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Abstract latencies are achieved because the delays of the logic
elements decrease in the presence of the timing pulse.
This paper presents a novel variation of wave Thus, we say that our pipelines havegative overhead
pipelining that we call “surfing” In previous wave Prior to our work, Fairbanks and Sutherland observed
pipelined designs, timing uncertainty grows monotoni- that pipelines can operate with soft-latches where the
cally as events propagate through gates or other logic latch does not go fully opaque between successive clock
elements. We bound this dispersion by propagating acycles [10]. Simply increasing the delay of the latch can
timing pulse along with the data values. Our logic el- provide proper pipeline operation in some cases. Our
ements have delays that are smaller in the presence ofpresent work explains these observations in a more gen-
the pulse than in its absence. This produces a “surf- eral framework and introduces an acceleration mecha-

ing” effect: events are bound in close proximity to the nism that can eliminate the need for latches entirely.

timing pulse. We demonstrate this approach with the de-
sign of a 4x12 multiplier. Spice simulations from the
extracted layout indicate that this design is robust in the
presence of fabrication parameter variation and power
supply noise. Because timing is maintained by acceler
ating the logic, our designs achieve lower latency than
their purely combinational equivalents. Thus, the con-
trol overhead for these designs is indeed negative.

1 Introduction

This paper presents a novel variation of wave pipelin-
ing called “surfing.” In surfing pipelines, a timing pulse
is propagated along the pipeline, and logic elements are
modified so as to have reduced propagation delays in the
presence of this pulse. We show that when a few, simple
conditions are satisfied, events in the data path will prop-
agate in bounded temporal proximity to the timing pulse.
This prevents timing uncertainties from accumulating in
the data path, and we can implement wave pipelining on
pipelines that are arbitrarily deep with a correspondingly
arbitrary number of waves.

Williams and Horowitz introduced earlier the con-
cept of “zero-overhead” pipelines [13]. If a pipeline has
a total latency equal to the sum of the latencies of its

stages, then no latency is introduced by control or latch- 2

ing, and the pipeline is said to have “zero-overhead.”
Our pipelines have lower latencies than the sum of the

The main contributions of our paper are:

e We show how modulating the delay of logic gates
can create “event attractors” (Section 3). These at-
tractors propagate faster than the non-surfing delay
of logic elements, resulting in negative overhead.
Furthermore, these attractors ensure timing uncer-
tainties remain unbounded, even in arbitrarily long
pipelines. This removes the need for latches and
their associated overhead.

e We describe a CMOS logic family that implements
surfing (Section 4). These circuits are a simple vari-
ation of existing, self-resetting domino designs [3].

e We present a surfing multiplier (Section 5). We
report extensive Spice simulation results based on
a model extracted from a layout of the multiplier.
Due to surfing, propagation delays of the XOR
gates and multiplexors are only 11% greater than
the delays of simple inverters, and about 4% faster
than the corresponding, non-surfing, self-resetting
domino implementations. Spice simulations indi-
cate that the surfing pipeline is fast and robust in
the presence of parameter variation and power sup-
ply noise.

Pipelining Methods

Figure 1 shows a traditional synchronous design. Let

latencies of a purely combinational design. These low the period of the clockgp, be P, and letdmi, and dmax
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be the minimum and maximum delay from the inputs to
the outputs of the combinational logic. For simplicity,
we ignore latch set-up and hold times, latch propagation
delays, and clock skew, noting that the qualitative obser-
vations that we make continue to hold in more detailed
models. Classical synchronous design is based on the
observation that iBy,x < P, then the values present at
the input of the latches will have settled to their proper
values prior to each clock event. In other words, the
minimum clock period is determined by the slowest path
through the combinational logic. In general, reducing
the clock period increases performance.

