
Source-Level Transformations for Improved Formal Verification∗

Brian D. Winters and Alan J. Hu
Department of Computer Science
University of British Columbia

(bwinters,ajh)@cs.ubc.ca

Abstract

A major obstacle to widespread acceptance of formal
verification is the difficulty in using the tools effectively. Al-
though learning the basic syntax and operation of a formal
verification tool may be easy, expert users are often able to
accomplish a verification task while a novice user encoun-
ters time-out or space-out attempting the same task. In this
paper, we assert that often a novice user will model a sys-
tem in a different manner — semantically equivalent, but
less efficient for the verification tool — than an expert user
would, that some of these inefficient modeling choices can
be easily detected at the source-code level, and that a robust
verification tool should identify these inefficiencies and op-
timize them, thereby helping to close the gap between novice
and expert users. To test our hypothesis, we propose some
possible optimizations for the Murϕ verification system, im-
plement the simplest of these, and compare the results on
a variety of examples written by both experts and novices
(the Murϕ distribution examples, a set of cache coherence
protocol models, and a portion of the IEEE 1394 Firewire
protocol). The results support our assertion — a nontrivial
fraction of the Murϕ models written by novice users were
significantly accelerated by the very simple optimization.
Our findings strongly support further research in this area.

Appeared in IEEE International Conference on Computer Design, September 2000.

1. Introduction

A major obstacle to widespread acceptance of formal
verification is the difficulty in using the toolseffectively.
Ideally, the tools should be accessible to non-experts, so that
formal verification can be used as just another aid to design
and verification. While some learning effort is expected, the
user must not be expected to have a deep understanding of
the specific algorithms and heuristics used by the tool. In re-
ality, the situation is markedly different. Although the syn-
tax and basic operation of formal verification tools might be
easy to learn, there is usually considerable subtlety in using
the tools effectively on large problems. Expert users with
∗This work was supported in part by the National Science and Engi-

neering Research Council of Canada.

a deep understanding of a tool are able to achieve impres-
sive results; novice users are all too frequently frustrated by
exploding memory and CPU usage.

A key difference between novice and expert is that the
expert has a detailed understanding of the algorithms and
heuristics used by a tool and can use that understanding
to choose an efficient way to present the verification prob-
lem to the tool. When applying formal verification, many
choices must be made: how to model parts of the system,
which parts of a system to abstract, how to perform that
abstraction, and so forth. Differing choice can result in an
equivalent verification problem, but some choices will be
more or less efficient than others for the particular verifica-
tion tool. When the novice has the chance to consult with
the expert, advice often takes the form, “Don’t model it like
that; do this instead. Otherwise,...,” where the consequence
reflects detailed knowledge of the tool: the BDD will have
to represent all permutations, the state space will lose sym-
metry, the reduction heuristic won’t work, and so forth.
This situation is clearly undesirable; the novice is forced
to become an expert on and adapt to the idiosyncrasies of
the tool. Even for the expert, being forced to adapt to the
tool can be suboptimal, since the description style that most
clearly matches the verification problem might not be the
style that best suits the verification tool.

We believe that the tool should adapt to the user. A ro-
bust, practical verification tool should help close the gap
between novice and expert, allowing the novice to get use-
ful results without a lengthy learning curve. For novice and
expert alike, the tool should free the user to match the de-
scription to the problem being verified, rather than to spe-
cific quirks of the verification tool.

One might argue that recent commercial tools are much
easier to use than their academic forebears. This is true.
It’s worth noting, however, that the most commercially suc-
cessful formal verification techniques, e.g., combinational
equivalence checking, are precisely those which place the
least burden on novice users to understand the inner work-
ings of the tool. In this light, one can view this paper as
a step towards making more formal verification techniques
commercializable.

We hypothesize that often a novice will model a sys-
tem differently (less efficiently for the tool) than an expert
would, that many of these inefficient modeling choices can

599



be easily detected in the source code of the model descrip-
tion, and that the tool should be able to optimize away these
differences. This paper presents a preliminary test of the hy-
pothesis: we are demonstrating proof-of-concept of a gen-
eral principle, rather than advocating a specific optimiza-
tion.

To test our hypothesis, however, we must be more con-
crete: for a specific verification tool, what optimizations are
possible, and are they effective in practice on models writ-
ten by novice users? We have chosen the Murϕ verifica-
tion system [2, 1] as the target for our test. The reasons
for this choice are twofold. On one hand, Murϕ is simple:
the description language is small, the verification algorithm
is explicit state reachability, for which heuristic optimiza-
tions are easier to understand than for BDD-based meth-
ods, and the compiler source code is publicly available.1

On the other hand, Murϕ has been widely used for a va-
riety of applications (e.g. [3, 11, 8, 4, 9, 5]), so realistic
verification examples exist, and any optimizations we im-
plement are useful. The choice of Murϕ is fairly arbitrary
— our ideas should apply in general, although specific op-
timizations, obviously, apply only to verification tools with
similar features.

