-
ule φi is un-
satisfiable under
assignment αi,
a learned inter-
face clause c is
derived from φi
and added to
Lφi+1

.

Fig. 1: A chain of four SAT Modules.

than relying upon a static ordering. We also observe that Alg.
1 can be trivially extended to operate over a tree-ordering of
the modules: instead of MODULARSOLVE(αi, φi) recursively
calling just MODULARSOLVE(αi−1, φi−1), it would make a
recursive call for each of its children. Alg. 1 is related to
several recent algorithms. For example, in the case of exactly
two modules, Alg. 1 is equivalent to (the simplest case of) the
proofless interpolant computing algorithm introduced in [6],
and it also resembles typical all-SAT procedures [12] and
some 2QBF solvers [18]. We can also think of this algo-
rithm as forming a nested series of counter-example-guided
abstraction-refinement loops: each φi ∪ Li is an abstraction
of its conjunction with the modules below it, and the learned
interface clauses returned from later modules serve to refine
that abstraction by eliminating spurious counter-examples.

If we obtain the modules by unrolling a transition function
(with one module per time step), then Alg. 1 is roughly
equivalent to a simplified, slightly re-organized version of the
recursive cube-blocking procedure at the core of IC3 and PDR;
in Section III, we will examine this connection to IC3 in more
detail. However, the modular SAT solver we have described
here, and the proof above, is general to the case where the
partitions φi are not all copies of the same transition function.

A. SAT Modulo SAT

Alg. 1 has the benefit that it can be implemented directly
using the incremental interface exposed by typical SAT solvers
without any modifications. Unfortunately, in practice it per-
forms poorly, because unit propagation between modules is
delayed until each previous module is completely solved, and
many learned clauses must be passed up the chain to eliminate
parts of the search space that would normally have been pruned
by unit propagation alone (if we were solving the complete
conjunction of the modules). In the worst case, this can lead
to an exponential slow-down, as an exponential number of
solutions from φ1 might need to be produced before finding
one that satisfies φ2.

Lazy SAT Modulo Theory (SMT) solvers [19] face many of
the same challenges as our naïve modular SAT solver above,
and we can adopt the mechanisms they use to address these
challenges by observing that Boolean satisfiability is itself an
ideal candidate to be a theory in a lazy SMT solver. Instead
of first finding a complete satisfying assignment αi to φi

and then solving φi−1 under it, we modify Alg. 1 to eagerly
perform unit propagation on φi−1 (and φi−2, etc.) as the partial
assignment to φi is being constructed, returning a conflicting
interface clause as soon as the partial assignment of φi would
lead to a conflict in φi−1 or a lower module.

In Alg. 2 and 3, we describe in detail the changes needed
to convert a typical incremental SAT solver into an efficient
modular SAT solver using this eager unit propagation across
modules. In the interest of space, we will assume the reader
is familiar with MiniSat [10] and describe the necessary
modifications in reference to that implementation.

To apply this eager unit propagation across modules effi-
ciently, we introduce a new method, PROPAGATEALL, which
first applies unit propagation locally on the current module
φi (by calling PROPAGATE) and then recursively propagates
any resulting assignments to the interface variables in the
next module, φi−1. If this leads to a conflict, then MiniSat’s
ANALYZEFINAL method returns a conflict clause over the
interface variables.

If unit propagation of the interface assignments is success-
fully applied to φi−1, then we check if that unit propagation
assigned any new literals on the interface between φi and φi−1.
If any such assignments were made, then we again propagate
those assignments locally, and continue in this way passing
assignments back and forth between adjacent modules until
we reach a fixed point or a conflict.

In order to accomplish this eager unit propagation effi-
ciently, we make one additional change. When a literal is
propagated, CDCL SAT solvers store a reference to the clause
that was unit, so that they can explore it later during conflict
analysis. If an assignment is made to the interface by φi−1 in
Alg. 2, then we would not actually have any such clause in the
SAT solver for φi to use as a reason for this assignment. We
can create such a clause on the interface variables by calling
MiniSat’s ANALYZEFINAL, but rather than call this eagerly
after each unit propagation from φi, we instead set the literal’s
“reason” to a temporary placeholder value.

MiniSat accesses these reason references only during con-
flict analysis, using a helper method, REASON. We modify
REASON to check for that placeholder value, and replace it
with a clause produced by calling ANALYZEFINAL on φi−1.
In this way we create the reason clauses for units propagated
from φi−1 to φi only if needed by conflict analysis (efficient
SMT solvers take a similar approach).