2.1 Wave Pipelining

With careful control of the delays in the combina-
tional logic, wave pipelined designs [1] can achieve
clock periods less thadmax. For example, ifdmax <
2dmin, then the circuit can operate at a clock frequency
P that satisfies:

provided that certain internal delay constraints specific
for the particular logic blocks are satisfied (see [1, Sec-
tion 2.3.2]). In this case, the combinational logic block
operates with twice the throughput but the same latency
as the classical synchronous design. Figure 2 illus-
trates this operation, showing three waves shortly after
a clock event. At this point, the data that propagated
through latch 1 at the most recent clock event is propa-
gating through the combinational logic as w&veData
that propagated through latch 1 one clock period earlier
is also propagating through the combinational logic as
waveB. The one clock-cycle head start of waBeen-
sures that it will arrive at latch 2 at the end of the current
clock cycle without being overtaken by waiZe At each
clock event, latch 2 acquires the data that propagated
through latch 1 two clock periods earlier. Thus, wéve
represents data from two clock cycles before w@ve

More generally, if k— 1)0max < kdmin holds for some
positive integek, then the circuit can operate at a clock
frequency satisfying

6max/k < P < 6min/(k_1) (2)

provided again that the necessary internal delay con-
straints are satisfied. This allows that circuit to operate
with k times the throughput of classical, synchronous
designs.

Timing uncertainties are the Achilles’ heel of wave
pipelined design. To minimize delay uncertainties, typi-
cal wave-pipelined designs arrange logic blocks into lev-
els as shown in Figure 3.
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Figure 5. A Surfing Pipeline

Figure 4. Self-Resetting Domino AND Gate

Self-resetting domino circuits offer performance ad-
vantages because the only P-channel devices on the for-
ward path are those for the output inverters of the gates.
The switching networks that implement logic functions
are constructed entirely of N-channel transistors with
their higher carrier mobilities. The self-resetting oper-
ation allows the gate to precharge immediately after the
completion of evaluation, minimizing the cycle time.

Input pulses to a multi-input self-resetting gate must
have sufficient overlap to allow the N-channel network
to fully discharge the precharged node (ngdm Fig-

P > B&max— Omin (3) ure 4). Furthermore, input pulses must be short enough

) . o ) to avoid fights during the self-resetting precharge. These
Thus, uncertainty in the timing leads directly to a considerations place two-sided timing constraints on the
limit on the operating frequency. In practice, most gperation of self-resetting domino circuits. Typically,
wave pipelined designs have only supported two to four piocks of self-resetting domino gates are arranged in
waves. To achieve this, most wave pipelined designs eyels, similar to those shown in Figure 3. This makes
employ logic restructuring and extra delay padding to waye pipelining a natural technique for use in conjunc-
minimize delay variation. This gives these designs tjon with self-timed domino designs [3]. As with other
greater latency than their classical equivalents, and thewave-pipelined designs, accumulated timing uncertainty
throughput is improved by a factor much smaller than |imits the depth of logic in self-resetting domino de-
the degree of wave pipelining. The surfing technique in- signs. In particular, the accumulated uncertainty must
troduced in section 3 avoids this accumulation of delay. pe sufficiently less than the pulse width to ensure full
We first describe self-resetting domino circuits which triggering of the self-resetting gates.
resemble wave-pipelined designs in their need for well
matched delays. We use self-resetting domino as the
starting point for our designs presented in section 4.

The uncertainty at the output of a latch is determined
by skew and jitter of the clock and variations of the prop-
agation delay of the latch. This uncertainty grows mono-
tonically as each level adds its uncertainty to the accu-
mulated uncertainty of the previous levels (assuming all
paths are sensitizable). This accumulation of uncertainty
presents a fundamental limit to wave pipelining. In par-
ticular, Equation 2 implies:

3 Surfing

2.2 Self-Resetting Domino Consider again the synchronous circuit depicted in
Figure 1. Due to timing uncertainties, the signals at
Self-resetting domino circuits [3] are a variation of the inputs of latch 2 may settle at different times. For
domino circuits [6] where the precharge control signal proper operation, the latch must be triggered after the
for each gate is derived from the gate’s output. As an last data input has settled. Viewed from a slightly dif-
example, figure 4 shows a self-resetting domino, two- ferent perspective, latches bound timing uncertainty by
input AND gate. Transistongslandp2are the precharge  slowing down events that propagate too fast. Recogniz-
transistors. After precharge, nodés high. If thea and ing this property of latches, Dooply and Yun [4] refer
b inputs both go high, then nodgis pulled low and  to latches as “roadblocks” when deriving timing con-
outputy goes high. If eithema or b remains low, then  straints for self-resetting domino circuits.
the y output remains low as well. Asserted values in Instead ofslowing dowrthe fast signals, we propose
self-resetting domino are represented by pulses. Afterto speed ughe slow ones. Thus, our pipelined circuits
the outputy goes high, invertei2 drives its output low, have lower latency than their unclocked combinational
enabling transistopl to precharge nodg high which equivalents. This is the basis for our claim of negative
returns outpuy to a low value. Between input pulses, overhead for our self-timed pipelines. This section de-
the precharge control signgire is low, and nodey is scribes how selective acceleration of slow paths provides
held high by transistop2. This maintains the level of a high-performance mechanism for bounding timing un-
g when the gate is operated at low frequencies and im- certainty.
proves noise immunity. Figure 5 depicts a simple surfing pipeline. Each logic
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Figure 6. Timing for Surfing
block in the pipeline has a special input labeledt. pulse. We will say that an input event to a logic block

Assertingfast decreases the delay of the block. Let is an enabling event if it is the last input required to en-
Osiowmin D€ the minimum delay of a logic block when able a transition on at least one output of the block. Let
fast is not asserted, and 185t maxbe the maximum de-  Amin(t) be the minimum delay from an enabling input
lay of a logic block wherast is asserted. The delay and event to the corresponding output event if the input event
buffer chain in Figure 5 generates tlast signal foreach ~ occurst time units after the arrival of the timing pulse.
logic block. Letdgmin and 8 max denote the minimum  Likewise, letAmax(t) be the maximum delay from an en-
and maximum delay betwedast signals for consecu- abling input event to the corresponding output event if
tive stages of the pipeline. To ensure proper operation,the input event occurs time units after the arrival of
we require: the timing pulse. Figure 6 showiigin(t) andAmax(t) for

a prototypical surfing logic block. We have also drawn

Srastmax < OFmin < OFmax < Oslow,min 4) the timing pulse in this figure to illustrate the relation-
ship between the timing pulse and the varying delay of
When the constraints of Equation 4 are satisfied, the logic block.
events in the chain of logic blocks are attracted to the Figure 6 illustrates the timing properties of a surfing
leading edge of the pulses of tfest signals. To see this,  pipeline in greater detail. The bottom trace depicts the
consider what happens if the outputs of a logic block timing pulse (i.e. theast signal) at a particular stage
change befortast is asserted for that block. In this case, of the pipeline. The upper pair of solid curves show the
the propagation delay for the next block will be at least maximum and minimum delays of the logic block for in-
Osiow,min Which is greater thadg max. Therefore, the tim-  yyts that change at the time indicated on the horizontal
ing pulse will catch up (or partially catch up) with the  axis — when thdast signal is high, delays are decreased
logic events. Conversely, if the output of a logic block compared with the delays whdast is low. The hor-
changes aftdast is asserted, then the propagation delay jzontal dashed lines show the quantities that appear in
for the next block will be at moskas,maxWhich is less  Equation 4. The tick marks on the axes indicate that the
thandemin. In this case, the data events propagate fasterpot is drawn with much greater time resolution for the
than the timing pulse and eventually catch up. vertical axis than the horizontal one.
As a metaphor, we view the propagation of data Equation 4, used the quantitiBgow,min anNddtas;max

events as a swimmer in the ocean, gnd propaga.tion ofThese are related f,in(t) andAmax(t) by the relations:
the timing events as a wave. Unassisted, the swimmer

cannot swim as fast as the wave. However, there is a Oslow,min = mtax)\mm(t)
region on the leading edge of the wave where the swim- Stastmax = MiNAmax(t) (5)
mer is accelerated by the wave to travel at the same rate ' t

as the wave. Accordingly, we refer to this mechanism as Now, definety, to, ts, ta, andts as indicated below:

“surfing.”