2. Source-Level Transformations

The Murϕ verifier has it’s own input language for de-
scribing the system being verified. A Murϕ program con-
sists of two main parts: declarations and rules. The dec-
laration section declares constants, types, global variables,
and procedures. The rules define the transitions of the sys-
tem. At any given time, the system state is determined by
the values of the global variables. As the system executes,
a rule is chosen non-deterministically and executes atomi-
cally, updating the global variables to a new state.

Murϕ provides several features to simplify writing scal-
able descriptions of large systems. The normal description
style uses numerous subrange types, which can be scaled
easily. Of particular interest are the specialscalarset and
multiset types, which provide automatic symmetry reduc-
tion [7]. Scalarsets are like subranges, but without order.
Multisets are like arrays, except that the array elements are
unordered. Appropriate use of these data types greatly re-
duces the size of the state space. To simplify writing rules
for all values of a subrange or scalarset, Murϕ provides a
ruleset construct, which generates a copy of all enclosed
rules for each possible value of its formal parameter. Simi-
larly, thechoose construct selects an item from a multiset.
Figure 1 shows some portions of a Murϕ model for a cache
coherence protocol.

We have identified a few possible source-code trans-
formations which may improve models written by novice
users. These are ruleset rearrangement, scalarset identifica-
tion, and variable clearing.

1http://verify.stanford.edu/dill/murphi.html

Const
ProcCount: 2; -- # of processors
AddressCount: 2; -- # of addresses
ValueCount: 2; -- # of distinct values
...

Type
Pid: Scalarset(ProcCount);
Address: Scalarset(AddressCount);
Value: Scalarset(ValueCount);
...
ProcState: Record

...
cache: Array[Address] of

Record
...
v: Value;

End;
End;

...
Var

procs: Array[Pid] of ProcState;
...

Ruleset p: Pid Do
Alias me: procs[p] Do

Ruleset a: Address Do
Ruleset v: Value Do

Rule "Evict shared data"
(me.cache[a].state = Shared)

==>
me.cache[a].state := Invalid;
Undefine me.cache[a].v;

Endrule;
...
Rule "Change exclusive copy"

(me.cache[a].state = Exclusive)
==>

me.cache[a].v := v;
Endrule;

Endruleset;
Endruleset;

Endalias;
Endruleset;

...

Figure 1. Portions of a Mur ϕ Model

Ruleset Rearrangement
Murϕ allows users to group rules withinruleset,

choose and alias statements, which can be nested ar-
bitrarily. These groupings are primarily for convenience;
grouping of rules may be the best match for the problem
semantics or may make it easier for the user to understand
the model. Grouping rules together under ruleset, choose or
alias statements is logically equivalent to placing each rule
under separate identical ruleset, choose or alias statements.

If a rule is enclosed inside a ruleset or choose statement
on which it doesn’t depend, the verifier will needlessly exe-
cute the rule for each possible value of the enclosing ruleset
or choose parameter. The set of reachable states is unaf-
fected, as each firing of that rule for variations of the inde-
pendent variable will lead to the same state, but every extra
rule firing adds to the run time of the model.

Obviously, we should move rules outside the scope of ir-
relevant rulesets and choose statements. A straightforward
implemention method starts by ungrouping all rules, so that
each rule is by itself within its enclosing rulesets, chooses,
and aliases. Then, for each rule, we remove enclosing rule-

600



set and choose statements upon which the rule doesn’t de-
pend. Removing alias statements does not impact perfor-
mance, but it simplifies the dependency analysis of ruleset
and choose statements. For example, in Figure 1 the evic-
tion rule does not depend on the ruleset overv.

Scalarset Identification
Using scalarsets instead of subranges in cases where or-

dering within the range does not matter provides a tremen-
dous reduction in state space size. Subranges, however, can-
not always be replaced by scalarsets: any operation that
relies on order, arithmetic, or distinguishing special ele-
ments in the range breaks symmetry and precludes the use
of scalarsets.

Novices might not realize all cases when a scalarset
can be used. A trivial possible transformation is to check
for each subrange type whether it could be redefined as a
scalarset.