Finally, we modify the main CDCL loop (Alg. 3) in two
ways. First we alter it to call PROPAGATEALL instead of
PROPAGATE. Second, once φi is entirely assigned, we modify
it to recurse on φi−1.

Applying unit propagation eagerly allows the SAT solver
for each module to prune its search space early, while the
lazy reason construction reduces the number of trivial interface
clauses that would otherwise have to be learned gradually and
passed up through the chain of modules. Taken together, we
refer to the modular SAT solver using these SMT-inspired
optimizations in Algs. 2 and 3 as a “SAT Modulo SAT” solver.

Algorithm 2 PROPAGATEALL method applies intra-module
and inter-module unit propagation. Note that we rely upon a
list of assigned literals, trailφi

, maintained for each module
between calls.

function PROPAGATEALL(φi)
loop

// Call unit propagation on φi
c← PROPAGATE(φi)
if c is a clause then

return c // c is a learned clause
else if i=0 then

return TRUE

// Collect all new assignments to interface variables
if trailφi

\ trailφi−1
= ∅ then

return TRUE

// Propagate new assignments in φi−1

for all l ∈ (trailφi
\ trailφi−1

) do
ENQUEUEi−1(l)

if PROPAGATEALL(φi−1) 6= TRUE then
c = ANALYZEFINAL(trailφi

, φi−1)
Li ← Li ∪ {c}
ADDCLAUSE(c)
return c

else if (trailφi−1 \ trailφi) = ∅ then
return TRUE // No new interface assignments

else
// Propagate new assignments from φi−1 in φi
for all l ∈ (trailφi−1 \ trailφi) do

ENQUEUEi(l)
// Mark reason for lazy construction
reasons[var]← ‘LazyPlaceholderi−1’

end loop

function REASON(var)
if reasons[var] = ‘LazyPlaceholderi−1’ then

c← ANALYZEFINAL(var,φi−1)
Li ← Li ∪ {c}
ADDCLAUSE(c)
reasons[var]← c

return reasons[var]

B. Interpolants as Side Effects

Interpolants [16] form a core part of many recent SAT-
based model checkers, including IC3. Normally, interpolants
are constructed by analyzing a resolution proof-trace, which
must be generated by a SAT solver as it is solving an instance.
This introduces an overhead into the solving process (for this
reason, recent work ([6], [20]) has investigated alternative
methods that do not require constructing an (explicit) proof
trace).

We now show that the sets of learned interface clauses
Lφi

collected between each module in Alg. 1 form valid
interpolants. Taken together, these successive interpolants form
a sequence interpolant [21]. An alternative proof for the case
of exactly two modules can be found in [6]. For simplicity, we

Algorithm 3 The main CDCL loop of our SAT Modulo
SAT solver, using the PROPAGATEALL method. We integrate
the recursive call to the next solver directly into the search
loop. Other than the changes here and in the PROPAGATEALL
method, our implementation follows MiniSat 2.2 [10]. Alg. 3
is a direct replacement for Alg. 1.

function MODULARSOLVE(αi, φi)
loop

conflict← PROPAGATEALL(φi)
if conflict is a clause then

if DECISIONLEVEL() = 0 then
return conflict

c←ANALYZE(conflict)
BACKTRACK()
ADDCLAUSE(c)

else
if exists an unassigned lit ∈ αi then

l← lit
else

l← PICKBRANCHLIT()
if l = NULL then

// trailφi is a satisfying assignment to φi
if i = 0 then

c← TRUE
else

c← MODULARSOLVE(trailφi
, φi−1)

if c = TRUE then
return TRUE

else
// Learn clause c from φi−1

Li ← Li ∪ {c}
BACKTRACK()
ADDCLAUSE(c)

else
NEWDECISIONLEVEL()
ENQUEUEi(l)

end loop

describe our proof in terms of the unmodified Alg. 1, but it
holds equally well for the optimized SAT Modulo SAT solver.