To examine surfing in more detail, we need to con- t;: The time at which\yin(t) crosses aboveg max in
sider the continuous variation of the propagation de- response to the falling edge of the previous timing
lay of the logic block under the influence of the timing pulse.
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to: The time at whichA\yin(t) crosses belowdg max in i4 i3 i2
response to the rising edge of the current timing pl M—M—Oﬂi
>

pulse.

t3: The time at whichAmax(t) crosses belovdg min in a 4{ nl P2 n3

response to the rising edge of the current timing

pulse. b n 9 9 Y

t4: The time at which\max(t) crosses aboveg min in fast
response to the falling edge of the current timing

pulse. Figure 7. A Surfing AND Gate

ts: The time at which\pin(t) crosses aboveg max in

response to the falling edge of the current timing

pulse. slightly in the direction of making a transition. For self-
resetting domino logic, active transitions are always in
the low-to-high direction. Thus, we shift the low output
of a gate slightly upwards in response to assertion of the
fast input. We call this shifpreswitching

In Figure 6, dashed vertical lines depict these times.
The key properties of surfing are:

e If the enabling input events for one stage arrive in

the intervallty, t3] at one stage, then all input events o _ _
will be in interval [t t3] at all subsequent stages. 4.1  Preswitching for Self-Resetting Domino

° If the (.Enabling input events for one Stage .a.rrive As an examp|e of our approach’ Figure 7 shows a
in the interval(ty,t4) at one stage, then the input  self-resetting domino AND gate with fast input im-
contained ints, t4). The sequence of such intervals o, transistor p2 is conducting and functions as a keeper
for successive stages convergegtids|. for the internal nodg. To minimize the capacitance on

nodeg, we implement p2 with a minimum width device.

Accordingly, if inputsa andb are both high whildast is

event uncertainty; we call this the “surfing interval.” We low, transistors nl anq n2. can overpower p2_and trigger

an output pulse. In this situation, the hindering current

qm|t the proofs of these propertles due to space limita- sourced by p2 slightly delays the transition, an effect that
tions, noting that they are straightforward. Events that increases the delay in the non-accelerated regime, there-
arrive in the intervalty,ts] could surf with the current fore increasin theytimin marains for surfin gime,
timing pulse, or they could “fall-off” and slip to the next When fast |gs high trzgnsistgr n2 is turne%. off. and
pulse. Events in this interval are timing violations that i istor n3 i d, y if is hiah. th ' 3
could give rise to metastable behaviors [2] and related ransistor n3 is conducting. If nodgis high, then n

malfunctions. In practice, the steady state interval and _F?_E:'SS ;?szgatwjtvtoﬁteal\l:gf rr:(r)lel ﬁ?lhﬂoﬁggjemvgﬁr dll.
the violation interval are both much smaller than the cap- 9 geslightly 9

ture interval — this gives rise to the robustness of surfing. Zgg g}? cri(?ans:dsethela(:s:ayossr IE; ;Ubgtheﬂsv?;éls:fn g;(rjzns&
Note that surfing gates afaster when the timing y 9 g : :

pulse is asserted. With this negative overhead, perfor—g is low, then inverter i1 is already pulling nogehigh.

manc o mprovd by implementng everygate on e [T94E) 11 1SHer e e s centFom e
critical timing paths as a surfing gate. By using surfing Py : ' 9

O O ORTE 2 .~ of y are faster when thiast signal is high than the rising
on every gate, timing uncertainty is minimized. Typi- " ; . .
A . transitions of an otherwise equivalent, non-surfing gate.
cally, such extreme pipelining is unacceptable for tradi-

tional, latched designs because of the latency overheadsh;n ep;:(?ttcl)creésvzﬁedl\rfg\;ﬁn;IStSIT-S:w\r,]Wg? itrlr:/(aertstjrn?le
of the latches. In contrast with latched designs, surfing p X '

simultaneously lowers latency and bounds timing uncer- This design exploits th.e fact thaj[ N-chaqnel devices
tainty. make poor pull-ups. With equal sized devices, ngde

moves about 20-25% of the way to Vdd when ndale
) o is high, and the delay of the gate decreases by about
4 Surfing Circuits 30% compared with the delay when nofdest is low.
Because the fight pits an N-channel pull-up against an
To achieve surfing, we designed gates where assertN-channel pull-down, our design also enjoys excellent
ing thefast input causes the output of the gate to shift device matching. Traditional, “five-corner” Spice simu-

In other words, the intervdly,ts) is the “capture inter-
val” for surfing. The intervalty,t3] is the steady state
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lations show robust operation over the full range of de-  Figure 9. Measured Delays at Typical Pro-
vice parameters for the 8 process that we are using cess Point
(see Section 5.4).