A more interesting and powerful transformation is pos-
sible if we consider common programming practice. Data
types often get reused for various purposes if it seems ap-
propriate. An integer type, for example, might be used for
a counter, for arithmetic, and for ID numbers. Returning
to the example in Figure 1, suppose the user had defined
an “integer” type as a subrange, and used this type for pro-
cessor IDs, addresses, values, as well as for some counters.
In that model, we could not apply the scalarset symmetry
reduction to processors, addresses, and values because the
same type is also being used for counters, which have order.
Even without the counters, having a single scalarset type for
processors, addresses, and values would not allow as much
symmetry reduction as having a separate scalarset for each.

To handle this problem, we propose a much more power-
ful way to identify possible scalarsets. A syntactic check of
the Murϕ program can determine which variables interact
and must have the same type versus which variables have
the same type simply for the user’s convenience. If we con-
struct a graph with a node for each variable and edges indi-
cating which variables must be type-compatible, then each
connected component can be assigned a distinct type. Each
of these types can then be checked separately for possible
conversion to a scalarset.

Variable Clearing
In most models, not all variables are holding important

data at all times. For example, if a cache line is invalid, its
contents don’t matter, or if a queue is modeled as an array
and a tail pointer, the array elements past the tail pointer
don’t matter.

Although the contents of these variables may not matter
to the user or to the accuracy of the model, they do mat-
ter to the verification tool. Two states that differ only in the
values of don’t-matter variables are still considered two dis-
tinct states by the verification tool. If the user is not care-
ful to clear any leftover values out of variables whenever
they no longer matter, the result is a needless explosion in
the number of states. For example, in Figure 1, if the user
omitted theUndefine statement, the resulting model would

have a much larger set of reachable states, because different
values leftover in theme.cache[a].v field would generate
additional states.

Tracking exactly which variables are no longer needed
and making sure to clear out their values is tedious for
the expert user and extremely difficult for the novice, who
may not even realize the importance of doing so. Fortu-
nately, live variables analysis, a standard program analysis
technique (e.g., [10]), can determine automatically which
variables are dead (not needed) at each point in a pro-
gram. Adapting live variables analysis to Murϕ programs
could determine whereUndefine statements are needed.
The source-code transformation would insert theUndefine
statements automatically, greatly improving the efficiency
of verification.

3. Experimental Set-Up and Results

At this point, we have implemented only the ruleset re-
arrangement transformation. We are enthusiastic about the
other transformations, and their implementation presents no
research challenges. Actually coding them, however, is im-
practical in the current Murϕ compiler. Accordingly, we
chose to evaluate the easiest-to-implement transformation
on a wide variety of Murϕ programs. If our ideas have merit
we should observe some improvement from even one trans-
formation.

We used three sets of Murϕ programs for our experi-
ments.2 The first set is the 27 distinct examples included
in the Murϕ 3.1 distribution. These examples are written
by expert Murϕ users, so our hypothesis predicts little or
no improvement from the optimization. Indeed, the results
on these runs are uninteresting and have been omitted for
brevity. In only one example did runtime change by more
than 5% (ldash improved 8.32% and 7.32% with and with-
out hash compaction). In three other examples, runtime
changed by more than 2% (list6 andsci improved,ns
worsened). In the remaining 23 examples, runtime changed
by less than 2% both with and without hash compaction.

The second set consists of eleven implementations of a
simple, fictitious directory-based cache coherence protocol,
each developed independently by students in a formal veri-
fication class. The students had no previous experience with

2Our implementation is a modification of Murϕ 3.1. Compiling a Murϕ
model is a two step process — translating the Murϕ model into a C++ pro-
gram that is a verifier for the model, and then compiling the C++ program.
For all experiments, we enabled bit compaction and tested both with and
without hash compaction. The C++ code was compiled using egcs version
2.91.66 with “-O4 -mpentiumpro” optimization. The Murϕ hash table size
was set to 96 MB with 30% for the active states. Hash compaction used the
default 40-bit hash size. Our experiments were run on a 400 MHz Pentium
II workstation with 128 MB of RAM, running SuSE Linux 6.1. We report
runtimes in seconds for the original model and the model after our trans-
formation. The runtimes shown are the medians of five runs. For brevity,
we report results only without hash compaction; results with hash com-
paction differ immaterially. Compile times (Murϕ translation plus C++
compilation) are not reported because our transformation did not affect
them significantly.