Given a CNF partitioned into two parts, φA and φB , with
φA ∪ φB unsatisfiable, an interpolant between φA and φB is
any set of constraints I with the following three properties:

1) φA implies I .
2) I ∪ φB (i.e., the conjunction of the constraints) is

unsatisfiable.
3) I contains only variables common to φA and φB .
First, consider Alg. 1 with only two modules. On an

unsatisfiable instance, Alg. 1 terminates only when the top-
most module φ1, combined with the interface clauses Lφ1 it
has learned from module φ0, does not have any satisfying
solutions. So at termination (on an unsatisfiable instance),
φ1 ∪Lφ1

must be unsatisfiable. We also have that φ0 ⇒ Lφ1
,

because Lφ1
consists only of clauses implied by φ0. Finally,

the incremental SAT solver interface guarantees that each

clause in Lφ1
contains only variables that are common to φ1

and φ0. These three conditions together satisfy the definition
of an interpolant between φ1 and φ0.

Next, consider an unsatisfiable chain of three modules, φ2,
φ1, and φ0. There are two interpolants that are constructed by
Alg. 1: An interpolant Lφ2

between φ2 and (φ1 ∧φ0), and an
interpolant Lφ1 between (φ2 ∧ φ1) and φ0.

In this three module chain, the argument that Lφ1
forms an

interpolant is the same as above. The argument that Lφ2
forms

an interpolant is similar, except that the clauses collected in
Lφ2 are implied by the conjunction φ1 ∧ φ0, rather than by
φ0 alone. This is the case even though in Alg. 1 module φ2
is only ever passed interface clauses constructed by φ1 (and
never by φ0), because module φ1 may itself have been passed
interface clauses from module φ0, and may then have derived
new constraints based on those facts that are subsequently
passed to module φ2.

In general, at termination on an unsatisfiable instance, it
must either be the case that φn ∧ φn−1 ∧ . . . ∧ φi is by itself
already unsatisfiable (in which case Lφi

is the empty set, and
a trivial interpolant), or that φn ∧ φn−1 ∧ . . . ∧ φi ∧ Lφi is
unsatisfiable, in which case Lφi is a valid interpolant between
the conjunctions φn ∧ . . . ∧ φi and φi−1 ∧ . . . ∧ φ0.

III. IC3 USING SAT MODULO SAT

The modular SAT solver we have described here operates on
an ordered sequence of CNF modules; a natural use case would
be to apply it to bounded model checking [3] by constructing
one module per time step, and incrementally adding new
modules as time steps are added. Unfortunately, performance
is roughly competitive with, but not better than, an (unso-
phisticated) incremental bounded model checker. However,
simple bounded model checking does not take advantage of
the sequence interpolants that our solver naturally produces.

Sequence interpolants are not typically generated by them-
selves as an end goal. Instead, the primary place that sequence
interpolants are used is as a component of model checking
algorithms (e.g., [5], [21]), most prominently in the current
state-of-the-art SAT-based unbounded model checker, IC3 [4].
In IC3, sequence interpolants are created implicitly, through
an incremental refinement process that is closely related to the
unoptimized modular SAT solver from Alg. 1.

We now demonstrate that the SAT Modulo SAT solver we
presented above is useful in practice by creating a version of
IC3 based on it and the sequence interpolants it produces.

Our implementation closely follows the PDR [11] variant
of IC3, which we do not have space to recount in full. We
will assume the reader is familiar with PDR, and describe
only our changes here. Modifying PDR’s algorithms to use
the modular SAT solver will entail some non-trivial changes,
which we describe below. As well, while building our solver,
we developed some minor improvements to the general IC3
algorithm; we will show below that these minor changes are
indeed improvements, but that the most important performance
improvement is due to our SAT Modulo SAT solver.

Algorithm 4 The cube-blocking procedure for the stack-
based variant of IC3, using a modular SAT solver. Notice
that the stack is actually completely eliminated; recursively
blocking the cube is directly handled by the modular SAT
solver (MODULARSOLVE calls either Alg. 1 or Alg. 3 above).
In contrast to IC3, all the newly generated blocking clauses
are collected and generalized at the end.