The sizing of transistor n3 presents some interesting
trade-offs. Increasing the width of this transistor pulls
nodey higher while waiting for node to fall and fur- 3 false versions with a pulse on thet wire indi-
t_he_r decreases the gate_delf_;\y. By mgking_the dip in thecating a value of true and a pulse on thé wire in-
timing curve deeper, widening transistor i&reases  gicating a value of false. In the simple multiplier pre-
the robustness of the design to timing variations. On sented in Section 5, the critical path consists entirely of
the other hand, pulling nodehigher moves closerto  xoR gates and multiplexors. Figure 8 shows our dual-
the switching threshold of the next gate. Thus, widen- r4j surfing domino XOR gate. The multiplexor has ex-
ing transistor n3lecreaseshe voltage noise margin of  4¢tly the same transistor topology with different signals
the design. This concern is exacerbated by our use Of¢onnected to the inputs. By using the same circuit for
dynamic logic. If the inputs to the next gate are pulled oty functions, we achieve close matching of the delays
higher than the threshold voltage for N-channel device, through the two gates.
then charge is drained from nogdeof that gate, even if Figure 9 shows the delays that we observed in hspice
that gate should not be enabled to switch. If this leakage gjmulations for the XOR gate and for the multiplexor.
persists long enough, nodevill drop below the switch- e rising edge of the timing pulse occufer the dip
ing threshold of inverter i1, and the gate will produce a j, gate delay because we measured delays based on in-
spurious output pulse. _ put arrival imes. The delay from data inputs to the gate

Our simulations indicate that we obtain a fast and ro- output is greater than the delay from tfast signal to
bust design when the width of transistor n3 is equal to e output. Thus, theast signal modulates the delay of
that of the pull-down in inverter il. For typical pro- inputs that arrived somewhat earlier.
cess parameters, nogés pulled slightl_y higher than the For simplicity, we measured delays from the 50%
thresholc_i volt_age for N-channel devu_:es. However, the point of rising edges. We realize that delays depend on
leakage is quite small, and nodeemains comfortably  he shape of the rising waveform as well as the time of
above the switching threshold of inverter i1 for the du- e 500 point, and these wave shapes are significantly

ration of the pulse on thast input. We are currently  giiered by preswitching. Also, we collected these data-
exploring other circuit variations to better understand points using a small subset of circuits from the mul-
this trade-off between timing robustness and noise im- gsjier, rather than simulating the entire multiplier, to

munity. reduce the time necessary to construct Figure 9 from
_ weeks to only hours. Thus, the curves in Figure 9 should
4.2 Dual-Rail Gates be viewed as approximate; yet, we still found such plots

to be very effective for debugging and optimizing our
Because domino logic is non-inverting, we use a design.
dual-rail encoding: each signal, is produced irtrue The upper curve shows the delay of the XOR gate as
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a function of the time of arrival of the last input for an

exhaustive enumeration of data values, and a wide range

of arrival times of the earlier input. The lower curve sim- have chosen to implement an integer multiplier for our
ilarly shows the delay of the multiplexor. The horizontal tests. Our design is implemented in 88y, 3.3 volt
line that cuts through the dip shows the measured delayCMOS process. Although this is far from bleeding edge
of the timing chain for a large number of runs. Observe technology, it is an economical process for prototyping.
that the depth of the dip is nearly 30% of the delay with- Even in this process, our chips should be fast enough to
out preswitching, while the vertical spacing between the strain our test equipment.

minimum and maximum delay curves is much smaller.