601



model lines states timeorig timeopt % imprv
student1 587 1828 2.88 2.88 0.00
student2 641 36984 45.31 31.50 30.48
student3* 653 8204 4.38 4.39 -0.23
student4 710 501446 397.91 399.20 -0.32
student5 496 3522 3.17 3.17 0.00
student6 642 36995 44.21 30.94 30.02
student7 947 3647 3.52 3.48 1.14
student8 669 9071 6.87 6.83 0.58
student9* 714 52771 54.62 54.35 0.49
student10 568 4403 3.97 4.00 -0.76
student11 538 1828 2.22 2.22 0.00

Table 1. Cache coherence protocol models

Murϕ. They were given a tabular description of the cache
coherence protocol and a partial Murϕ model that included
declarations, but no rules, so they were free to write the
rules in whatever manner was most natural for them. This
set of programs represents a large number of novice users
independently tackling the same verification task. Our hy-
pothesis predicts that some of these programs should show
significant improvement, corresponding to when a particu-
lar user happens to chose a writing style that happens not
to be well-suited to the internals of the tool. The results
(Table 13) again match the hypothesis — the optimization
greatly speeds up two of the eleven programs. From the
enormous variations in code size, state count, and run times,
we see that different users naturally express themselves dif-
ferently. A robust formal verification tool should adapt to
this diversity, rather than forcing users to write code specif-
ically tailored to the verification tool’s idiosyncrasies.

The third experiment is a model of part of the physical
layer of the IEEE 1394 [6] High Performance Serial Bus.
The model implements the reset and tree identification por-
tions of the physical layer. The model is significantly larger
than the others and was written by a Murϕ novice. Large,
real models written by novices are not widely available, but
such models provide the best test of our hypothesis because
large real models written by novices are precisely those that
we seek to improve. In this case, the most natural way for
the user to model the system did not give the best arrange-
ment of rules and rulesets for efficient Murϕ execution. The
model had 824 lines and 2060216 reachable states. Our
transformation improved runtime 27.08%, from 372.23 to
271.43 seconds.

4. Conclusion

As we have seen, even an extremely weak source-level
transformation was able to significantly improve several
models written by novices. This result supports our asser-
tions that novice users are likely to model systems differ-
ently and less efficiently for formal verification, that many
of these inefficient modeling choices can be easily detected

3Models were run with 2 processors, 3 addresses, 2 data values, and
communication channels scaled as necessary, except for those marked with
asterisks, which blew up with 3 addresses, so we used only 2 addresses.

at the source-code level, and that a verification tool can
optimize away these inefficient modeling choices, thereby
boosting the productivity of novice users. A tool user
should not need to understand the inner details of the tool,
nor adapt to those details, in order to use it effectively. This
work is a step towards solving the problem.

We have implemented one simple source-level transfor-
mation — our goal was to illustrate how verification tools
can adapt to novice users, rather than to advocate a spe-
cific optimization for a specific tool. Nevertheless, the most
obvious direction for future work is to try the other transfor-
mations we have proposed and measure their effectiveness.

The more general direction for future work, and the
promise of greater impact, is to apply these ideas to other
verification tools and languages. Possible questions to in-
vestigate include what source-level changes might reduce
BDD size, what aspects of Verilog or VHDL might high-
light easy-to-implement optimizations, and how might a fu-
ture hardware description language or verification language
be best designed to support robust ease-of-use. Consider-
able further research needs to be done.

References

[1] D. L. Dill. The Murϕ verification system.Computer-Aided
Verification: 8th Int’l Conf, pp. 390–393. Springer-Verlag,
1996. Lecture Notes in Computer Science 1102.

[2] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Pro-
tocol verification as a hardware design aid.Int’l Conf on
Computer Design, 1992.

[3] D. L. Dill, S. Park, and A. G. Nowatzyk. Formal specifica-
tion of abstract memory models.Research on Integrated
Systems: Proc of the 1993 Symp, pp. 38–52. MIT Press,
1993.

[4] A. J. Hu, M. Fujita, and C. Wilson. Formal verification of
the HAL S1 system cache coherence protocol.Int’l Conf on
Computer Design, 1997, pp. 438–444.

[5] A. J. Hu, R. Li, X. Shi, and S. Vuong. Model check-
ing a secure group communication protocol: A case study.
Joint Int’l Conf on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols, and Proto-
col Specification, Testing, and Verification (FORTE/PSTV).
IFIP TC6/WG6.1, 1999.

[6] IEEE Standard for a High Performance Serial Bus. IEEE
Std 1394-1995, August 1996.

[7] C. N. Ip and D. L. Dill. Efficient verification of symmetric
concurrent systems.Int’l Conf on Computer Design, 1993,
pp. 230–234.

[8] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analy-
sis of cryptographic protocols using Murphi.IEEE Symp on
Security and Privacy, 1997, pp. 141–151.

[9] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state anal-
ysis of SSL 3.0.7th USENIX Security Symposium, 1998.

[10] S. S. Muchnick.Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997. pp. 443–446.

[11] L. Yang, D. Gao, J. Mostoufi, R. Joshi, and P. Loewenstein.
System design methodology of UltraSPARC-I.32nd Design
Automation Conference, 1995, pp. 7–12.

602