function MODULARBLOCKCUBE(TCube s0)
i← s0.frame−1
if MODULARSOLVE(s0.cube, φi) then

return FALSE // Counter-example found
else

COLLECTALLCLAUSES(i)
return TRUE

function COLLECTALLCLAUSES(t)
// Collect new interface clauses from the first t solvers
// We assume these are stored in vectors
// newInterfaceClausesi for each frame
for i← 1 . . . t− 1 do

for all Clause c ∈ newInterfaceClausesi do
MARKSOLVER(i) // Needs clause propagation
c← GENERALIZE(c)
// Attempt to propagate c forward until it fails
j ← EAGERPROPAGATECLAUSE(c, i)
F [j].ADD(c)

newInterfaceClausesi ← ∅

function EAGERPROPAGATECLAUSE(Clause c, from)
// Propagate clause c forward as far as we can
for i← from . . . F.size()−1 do

if not PROPAGATECLAUSE(c, i) then
return i

return i

The central part of IC3 is the cube-blocking procedure
(in PDR, “RECBLOCKCUBE”). There are two major variants
of this procedure. The simpler, ’stack-based’ version takes
an assignment to the flops (a cube) that is known to lead
to the negated property, and incrementally strengthens the
interpolants between each time frame until they are sufficient
to block that cube in the last time frame. In Alg. 4, we show
how we can use a modular SAT solver (either Alg. 1 or Alg.3)
to replace RECBLOCKCUBE . Intuitively, cube-blocking in
the stack-based variant of IC3 is performing almost the same
function as the simple recursive modular SAT solver of Alg.
1, with a few extra steps added. By re-arranging this code
to separate out the part that closely matches Alg. 1 we then
make it possible to replace it with the more complicated SAT
Modulo SAT solver in Alg. 3 as well.

The match is not exact. The most obvious difference is
that IC3 applies inductive generalization [4] to drop literals
from conflict clauses as they are added to the interpolants.
Unfortunately, the solvers for each time step are maintaining
state between calls in the modular SAT solver, which would
be overwritten during inductive generalization. One way to

Algorithm 5 The cube-blocking procedure for the priority-
queue based version of IC3 using a modular SAT solver. This
function is a replacement for the RECBLOCKCUBE procedure
of PDR. We show here the keepCubes option discussed below.
With keepCubes set, we keep the last time frame’s TCubes in
the priority queue for the next iteration rather than discarding
them (as PDR does).

function MODULARBLOCKCUBEPRIORITY(TCube s0)
Q.ADD(s0)
while Q.SIZE() > 0 &&

Q.PEEK().frame < F .SIZE() do
TCube s← Q.POPMIN()
if not ISBLOCKED(s) then

if not MODULARBLOCKCUBE(s) then
return FALSE // Counter-example found

else
Q.ADD(COLLECTALLCUBES(s.frame))
if keepCubes || s.frame < F .SIZE() -1 then

Q.ADD(TCube(s.cube, s.frame + 1))
else if keepCubes && s.frame < F .SIZE() -1 then

Q.ADD(TCube(s.cube , s.frame + 1))
return TRUE

function COLLECTALLCUBES(t)
// Collect all satisfying assignments to the flops
// found during MODULARSOLVE. We assume these
// were stored for frame i in vector flopAssignmentsi.
for i← 1 . . . t− 1 do

for each assignment a ∈ flopAssignmentsi do
Q.ADD(TCube(a, i+ 1))

flopAssignmentsi ← ∅

resolve this would be to keep an extra SAT solver, not part of
the SAT modulo SAT solver, and use that to apply inductive
generalization as conflict clauses are learned. This would allow
us to apply inductive generalization at the same point as IC3,
at the cost of extra memory usage. A second option, which
we take in Alg. 4, is to delay inductive generalization until
after the complete call to the modular SAT solver (during
which many interface clauses may have been learned), and
then subsequently apply inductive generalization to each new
clause. This allows us to re-use the solvers from our modular
SAT solver for generalization.2

Another difference is that one of the original selling points
of IC3 was that it does not require the transition function to
be unrolled; instead, a growing set of sequence interpolants
(with some special properties discussed below) are maintained
by re-using a single transition function between consecutive
interpolants in the sequence. By instantiating a separate copy

2Another subtlety is that when we apply inductive generalization to a clause
from module φi, we re-use the SAT solver for φi from our modular solver, but
call its normal, non-modular SOLVE method (which does not recursively solve
the other modules in the chain). An alternative option would be to use the
entire modular SAT solver chain during generalization, which would increase
the chance of dropping literals from the conflict clauses, but at the cost of
introducing an additional linear time factor (in the number of modules) into
generalization.

of the transition function for each module φi in our modular
SAT solver, we are giving up this near-constant memory usage.
However, recent versions of PDR have made the same time-
space trade-off, to avoid the cost of tracking which learned
clauses correspond to which time frame.