Thus, the surfing effect strongly dominates the timing 5.1 High-Level Design Choices

variations of the gate and ensures proper operation of

the pipeline. We decided upon a radix-2, add-pass design. More
aggressive multiplier designs exist (e.g. [7]), but since
4.3 GasP Backwards Control our goal was to create a nontrivial deep pipeline, rather

than advance the state of the art in multiplier design, we

In order for surfing to occur, our timing signals must chose to keep our design simple. Radix-2 gives us flexi-
propagate at about the same rate as or a little faster tharbility in testing a variety of pipeline depths, and add-pass
our fastest domino element. Self-resetting domino logic ensures that our pipeline will be very deep.
is very fast. The forward latency is less than two inverter  All of the gates in our multiplier use self-resetting
delays, and when preswitching is being used the forward domino logic. There are no latches anywhere in the mul-
latency is only slightly greater than one inverter delay. tiplier array. The multiplier is composed of cells which
We avoided using a simple inverter chain because pulsegperform a single bit of multiplication and addition. Fig-
can be lost. A very fast self-timed chain is required. The ure 12 shows one cell, whexeandy are the numbers to
self-timed style we have found to be best suited to our be multiplied,s andc are sum and carry outputs of mul-
purposes is GasP [11]. tiplier cells,i andj are the bits irx andy which are being

In the configuration given by Sutherland and Fair- multiplied in a cell, and indicates the pipeline stage.
banks [11], GasP has four inverter delays in the forward
direction and two inverter delay for the backward la- g5 2 Timing
tency. In the self-timed designs for which they created
GasP, the extra forward latency matched the delay of

their data paths with latches, and the smaller backward. We.used the_thggry of Logical Effort [12] asa start-
. . . ing point for optimizing our gates and matching the de-
latency provided a small cycle time. Our designs have

' . o lays of the data path to those of the GasP backwards
no latching overhead, and applying preswitching to ev- . N .
. o . control. For conciseness in this section, we report de-
ery gate in the critical path improves both performance : :
o . L. lays measured using typical process parameters. Sec-
and timing margins. GasP pipelines closely resemble . . o . L
; ; ; tion 5.4 describes our validation of the design using five-
self-resetting domino designs, and we found the shorter, : X : . .
. . .~ 'corner Spice simulations. Surfing is used to control tim-
backward latency of GasP ideal for propagating our tim- ina alona the critical path. Along noncritical paths. we
ing pulses. Figure 10 shows our “GasP backwards” con- 9 9 parm. g P '

: . employ two additional mechanisms to control timing:
trol. (Note that the NAND gates are self-resetting.) pseudolatches and generous pulse widths. Each of these

) o three mechanisms as applied in the multiplier are de-
5 A Surfing Multiplier scribed in greater detail below.
The critical timing path is through surfing domino
To evaluate surfing domino logic, we want a deep gatesXORj;, XOR,, andMUX;. The gates use the cir-
pipeline with several different types of gates in order We cuit topology shown in Figure 8 with the timing shown
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an overlap of about 340 ps, which is more than sufficient
for the correct operation dfiUX;. This approach of
widening input pulses for multiple input gates to ensure
adequate overlap is essentially the same as that taken by
Chappellet al.[3].

Paths through gat&ND; introduce their own timing
issues. Thérueside of gateAND; is the surfing domino
AND gate shown in Figure 7. It has delays that are just
slightly less than those for XOR gates due to lower par-
asitic capacitances on internal nagleThefalseside of
gateAND; is a self-resetting domino OR gate as shown

in Figure 13. This gate has a delay that is substantially
. lower than the target interstage delay. When exactly one
of tx; or ¢y is 0, the delay through thtalse side of
fast wfast AND; is typically 161 ps; when both inputs are 0, the
delay drops to 112 ps. Rather than mo_difying the gate
topology, we observed that the fdalse side does not
impair the function of our multiplier.

To verify the timing of paths through gafeND;, we
consider paths that start with the timing pulseX@Ro,
MUXj, L3, andL7 of the previous stage, and propagate
in Figure 9. From Figure 9 we observe that for the XOR through these gates and gad®R; and AND; of the
gate dsiow,min = 245 ps, an®xastmax= 173 ps, with the current stage to reach inpugsandil of MUX; respec-
MUX having a slightly lower delay. The forward de- tively. The delay to thes input of the multiplexor is
lay of the timing pulse is on average 206%p$hus, the given by:
inequalities of Equation 4 are satisfied.