A more substantial difference between our SAT modulo SAT
solver and IC3 is that IC3 requires the interpolants for each
time frame in the sequence to be constructed from a subset
of the clauses that make up the interpolant for the previous
time frame. We cannot combine the trick IC3 usually applies
for this with Alg. 3, and must instead add a non-deterministic
self-loop to the transition function (by adding an extra input
to the circuit that, when true, forces the flops to their reset
state). This extra non-determinism might be expected to slow
down the SAT solver.3 However, because our solver (like IC3)
always solves its time frames in reverse order, the self-loop
will always be disabled by simple unit propagation before any
decisions must be made in a given time frame. This makes
such a self-loop in the transition function almost cost-free.

Having made these changes, we can directly use a modular
SAT solver (either the simple recursive Alg. 1 or the more
complex SAT Modulo SAT solver Alg.3) to implement the
stack-based cube-blocking procedure from IC3 (see Alg. 4).

Efficient versions of IC3, including PDR, maintain a priority
queue of cubes to block rather than a stack. In this variant,
when IC3 blocks a cube, it generates a new cube with the
same flop assignment, but at the next time frame. This allows
IC3 to discover counter-example traces that are longer than the
number of time frames currently being examined [4], while at
the same time improving the overall performance of IC3 [11].
In order to support this, we need to make our implementation
slightly more complicated (see Alg. 5), as well as change the
modular SAT solver slightly, so that it records each complete
satisfying assignment of the flops in each time frame. This is
a trivial one line change to the SAT modulo SAT solver. In
Alg. 5, we assume that the flop assignments found for time
frame i have been stored in the vector flopAssignmentsi.

The priority queue version of IC3 then proceeds by repeat-
edly popping the lowest TCube s off the queue (a TCube
is a tuple of a cube and the time frame it corresponds to),
solving φ0 under φ1 . . . under φs.frame under s.cube, and then
adding all the cubes that were found during that process into
the queue (see COLLECTALLCUBES). Effectively, this results
in a combination of the priority-queue with the modular SAT
solver’s natural stack-based order for exploring cubes. As we

3 IC3 enforces this property by ensuring that all clauses in each interpolant
hold at the reset state. In cases where it would learn such a clause that does
not hold at the reset state, it weakens the clause by appending a literal from
the reset state that does not already appear in the clause. Such a literal is
guaranteed to exist, because if no literals in the cube were opposite the polarity
of the reset state, then IC3 would have found a counter-example (and exited).
That literal can be used to weaken the conflict clause so that it is satisfiable
at the reset state, while still blocking the cube.

We cannot combine this trick with unit propagation across modules as
in Alg. 3, because such propagation may occur when an arbitrary partial
assignment has been made to the flops. This partial assignment might not
contain any literals opposite the reset state, in which case we would not be
able to weaken the clause as IC3 does while still blocking the assignment.

will show below, this re-ordering appears to have a negative
impact on performance, but one that is more than made up for
by the use of the modular SAT solver.

With these changes, and otherwise following PDR’s imple-
mentation (including applying ternary simulation, which we
apply to αi just before the loops in Alg. 1 and 3), we used our
modular solver to implement a competitive version of the PDR
variant of IC3. As we will show below, in addition to solving
as many or more instances as either PDR or IC3 on three
major benchmark sets, this procedure solves many different
instances that were not previously solved by either PDR or
IC3.

A. Additional Changes to IC3

We also introduce two additional alterations to IC3 to further
improve our solver. The first change is fairly minor. In the
priority queue variant of IC3, when a cube is blocked at time
frame i, it is re-enqueued at frame i + 1. However, if i is
the last currently expanded time frame, the cube is simply
discarded. Instead, we keep these cubes and enqueue them
into the priority queue at frame i + 1, and keep them in the
queue for the next iteration (at which point time frame i+ 1
will have been explored). This is shown in Alg. 5, when the
keepCubes flag is set. We only ever discard cubes from the
last time frame if they are syntactically blocked. We have also
explored keeping all such clauses even if they are blocked
syntactically in the last time frame, and it seems to lead to
only a slight decrease in performance to do so.

A more significant change addresses a drawback of IC3
(including the PDR variant). IC3 always attempts to propagate
clauses from the first to the last time frame at each iteration. As
a result, IC3 requires at least quadratic time in the number of
frames, and that by itself can lead to unacceptable slow-downs
on instances that require many iterations to be explored, even if
the instance is otherwise trivial. Just such an example has been
encountered in practice by users of the Z3 [8] implementation
of PDR.4

We observe that it is not typically necessary to try prop-
agating clauses all the way from the lowest time frame at
each iteration. Instead, we have found it sufficient in practice
to propagate only from the lowest strengthened time frame
to the last, at each iteration (see Alg. 6). This is a very
simple change that improves performance when an instance
is explored to a very deep time bound. Informal testing on
Z3’s PDR variant [14] has shown that this change improves
performance on the example referenced earlier.

In principle, failing to propagate clauses from the first time
frame may lead to a loss of IC3’s convergence guarantees.
If this were a concern, it would be sufficient to force clause
propagation to periodically start from the first time frame —
something we have tried and found not to lead to substantial
performance improvements in practice.

4See, e.g., http://stackoverflow.com/q/15946304

http://stackoverflow.com/q/15946304

Algorithm 6 Faster clause propagation, by not attempting
to propagate clauses from time frames that did not require
strengthening in the current iteration.

function PROPAGATECLAUSES
lowest ← 0
for i← (F .size()-1) . . . 0 do

if not SolverIsMarked(i) then
lowest← i+ 1
break

clearSolverMark(i)
for k ← lowest . . . F.size()−1 do

for all clauses c ∈ F [k] do
if PROPAGATECLAUSE(c,k + 1) then

F [k].remove(c)
F [k + 1].add(c)

if F [k].size()=0 then
return ‘Invariant Found’

IV. EXPERIMENTAL RESULTS

Our implementations of both Alg. 1 and the SAT Modulo
SAT solver described in Section II-A are based on MiniSat
2.2 [10], a prominent incremental SAT solver that has served
as a basis for many successful SAT solvers. We implemented
IC3 using this solver as described above in Alg. 5.5

We compare to both the publicly released IC3, and also to
the current implementation of PDR in ABC (version 1.01).
This implementation of PDR is also part of the SUPERPROVE
model checker that won the Hardware Model Checking Com-
petition in 2010, 2011, and 2012.

Experiments on the 2008 instances were conducted on 32-
bit 3.2GHz Intel Xeon machines with 2 MB cache under open-
SUSE 11.1, using 15 minute timeouts and 1500 MB memory
limits. Experiments for the 2010 and 2012 instances were
conducted on 64-bit, 6-core, 2.6GHz Intel Xeon machines
with 12 MB cache running Red Hat Linux 5.5, using 15
minute timeouts and 7000 MB memory limits. These condi-
tions closely match those of the 2008 and 2012 competitions,
respectively. When testing each model checker (including PDR
and IC3), we first used ABC to apply DAG-aware rewriting
for preprocessing the circuit (using the ‘rewrite’ command).6

Using our PDR implementation with the SAT Modulo SAT
solver, but without the last two improvements to IC3 from
Section III-A, performance is comparable to both IC3 and
PDR (see the column, ‘SMS’, of Table I). If we substitute the
unoptimized Alg. 1 for the SAT Modulo SAT solver, perfor-
mance drops substantially on all benchmarks (see column ‘No
SMS’). This gives us confidence that our SAT Modulo SAT
solver is indeed a major improvement to Alg. 1, at least in this

5We have made the source code for the modular SAT solver available online,
at www.cs.ubc.ca/labs/isd/Projects/ModularSAT.

6Results for each competition’s virtual best solver is as reported in the
respective competitions.

No SMS SMS SMS-PDR PDR IC3 VBS
HWMCC’08 504 587 596 581 586 597
HWMCC’10 684 742 749 733 712 781
HWMCC’12 69 84 92 84 48 233

TABLE I: Total instances solved within 900 seconds from the
2008, 2010, and 2012 Hardware Model Checking Competi-
tions (single property track). Including all improvements, our
final implementation (‘SMS-PDR’) beats both IC3 and PDR
on each benchmark. Notice how for the 2008 benchmarks we
solve just 1 fewer instance than the virtual best solver (‘VBS’
— the virtual best solver counts all instances solved by any
solver in the competition).