. The bits of thex andy arguments are passed along 80 ps 206 ps
with the results of the computation, using pseudolatches  t-1fast T IXOR, tSii-1 T x0OR, MUXa[s]
Lo throughL7. As shown in Figure 11, the pseudolatch is .
a self-resetting domino AND gate with the timing pulse ©OF» foughly, 386 ps. The path throughiMUX; is
as one of the inputs to keep signals aligned with the equivalent. The Qelay to thé mpu't of.the multiplexor
wave when not part of the current computation. The through thefalseside of gateAND; is given by:
pseudolatch is not state holding; it only serves to pre-
vent the events off the critical path from outpacing the 170 ps [112 ps,161 ps] .
events on the critical path. The pseudolatch design is t-afast i~ AnD, © trMUXa[i1]

simpler and uses less power than deliberately constructrne total delay on this path is between 282 ps and 331
ing a slow buffer and then accelerating it with surfing. ps, Thus, the pulse for thd input of MUX; can ar-

To ensure proper operati_on, we must show that pulsesiye as much as 104 ps before the pulse for hie-
from the critical pat_h_ logic and pulses from tr_le PSeU- nut. Pulses output from ga®ND; have a width of at
dolatches haye sufficient .overlap to properly trigger the |o5st 359 ps. This provides a minimum overlap of rougly
gates for which they are inputs. In particular, we must 555 ns which is still sufficient to ensure correct opera-
establish overlap of pulses at tileands inputs of mul- tion of the multiplexor.

tiplexor MUX;. The timing of both pulses can be deter- e analyses for the other paths are similar to those
mined relative to the timing pulse for XOR gaX®©R; described above.

and pseudolatch;. The two paths are:

Figure 12. Multiplier Cell

t-1Ls

5.3 Layout

180 ps
tfast TRD> MUX1[s] .
! We performed our tests on 42 version of the mul-
170 ps MUX[i tiplier design. We chose>412 because it offers a deep
L l[IO] . . . . . .
1 pipeline (36 stages of computation) while keeping sim-
The width of the XOR’s output is around 345 ps, and the ulation time and memory usage reasonable. We used the
width of the pseudolatch’s output is 350 ps. This ensureslayout editor Magic [8] to create a physical layout of our
1The average GasP delay of 206 ps differs from the measurementsd_ESign- The |ayoyt is 0.7 MiR 1.8 mm. We empha- _
in Figure 9 because the simulation conditions were different. sized ease of design; thus, in many regions the layout is

and (fast
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T] Supply Induct. | Current | Noise Ampl.
, Logic 1nH | 286 mA 76 mV
Preswitching| 3 nH 33 mA 111 mv
at—iL o ? o | GasP 3nH | 52mA| 68mv
v Timing Dist. | 3nH | 104mA | 195 mV
Figure 13. The FalseSide of a Dual-Rail Self- Table 1. Typical Power Supply Characteris-
Resetting Domino AND Gate tics

not very dense, and it is certainly not optimized to mini- the fast/fast corner. We observed a prolonged period of
mize Wiring Capacitances_ Operation when the |OgiC SUpp'y was 0.2 V lower than
We extracted capacitances for our Spice simulationsthe GasP supply. As a consequence the multiplier logic
from the layout. We were unable to extract wire resis- ran slower relative to GasP, narrowing the gap between
tances; thus, they were omitted from the model. We Ormin @nd dastmax (S€€ Section 3), reducing our toler-
built the mu|t|p||er with four Separate power Supp"es: ance for late Signals. While we believe that the Separate
for logic, preswitching, GasP, and timing signal distri- Power supplies almost certainly exacerbated the noise
bution. The separate supplies allow us to measure theProblem, and a design with a single global power supply
power Consumption due to each class of elements. TOWOU|d be more rObUSt, we have simulated with Separate

simulate power supply noise we placed inductors in se- SUpplies to stress the design with respect to power supply
ries with each of the four supplies. noise. We are continuing our Spice simulation studies to

determine the version that we will fabricate.

5.4 Results
6 The Future of Surfing
Our tests were performed in Spice using parameters
from a Q35y, 3.3 V process. All timing measurements We have designed a surfing multiplier in 884 pro-
are taken at the fifty percent point. Under typical pro- cess to the point of a layout. Spice simulations of the
cess parameters, the average measured FO4 delay [5] iextracted layout show that the multiplier achieves very
185 ps. low gate delays and is robust with respect to variation
We tested both the speed and robustness of the deeof fabrication parameters and power supply noise. The
sign. We observed correct multiplier operation at all five obvious next step is to add the necessary test structures
process corners. Under typical process parameters theo this layout, fabricate the design, and test it. We will
average interstage GasP delay is 206 ps. That gives atbe doing these in the near future.
end-to-end latency of 7.4 ns. We can issue at 1.11 GHz, As mentioned in section 4.1, our approach to surf-
for eight waves in flight. At the fast/fast corner, our av- ing introduces a trade-off between timing margins and
erage interstage delay is 154 ps, and we can issue ahoise immunity. Clearly much more extensive analysis
1.3 GHz. At the slow/slow corner, our average inter- and testing must be done to examine the noise sensitivity
stage delay is 269 ps, and we can issue at 850 MHz.  of surfing domino logic. Furthermore, we are exploring
Table 1 lists power supply parameters. We used anvariations of the basic surfing gate design presented in
inductance of 3 nH per supply pin. Since the logic uses section 4.1 to determine if designs that are even faster
by far the most power, we allocated three pins for that and/or more robust are feasible.
supply. These results were observed under typical pro- When we first considered surfing designs, we were
cess parameters, while driving the pipeline at 1.11 GHz. concerned about the added power consumption due to
Current measurements include the input drivers (stan-preswitching. In some of our early designs that we have
dard clocked domino buffers), but the outputs were not since rejected, preswitching increased power consump-
driving any load. Observed currents are maximums, andtion by factors of four or greater. Our current design is
observed noise amplitudes are from lowest peak to high-much cooler. As shown in Table 1, preswitching current
est peak. Note that the power consumed by preswitchingaccounts for only 7% of the total power budget of our
is an order of magnitude lower than that consumed by multiplier. All timing circuits (GasP+ timing pulse dis-
the multiplier logic. tribution + preswitching) account for 40% of the total
Our design exhibited some sensitivity to power sup- budget. While this number is comparable to many high-
ply noise. Initially we tested using 3 nH inductors on performance synchronous designs, it is an obvious area
all four supplies. The multiplier consistently failed at to look for improvements.
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The design of the multiplier was simplified because handshaking, GasP ensures that pulses are not lost in the
its critical paths consist of chains of identical, or nearly timing chain due to timing imbalances, while avoiding
identical, gates. We expect that surfing can be employedthe need for elaborate pulse-shaping circuitry.
profitably in other structures as well. For such designs To demonstrate this approach, we have designed a
to be practical, we need to find practical design method- small multiplier.Spice simulations from the extracted
ologies that will ensure sufficient matching of forward layout indicate that the pipeline can operate with an is-
delay of the control chain to the propagation delay of the sue rate of 1.11 GHz with typical process parameters and
data path. Logical effort [12] is an obvious place to start. 1.3 GHz at the fast corner. The latency of the critical
Determining a consistent effort model for preswitched path is reduced by 4% compared with the correspond-
gates and developing the rest of a design methodologying, purely combinational design. This shows that surf-
are key areas for future work. ing does indeed achieve negative overhead as promised.

The analysis in Section 3 indicates that computa- We have examined robustness issues and the design
tions can surf through an arbitrarily deep logic circuit appears to be tolerant of process parameter variation and
without accumulating timing uncertainty. Although the power supply noise. Our next step is to fabricate the
multiplier is a straight-line pipeline, we believe that multiplier to experimentally verify the simulation results
our techniques can readily be extended to latch-free,and perform further tests. We also intend to apply surf-
surfing ring structures as well. For such a structure, ing techniques to other pipeline structures.
computations could progress through an arbitrary num-
ber of stages without being slowed by latches. More References
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