SMS-PDR PDR IC3
SAT UNSAT SAT UNSAT SAT UNSAT

HWMCC’08 245 351 242 339 240 346
HWMCC’10 322 427 317 416 308 404
HWMCC’12 25 67 21 63 14 34

TABLE II: Breakdown of SAT and UNSAT instances from
Table I. SMS-PDR solves more SAT and more UNSAT
instances than both PDR and IC3 on all three benchmarks.

context.7 This model checker is also clearly competitive with
IC3 and PDR — especially on the 2010 instances. Moreover,
on closer inspection, we also observed that this version of our
model checker solved 17 new instances that were solved by
neither IC3 nor PDR from the 2012 benchmarks, and 13 and
9, respectively, from the 2010 and 2008 sets.

We can then ask whether we can improve our solver to solve
more of the instances that IC3 and PDR solve, without giving
up these new instances. We accomplish exactly this, by adding
the last two improvements discussed in Section III-A. These
improvements allow us to solve several additional instances
(all but 3 of which IC3 or PDR could already solve), without
giving up any of the newly solved instances of our initial
implementation (see column ‘SMS-PDR’ in Tables I and II).

From Table I, we note that on the 2008 instances, our
final model checker solves just one instance fewer than the
corresponding virtual best solver — the virtual best solver
counts any instance solved by any solver running in that
competition — under roughly the same conditions. In Table II,
we split the results for each model checker into SAT and
UNSAT instances, to show that for all three competitions, we
always solve more SAT and more UNSAT instances than both
IC3 and PDR. In contrast, notice that while PDR improved
hugely upon IC3’s performance on the 2012 instances, it
actually performed slightly worse on the 2008 instances.

The improvements introduced in Section III-A, as well
as the use of our SAT Modulo SAT solver, both increased

7At the same time, we can ask why it is the case that when using
Alg. 1 instead of Alg. 3, our performance is so much worse than IC3’s.
As discussed in Sec. III, there are effectively just a few differences between
PDR’s RECBLOCKCUBE and Alg. 5, if the unoptimized modular SAT solver
of Alg. 1 is used and if our last two changes to IC3 are not implemented.
The performance drop relative to IC3 in this case is likely either due to our
delaying inductive generalization until later in the process, or a consequence
of using a self-loop in the transition function (though we argue why this is
not likely in Sec. III).

www.cs.ubc.ca/labs/isd/Projects/ModularSAT

the total number of solved instances. However, the SAT
modulo SAT solver by itself contributes most of the newly
solved instances — that is, instances that we solved, but that
neither IC3 nor PDR could solve. Our model checker using
just the SAT modulo SAT solver solved 9, 13, and 17 new
instances in the 2008, 1010, and 2012 benchmarks, while
combining the SAT Modulo SAT solver with the changes from
Section III-A solved 9, 15, and 21 such instances. On this
basis, we argue that the SAT Modulo SAT solver is critical
to the overall performance improvement achieved by our final
model checker.8

We can also look at the respective memory usage of our
solvers. As we remarked earlier, like current versions of ABC’s
PDR, we instantiate a solver for each time step, which results
in roughly linear memory usage in the number of time steps.
This gives up one of the original advantages of IC3, which is
that it expands only one time frame at a time, which requires
roughly constant memory. Both of these bounds ignore the
theoretically exponential memory of the learned clauses and
interpolants.

We found that our solver ran out of memory on 13, 1, and
7 instances for the 2008, 2010, and 2012 benchmarks (recall
that the 2008 competition was limited to just 1.5 GB, vs 7 GB
for the others). In contrast, IC3 ran out of memory on just two
instances in our experiments, both from the 2012 benchmarks.
However, there was only one case in which our solver ran out
of memory on an instance that IC3 was able to solve - and
that particular instance, from the 2008 benchmark set, was one
that our solver was able to solve in the 2010 benchmark set
(which had a higher memory limit). So, as we would expect,
IC3’s near-constant memory usage is an advantage on some
instances.

V. CONCLUSION

We have introduced a novel approach for modular SAT
solving, which naturally computes sequence interpolants with-
out proofs. We have made this efficient through the use of
standard techniques borrowed from lazy SMT solvers, and we
have shown that this can form the basis of an efficient model
checker. We have also introduced additional improvements to
IC3 that should generalize to other implementations, including
PDR, whether or not they utilize our SAT Modulo SAT solver.
The resulting state-of-the-art model checker performs better
than both PDR and IC3, for both SAT and UNSAT instances,
on three competitive sets of benchmarks.

VI. ACKNOWLEDGMENTS

We thank Armin Biere for his insights about the connection
between other CNF partitioning solvers and modular solvers.
We thank Nikolaj Bjorner for pointing us to the loop example
cited in Section III, and for testing our faster clause propa-
gation in Z3. We also thank the anonymous reviewers of this

8We can also ask how the changes from Section III-A fare on their own.
Implementing them in the non-SMS version of our solver does not improve
performance at all, while implementing them in ABC’s PDR led to 2 and 3
additional instances solved on the 2008 and 2010 benchmarks, and 3 fewer
solved on the 2012 benchmarks.

paper, as well as of a previous manuscript which led to this
work.

This research has been supported by the use of computing
resources provided by WestGrid and Compute/Calcul Canada,
and by funding provided by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

REFERENCES

[1] F. Aloul, I. Markov, and K. Sakallah, “MINCE: A static global variable-
ordering heuristic for SAT search and BDD manipulation,” Journal of
Universal Computer Science, vol. 10, no. 12, pp. 1562–1596, 2004.

[2] A. Biere, “PicoSAT essentials,” Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), vol. 4, no. 2-4, pp. 75–97, 2008.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking
without BDDs. Springer, 1999.

[4] A. Bradley, “SAT-based model checking without unrolling,” in Verifica-
tion, Model Checking, and Abstract Interpretation. Springer, 2011, pp.
70–87.

[5] G. Cabodi, S. Nocco, and S. Quer, “Interpolation sequences revisited,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011. IEEE, 2011, pp. 1–6.

[6] H. Chockler, A. Ivrii, and A. Matsliah, “Computing interpolants without
proofs,” in Proceedings of the Eighth Haifa Verification Conference,
2012.

[7] A. Cimatti and A. Griggio, “Software model checking via IC3,” in
Computer Aided Verification. Springer, 2012, pp. 277–293.

[8] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[9] V. Durairaj and P. Kalla, “Guiding CNF-SAT search via efficient con-
straint partitioning,” in Proceedings of the 2004 IEEE/ACM International
Conference on Computer-Aided Design. IEEE Computer Society, 2004,
pp. 498–501.

[10] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing. Springer, 2004, pp. 333–336.

[11] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in Formal Methods in Computer-Aided
Design (FMCAD), 2011. IEEE, 2011, pp. 125–134.

[12] O. Grumberg, A. Schuster, and A. Yadgar, “Memory efficient all-
solutions SAT solver and its application for reachability analysis,” in
Formal Methods in Computer-Aided Design. Springer, 2004, pp. 275–
289.

[13] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Partition-
based decision heuristics for image computation using SAT and BDDs,”
in Proceedings of the 2001 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2001, pp. 286–292.

[14] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in Theory and Applications of Satisfiability Testing–SAT 2012. Springer,
2012, pp. 157–171.

[15] A. Hyvärinen, T. Junttila, and I. Niemelä, “Partitioning SAT instances for
distributed solving,” in Logic for Programming, Artificial Intelligence,
and Reasoning. Springer, 2010, pp. 372–386.

[16] K. McMillan, “Interpolation and SAT-based model checking,” in Com-
puter Aided Verification. Springer, 2003, pp. 1–13.

[17] T. Park and A. Van Gelder, “Partitioning methods for satisfiability testing
on large formulas,” Automated Deduction âĂŤ CADE-13, pp. 748–762,
1996.

[18] D. Ranjan, D. Tang, and S. Malik, “A comparative study of 2QBF
algorithms,” in The Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), 2004, pp. 292–305.

[19] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Satisfia-
bility, Boolean Modeling and Computation (JSAT), vol. 3, pp. 141–224,
2007.

[20] Y. Vizel, V. Ryvchin, and A. Nadel, “Efficient generation of small
interpolants in CNF,” in Computer Aided Verification, 2013, pp. 330
– 346.

[21] Y. Vizel and O. Grumberg, “Interpolation-sequence based model check-
ing,” in Formal Methods in Computer-Aided Design, 2009. FMCAD
2009. IEEE, 2009, pp. 1–8.

	Introduction
	Modular SAT Solvers
	SAT Modulo SAT
	Interpolants as Side Effects

	IC3 Using SAT Modulo SAT
	Additional Changes to IC3

	Experimental Results
	Conclusion
	Acknowledgments
	References

